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Abstract. Analyses of biochemical surface-volume reactions often focus on the reaction-domi-
nated case, where the free-floating analyte is well-mixed and the binding kinetics are unaffected by
transport. In actuality, transport effects often play a role. A mathematical model is formulated for
a cylinder with a helical reacting strip on its surface, which is a good model for a helical biopolymer
such as DNA that interacts with molecules that bind to periodic structures along its backbone. Per-
turbation techniques are used to analyze the concentration of the reacting species for association and
dissociation kinetics when the cylinder is immersed in a quiescent medium. In the case of an insulat-
ing boundary for the analyte region, a multiple-scale expansion must be used. The secularity which
necessitates such an expansion is significantly different from canonical examples. The expressions for
the bound state provide a direct way to estimate the rate constants from raw data. Remarks on the
calculation of effective rate constants for general transport-affected systems are presented.
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1. Introduction. The study of biochemical reactions is of great importance to
the biological sciences. Many chemical reactions of interest in biological systems are
two-component reactions where one of the reactants is confined to a surface (often
receptors on a cell membrane), while the other is immersed in a volume. For instance,
receptors confined to the surface of a cell react with ligands floating in the cytoplasm
[1]. In addition, gene expression is significantly influenced by DNA-protein interac-
tions in these geometries [2]. Cylindrical geometries are of particular interest due to
their relationship to DNA structures [3] and certain rod-shaped viruses, such as the
tobacco mosaic virus [4].

To understand such reactions better, scientists need accurate estimates of the
association rate constant k̃a and the dissociation rate constant k̃d. Clearly the full
mathematical model for such a system must include not only the biochemical reaction,
but also the transport of the free-floating reactant (the analyte) to the reacting surface.

Certainly there have been many studies of systems where transport and reactions
occur (for instance, see the standard textbook [5]). More novel is the study of trans-
port effects where the reaction occurs on a surface. Such systems occur in chemical
vapor deposition (CVD) processes when one is trying to produce a reaction on a thin
film. However, the reactants in these systems are in gaseous form rather than dis-
solved in a liquid [6], [7], [8], [9]. In fixed-bed reactors, gaseous components diffuse
through highly porous catalysts to react on “active sites.” However, the dynamics of
the surface reaction are highly complicated and hence not well known [10].

Rusu [11] treats the case of a reaction that occurs on the inside of a closed tube
down which a reactant flows. Rusu expands upon previous work in [12], [13] which
treats only first-order reactions. Clearly this particular geometry is a good model for
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clot formation in blood flow [12], [13], [14], [15], [16], but the solutions will be quite
different from those for the geometry outside a cylinder which we shall consider here.
Not all authors use a reaction model; some use an integral adhesion approach [16].

Many authors decouple the reaction kinetics from the transport dynamics [9], [14].
When one does so, the equations that result are easily solved in terms of exponentials
[17]. Unfortunately, this decoupling occurs only when the parameter values are in
certain ranges [18], [19], which happens when the reaction and transport occur on
disparate time scales.

If the parameters do not fall in these ranges, transport effects must be included in
the analysis [15]. There have been some numerical simulations [20] and modeling [21]
of all the dynamics in similar systems, but few analytical studies have been undertaken
[11], [19], [22], [23]. Rather than modeling the full transport-reaction system, some
authors prefer to introduce a new “mass transfer coefficient” to account for diffusive
effects [18], [24]. Through a careful analysis, the expressions for these mass transfer
coefficients may be directly derived from the full system of equations [23].

In this work we analyze a system in which a helical strip on a cylindrical surface
contains the receptors, which mirrors the structure of the phosphate backbone of a
DNA strand [3], [4]. The cylinder is immersed in a quiescent medium, so the transport
is solely due to diffusion. We utilize the two-compartment model [1], [22], [25], so the
analyte is considered to be floating in a second cylinder enclosing the first. Through
scaling arguments, we show that there are three distinct time scales: one each for
diffusion in the bulk solution, diffusion into the binding surface, and reaction on the
binding surface. The flow away from the cylinder equilibrates on the diffusive time
scale, and then the bound concentration evolves on the longer of the remaining two
time scales.

The key dimensionless group is the Damköhler number (Da), which measures the
ratio of the time scales of reaction and transport. In the limit that Da → 0, the
transport and kinetic effects decouple and the equations reduce to the well-known
case. Using Da as a small parameter, we construct the first-order correction to the
reaction-limited case caused by small transport effects. In the case of the Dirichlet
condition on the outer surface of the second compartment, the analysis is relatively
straightforward, and the correction due to transport may be estimated by summing
the first several terms in a Fourier series.

