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Soft Matter Santa Fe, May 2008

POLYMER

\ Characteristics of Soft Materials:

~~==  -Variety of states and large degree of freedom, metastable states;

-Delicate balance between Entropic and Enthalpic contributions to the Free Energy;
-Large thermal fluctuations and high sensitivity to external conditions;
-Macroscopic softness.
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Frequency map of polymer dynamics Santa Fe, May 2008
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Scattering techniques have an advantage due to additional variable — wave-vector Q

Beauty of Neutron Spectroscopy Santa Fe, May 2008
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»Measures characteristic times (frequency) and geometry of the motions.
»Covers broad frequency and Q-range in the most important for microscopic
dynamics region. Current X-ray technology cannot compete!
»>Most of the soft materials contain hydrogen atoms, use of D/H contrast.
» Direct comparison to results of MD-simulations.




Using H/D Contrast

Santa Fe, May 2008
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Methyl Group Dynamics in Proteins

Santa Fe, May 2008
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Decrease of the elastic intensity in dry lysozyme can be described assuming a Gaussian
distribution of energy barriers, g(E,)e<exp[-(E;-E;)?/2AE?], with E;~16.6 kJ/mol and AE~5.8
kJ/mol in good agreement with earlier NMR data [1.H.Roh, et al. Biophys.J. 91, 2573 (2006)].

1,(0.T.0~0)=DW(Q.T)|1-p, +p, TSW, ©, a)')R(a)—a)')dw‘\M} < DW(Q, T)[wmt(Q)Jr [R@-o )jg(E )7dEdw'\

=0

Here z=texp(E/kT)




Mean-squared Displacements <r?> Santa Fe, May 2008
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In rough approximation, for an isotropic motion:
ough approximation, for an isotropic motio S,.m.(QJ)“eXp{_7<r(t)2 >}

This approximation works well only at low Q.
The estimated <r?> depends on the selected Q-range and the resolution
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Analysis of <7?> helps to identify interesting temperature ranges. However, <r?> is
an integrated quantity (includes vibrations, rotation, diffusion, etc.) and analysis of
spectra is required for understanding the dynamics.

Quasielastic Scattering Spectrum Santa Fe, May 2008
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In most cases 2 or more Lorentzians
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exponential relaxation:
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So, approximation by Lorentzians can give misleading quantitative results




Santa Fe, May 2008

Susceptibility presentation of scattering spectra has a few advantages:
- can be directly compared to €”’(v), G”(V);

- each relaxation process appears as a maximum at 2TvT~1;

- slopes of the tails give estimate of stretching exponents.
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The spectra of proteins show two relaxation processes. Both processes are strongly
stretched (can not be described by a single exponential relaxation).

Q-dependence: Diffusion Santa Fe, May 2008
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For regular diffusion: (r(t)?)e< D In frequency domain:

In that case: N N T
2 _ _ _ . ;< e

S Q1) < exp(~Q°Dn) =exp(-T'1)  S,.(@n=—"[explianexp(-Tli)d=———

S(Q,0)

An exponential decay for S(Q,t), with decay rate ['<Q?

In the case of sub-diffusive regime: <r(t)2> o< (D1 => $(Q.1) o exp|- 0*(Dr)’ |o< exp|- (TY’|
with [e<Q?8,

Diffusion-like motions exhibit strong dependence of the decay rate I' (or relaxation
time T o< 1/T") on Q.




Q-dependence: a Local Relaxation Process  suare ay200

Let’s assume that there are two equal positions and molecule makes

~#—  jumps between r, and r, positions. In isotropic case:
1.0+

S (Q.1) o< [EISF(Q)+ A (Q)exp(-2t I D)} d =1, 1; EISF
_ sinQd | _ _sinQd
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EISF(Q) is the Elastic Incoherent Structure Factor. It
contains information on geometry of the motion. 02
In the frequency domain:
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For a local relaxation process:
v'S(Q, ) has two component — elastic
and quasielastic;
v Characteristic time scale T (or T') is
independent of Q (at least, at large Q).
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Analysis of elastic incoherent structure

factor, EISF(Q)=I(Q)/[L,(Q)+Lyxs(Q)], gm

can be done: EO.Q« ° |
(i) assuming a single exponential % P p—

relaxation (single Lorentzian); W

(ii) taking into account a distribution of 0.81Dry Lysozyme °
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The first approximation overestimates EISF.
Fit of the EISF to a 3-site jump model [1.H.Roh, et al. Biophys.J. 91, 2573 (2006)]:

EISF(Q)=1-p, + ‘”3 [1+2),0rV3)]

Analysis of the first data set (single Lorentzian) gives mobile fraction of H-atoms
P,=0.14 and radius R~1.3 A, while analysis of the second set gives p,,=0.25 and
radius R~1.3 A. For methyl groups R~1.1 A and p,=0.26 in lysozyme [5.H.Robh, et al

Biophys.J. 91, 2573 (2006)].