However, in the case of a no-flux condition on the outer surface of the second
compartment, the analysis becomes more complicated. If one analyzes the system
only on the slow reaction time scale, one obtains Laplace’s equation, insulated at one
boundary with a nonzero flux at the other, which has no solution. If one analyzes
the system only on the faster diffusion time scale, one finds a constant forcing from
the reaction that yields divergent results. Therefore, a multiple-scale expansion that
considers both time scales must be introduced. However, note that the secularity
arises in a vastly different way from that in a standard multiple-scale problem. (A
further discussion of this type of multiple-scale problem may be found in [26].) Once
the multiple-scale expansion has been postulated, the correction due to transport may
be calculated using a Fourier series.

Using these expressions, we may adapt the standard ODE for the equilibrium
case to include the effects of transport. The new equation that results is asymptotic
to the true solution to leading two orders. In addition, the ODE has coefficients that
can easily be interpreted as effective rate constants, which show how transport effects
perturb the interpretation of measured data. Motivated by this phenomenon, some
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general remarks are presented to show how one may derive effective rate constants
for a class of problems that occur widely in these systems.

2. Governing equations. We study the effects of transport on a chemical re-
action that occurs on a portion of the surface of a cylindrical structure of radius
r̃ = rc, such as DNA. Though other more complicated means of transport could be
considered, we begin by examining the case of a stationary cylinder in a quiescent
medium, so diffusion is the only transport mechanism. Thus, the entire medium can
be considered to be in the Lévêque regime [14], also called the unstirred layer. This
layer, where diffusion is the dominant means of transport, also occurs in CVD systems
[9].

We note that often in biological systems, the analyte can have a diameter 2ra
(where the subscript “a” stands for analyte) which is comparable to or larger than
rc. A typical value of rc for a DNA strand is 10−7 cm [3]. When binding to the
minor groove of DNA, the drug berenil spans three base-pair sites [27]. Since these
base pairs are 3.4 × 10−8 cm apart [28], we have an ra value comparable to rc. In
addition, berenil also sports a right-handed twist of 9.6 × 10−8 cm [27], which again
is comparable to rc. The DNA groove binder distamycin-A (compound GDH060 in
the NDB nucleic acid data base [29]) and its related compounds span four or five base
pairs [30], [31]. Moreover, crystallographic data in the NDB yield a characteristic
radius of up to 2.19 × 10−7 cm.

Thus, we see that if the center of an analyte molecule diffuses to within a distance
ra of rc, we expect the reaction to occur if the kinetics are favorable. Thus, we can
idealize the analyte molecule as a point if we introduce an effective radius reff = ra+rc
which in the mathematical formulation replaces r̃ = rc as the surface on which the
reaction occurs. Therefore, the transport equation should hold in a region where
r̃ > reff .

Due to the cylindrical nature of the diffusion problem, we would expect to en-
counter logarithmic singularities if we considered the problem of a single cylinder in
an infinite medium. Therefore, we utilize the so-called compartment model [1], [22],
[25]; that is, we assume that there is an outer cylinder of finite radius Rreff containing
the analyte. Then by taking R large, we can obtain reasonable approximations to the
behavior of the cylinder in an infinite medium.

However, in more realistic laboratory situations one encounters other arrange-
ments in which the two-compartment model is also useful. For instance, one can
consider the helix to be immobilized in a cell or cell nucleus. Alternatively, one can
perform an experiment with a periodic array of cylinders. In this case, the space
between two cylinders may be idealized as a compartment with reflecting boundary
conditions determined from symmetry considerations [32], [33], [34]. Then the quan-
tity (rc/Rreff)2 would approximate the area fraction of DNA in the solution.

Given these assumptions, the dimensional equation of motion is as follows:

∂C̃

∂t̃
= D

[
1

r̃

∂

∂r̃

(
r̃
∂C̃

∂r̃

)
+

1

r̃2
∂2C̃

∂θ2
+
∂2C̃

∂z̃2

]
,

(2.1) r̃ ∈ [reff , Rreff ], θ ∈ [0, 2π], z̃ ∈ [0, 2πL],

where C̃ is the concentration of the analyte in the medium, D is the molecular diffusion
coefficient for the system, θ is the angular coordinate, and z̃ is distance along the
cylinder. The interpretation of L will be discussed below.
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Fig. 2.1. Cylinder with helical reacting strip.

The initial analyte concentration is taken to be uniform:

(2.2) C̃(r̃, θ, z̃, 0) = CT.

At the external radius r̃ = reffR, we have two possible boundary conditions. First,
we can maintain a no-flux condition, which would correspond to a sealed experiment,

(2.3a)
∂C̃

∂r̃
(reffR, θ, z̃, t̃) = 0,

or we can maintain the analyte concentration at a fixed value, which we take to be
equal to the initial condition,

(2.3b) C̃(reffR, θ, t̃) = CT.

The last conditions to impose are at the binding surface. We consider the case
where a binding protein in solution interacts with a site that is repeated periodically
along a helical strip, such as the phosphate backbone or minor groove of DNA [3], [27].
We assume that this strip is of uniform width w (in radians), and that its endpoints
vary linearly with z̃ (see Figure 2.1). This helix will then have a periodic structure
in z̃. We denote the period by 2πL, and hence we have that the reacting strip is the
range

(2.4)
z̃

L
≤ θ ≤ z̃

L
+ w.

Due to the periodicity of the helical structure, the cylinder is 2πL-periodic in the z̃-
direction. We note that with only one reacting strip, the model is closer to a segment
of an α-helix than DNA. However, the consideration of two reacting strips is a simple
extension of the analysis below.

The flux into the reacting strip is equal to the rate of change of the bound receptor
concentration, which we denote by B̃(θ, z̃, t̃):

(2.5a) D
∂C̃

∂r̃
(reff , θ, z̃, t̃) =

∂B̃

∂t̃
.
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The introduction of the new unknown B̃ requires the imposition of another boundary
condition, the mass action law, which states that the change in the bound state must
be given by a Malthusian dissociation term, as well as a bimolecular production term:

(2.5b)
∂B̃

∂t̃
= k̃a

[
(BT − B̃)C̃(reff , θ, z̃, t̃) − K̃B̃

]
, K̃ =

k̃d

k̃a

,

where both of (2.5) hold only on the reacting strip. Here k̃a and k̃d are the rate
constants, BT is the total concentration of receptor sites, and K̃ is the equilibrium
constant. In addition, we need an initial condition for B̃, which we take to be uniform
on the reacting strip:

(2.6) B̃(θ, z̃, 0) = BTBi.

Here Bi represents the fraction of the receptor sites that are initially bound.
To reduce the problem to dimensionless variables, we normalize r̃ by the effective

radius reff and time by the diffusion time scale, which will be shown to be the fastest.
Note that due to the uniformity of our initial and boundary conditions, the only θ-
and z̃-dependence in the problem enters through the helical reacting strip. Therefore,
motivated by the form of (2.4), we switch to helical coordinates that are fixed in the
reference frame of the reacting strip. Thus, we have the following scalings:

(2.7a) r =
r̃

reff
, tD =

t̃D

r2eff
, y = θ − z̃

L
,

(2.7b) CD(r, y, tD) =
C̃(r̃, θ, z̃, t̃)

CT
, BD(y, tD) =

B̃(θ, z̃, t̃)

BT
,

where the D subscript indicates that we are normalizing by the diffusive time scale.
Substituting (2.7) into (2.1)–(2.3) and (2.5), we have
(2.8)
∂CD

∂tD
=

1

r

∂

∂r

(
r
∂CD

∂r

)
+

(
1

r2
+ λ2

)
∂2CD

∂y2
, r ∈ [1, R], y ∈ [0, 2π]; λ =

reff
L
,

CD(r, y, 0) = 1,(2.9)

∂CD

∂r
(R, y, tD) = 0,(2.10a)

CD(R, y, tD) = 1,(2.10b)

H(w − y)
∂BD

∂tD
= γ

∂CD

∂r
(1, y, tD),(2.11a)

(2.11b) γ ≡ CTreff
BT

≈ analyte available for binding

binding sites
,

(2.12a)
∂BD

∂tD
= ka [(1 −BD)CD(1, y, tD) −KBD]H(w − y),

(2.12b) ka =
k̃aCTr

2
eff

D
, K =

K̃

CT
,
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where H(w − y) is the Heaviside function that restricts (2.11a) and (2.12a) to the
reacting strip. Here K is a dimensionless form of the equilibrium constant for the
system and ka is the “natural” dimensionless reaction rate (defined so that the forward
reaction takes place on the time scale k−1

a ).
Combining (2.11a) and (2.12a), we have the following:

∂CD

∂r
(1, y, tD) = Da [(1 −BD)CD(1, y, tD) −KBD]H(w − y),(2.13a)

Da ≡ ka

γ
=

k̃aBT

D/reff
=

reaction “velocity”

diffusion “velocity”
,(2.13b)

where Da is the Damköhler number for the system. Lastly, we substitute (2.7) into
(2.6) to obtain

(2.14) BD(y, 0) = BiH(w − y).