Segmental and Secondary Relaxations in Polymers  sumare vay20s

Homogeneous vs Heterogeneous Dynamics

a) Heterogeneous: Normal diffusion with
distribution of diffusion coefficient D:

Q]

SQ.1)= Tg(ln D™)exp(-0*De)d(in D)o expL (Qth)ﬂ]

T Q2

log [

b) Homogeneous: Sublinear diffusion in
time, <r?(t)>octP:

_ 2/.2 o« 2 s
Segmental relaxation time Tq exhibits S(Q’t)_eXp( 0 <r (t)>/6) eXpl (D) J

strong Q‘-‘depender}’ce, ' Ts.ocQ"Z/B, Toc Q2B
indicating “stretched” diffusive-like
process (B - KWW stretching parameter).

Colmenero, et al., J.Phys.Con.Matter 11, A363 (1999).

Polybutadiene (PB): Split of Segmental and Secondary Relaxations — SaaFe May2008
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Q dependence of T, change sharply
when T approaches ~200 K. Also scaling
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S. Kahle, et al. AppL.Phys. A 74, S371 (2002)




@ Coherent Scattering Santa Fe, May 2008
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Conclusions:

v'Segmental relaxation involves inter-molecular
motions;

v'Secondary relaxation involves intra-molecular
motion, rotation about the double-bond.
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A. Arbe, et al. PRE 54, 3853 (1996). AN

Instruments: Back-Scattering Spectrometer HFBS o re, vay 2008
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Neutron Energy 2.08meV

Energy range +36 ueV

Analyzer Span 165°




Instruments: Back-Scattering Spectrometer HFBS s re. vy 2008
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Instruments: TOF Spectrometer DCS Santa e, May 2008

POLYNER

i

¥'The DCS is a direct geometry time-of-flight spectrometer, the only
instrument of its kind in North America.

v'The DCS is primarily used for studies of low energy excitations and
diffusive motions in a wide variety of materials.

v'The DCS is an extremely versatile instrument. Useful incident wavelengths
range from < 2A to at least 9A; correspondingly the elastic energy resolution
(FWHM) varies from ~1500 to ~15 peV.




Instruments: TOF Spectrometer DCS Santa Fe, May 2008
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For any experiment try to £
optimize intensity vs resolution.
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=== »Neutron Spectroscopy is well positioned for analysis of dynamics of Soft

Materials.

» Analysis of elastic scattering and use of H/D contrast allows to identify
molecular units involved in the motion, geometry of the motion and interesting
temperature ranges.

» Analysis of the Q-dependence differentiate diffusive and local processes and
provide additional information on geometry of molecular motions.

»Analysis of the energy-resolved spectra provides information on
characteristic relaxation times and vibrational frequencies, their distribution and
temperature dependence.

»Coherent scattering provides additional information on cooperativity and
geometry of molecular motion. However, analysis of the coherent scattering is
more complex than analysis of incoherent scattering.
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Hands-on Exercises Santa Fe, May 2008

POLYMER
-t Using DAVE program and provided experimental data (3 sets of data)

perform the following tasks:

“*Mean-squared displacement <r%> in dry protein (HFBS data from JHRoh, et al.

Biophys.J. 91, 2573 (2006))3

-Analyze temperature dependence of <r?> using HFBS data from elastic scan

(Doppler stopped).

+QENS spectrum of dry protein (HFBS data from J.H.Rob, et al. Biophys.J. 91, 2573 (2006))$
-Analyze Q-dependence of the characteristic relaxation time (decay rate);
-Analyze EISF(Q) (assuming Lorentzian spectrum).

+QENS spectrum of water of polypeptide hydration (DCS data from D. Russo, et al.

J.Phys.Chem. B 109, 12966 (2005))*

- Analyze Q-dependence of characteristic relaxation time (decay rate)
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