3. General remarks.

3.1. Cases. Depending on the sizes of Da and γ, our work can fall into several
cases. There are three time scales for this problem. The flow in the outer compartment
equilibrates on the diffusion time scale. Another time scale, suggested by (2.11a), is
the one characterizing diffusion into the reacting surface, which is γ−1 longer than
the diffusive scale. The last time scale, suggested by (2.13a), is the time scale for the
reaction, which is k−1

a longer than the diffusive scale. The bound state evolves on the
longer of these two time scales. If γ = O(1), then the first two time scales are of the
same order.

If Da = O(1), then the latter two time scales are of the same order. This case,
where transport near the reacting surface balances the reaction, occurs often in CVD
processes [6] and in rate constant measurement devices [19], [23].

To determine the proper scalings for our variables, we examine the material pa-
rameters, which are listed in Table 1. The value of rc is calculated from the diameter
of the DNA helix given in [3]. We use a large value for reff in order to ensure that our
results will also model the case where larger molecules are binding to the helix. (It
will be seen that the size of this parameter will not affect the underlying structure of
the problem.) The period of the phosphate backbone rotation, 2πL, is called the helix
pitch. The value in the table is that of textbook B-form DNA [3]. The diffusivities
listed are those for fibrinogen [21], peptides, and proteins [35].

We note that γ � 1, so to leading order (2.11a) becomes

(3.1)
∂BD

∂tD
= 0 =⇒ BD(y, tD) ≡ BiH(w − y),

where we have used (2.14). Hence, (2.13a) may be replaced by the following expres-
sion:

(3.2)
∂CD

∂r
(1, y, tD) = DaH(w − y) [(1 −Bi)CD(1, y, tD) −KBi] .

Thus, in order to track the evolution of the bound state, we must introduce another
time scale, which is the the one for the reaction. The proper scaling depends on the
size of the Damköhler number [19], which Table 1 indicates is much smaller than 1
for the particular physical system at hand.
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Table 1
Typical values of material parameters.

Parameter Lower bound Upper bound Value used

BT (mol/cm2) 2.5× 10−13 [35] 4× 10−12 [35]
CT (mol/cm3) 2.5× 10−12 [35] 4× 10−10 [35]
D (cm2/s) 2.8× 10−7 [21] 10−6 [35]

k̃a (cm3/mol · s) 6.5× 105 [36] 1010 [24]
L (cm) 5.41× 10−8 [3]
ra (cm) 4.8× 10−8 [27] 2.19× 10−7 (NDB [29])
rc (cm) 10−7 [3]
reff (cm) 1.48× 10−7 3.19× 10−7 5× 10−7

Da 1.62× 10−8 1.43× 10−2 0.02
γ 6.25× 10−8 1.6× 10−4

λ 9.24

We note that in this case (3.2) becomes

(3.3)
∂CD

∂r
(1, y, tD) = 0.

Since the evolution of the bound state occurs on a slower time scale than tD, we
introduce the variables
(3.4)
t = katD = k̃aCTt̃, CD(r, y, tD) = C(r, y, t)+o(1), BD(y, tD) = B(y, t)+o(1).

Note that t is the time scale on which the forward reaction occurs.

Substituting (3.4) into (2.8), (2.10), (2.11a), (2.12a), and (2.14), we have the
following, to leading order:

(3.5)
1

r

∂

∂r

(
r
∂C

∂r

)
+

(
1

r2
+ λ2

)
∂2C

∂y2
= 0,

∂C

∂r
(R, y, t) = 0,(3.6a)

C(R, y, t) = 1,(3.6b)

∂C

∂r
(1, y, t) = H(w − y)Da

∂B

∂t
,(3.7)

(3.8)
∂B

∂t
= [(1 −B)C(1, y, t) −KB]H(w − y),

(3.9) B(y, 0) = BiH(w − y).

Clearly solutions of (3.5) are steady states of (2.8).

Note that our solutions will depend on the parameters ka (through t) and K.
Therefore, by taking measurements of B and comparing the results with our solutions,
we can estimate K and ka. Since CT is known for each experiment, one can then easily
estimate k̃a and k̃d.
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3.2. Steady state. Some useful information may be gleaned by examining the
steady states of (2.8), (2.10b), and (2.11a), which we indicate by the subscript “s”.
It is clear that the steady-state solution in this case is Cs(r, y) ≡ 1, and hence

(3.10) Bs(y) =
H(w − y)

α
, α ≡ 1 +K.

Thus K determines the final bound concentration. Noting the relationship be-
tween K and CT in (2.12b), we see that by running several experiments with varying
values of CT and graphing Bs vs. CT, one can obtain an estimate for K̃. However, in
order to get an appropriate estimate for both k̃a and k̃d, we must have another piece
of information, which we shall derive in later sections.

3.3. General structure. In order to examine the general underlying structure
of this problem, we note that (3.5)–(3.8) are really a special case of the following
problem, posed in an arbitrary spatial domain R:

(3.11) LC = 0, x ∈ R; FC = 0, x ∈ ∂Rn; Da
∂B

∂t
=
∂C

∂n
, x ∈ ∂Rr;

(3.12)
∂B

∂t
= (1 −B)C −KB, x ∈ ∂Rr;

where ∂/∂n refers to the normal derivative, L is a linear operator, and F is an affine
operator (both assumed to be independent of Da). Here ∂Rn is the nonreacting
boundary (in our system, r = 1, w < y < 2π, and r = R) and ∂Rr is the reacting
boundary (in our system, r = 1, 0 ≤ y ≤ w).

Since we have assumed that γ � 1, ka � Da, and thus we expand our dependent
variables as series in Da:

C(x, t) = C0(x, t) + DaC1(x, t) + o(Da),(3.13a)

B(x, t) = B0(x, t) + DaB1(x, t) + o(Da).(3.13b)

Substituting (3.13) into (3.11) and (3.12), we obtain

LC0 = 0, x ∈ R; F0C0 = 0, x ∈ ∂Rn;
∂C0

∂n
= 0, x ∈ ∂Rr;(3.14a)

LC1 = 0, x ∈ R; F1C1 = 0, x ∈ ∂Rn;
∂C1

∂n
=
∂B0

∂t
, x ∈ ∂Rr;(3.14b)

∂B

∂t
= (1 −B)(C0 + DaC1) −KB +O(Da2), x ∈ ∂Rr;(3.15)

where FC ∼ F0C0 + DaF1C1. Since F is affine and independent of Da, F1 must be
linear.

If the solution C0 of (3.14a) and the initial condition for B0 are constant along
∂Rr (which will be shown to be true in our cylindrical system), then the solution to
the leading order of (3.15),

(3.16)
∂B0

∂t
= (1 −B0)C0 −KB0, x ∈ ∂Rr,

is a function of time only. Since both L and F1 are linear, we may write

(3.17) C1 =
dB0

dt
h,
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where h satisfies the first two equations in (3.14b) and

∂h

∂n
= 1, x ∈ ∂Rr.

We note that the equations governing h do not involve the binding process, and hence
h is a function of the geometry of the domain R and the transport process only.

In the next sections we calculate the solution in the case of both the Dirichlet
condition (3.6b) and the Neumann condition (3.6a).

4. Dirichlet condition. Substituting (3.13) into (3.5) and (3.6b)–(3.9), we
have, to leading two orders,
(4.1)

1

r

∂

∂r

(
r
∂C0

∂r

)
+

(
1

r2
+ λ2

)
∂2C0

∂y2
= 0, C0(R, y, t) = 1,

∂C0

∂r
(1, y, t) = 0,

∂B0

∂t
= [(1 −B0)C0(1, y, t) −KB0]H(w − y),(4.2a)

B0(y, 0) = BiH(w − y),(4.2b)

(4.3a)
1

r

∂

∂r

(
r
∂C1

∂r

)
+

(
1

r2
+ λ2

)
∂2C1

∂y2
= 0, C1(R, y, t) = 0,

∂C1

∂r
(1, y, t) =

∂B0

∂t
,(4.3b)

∂B1

∂t
= H(w − y)[(1 −B0)C1(1, y, t) −B1C0(1, y, t) −KB1],(4.4a)

B1(y, 0) = 0.(4.4b)

Since the solution of the operator in (4.1) is a steady state of the operator in (2.8),
we may use our steady-state discussion in section 3.2 to conclude that the solution of
(4.1) is C0(r, y, t) ≡ 1, and thus we obtain the evolution equation

(4.5)
∂B0

∂t
= (1 − αB0)H(w − y).

A brief discussion of (4.5) is appropriate. Rewriting the equation with the pa-
rameters and independent variables in dimensional form, we have the following:

(4.6)
∂B0

∂t̃
=
[
k̃aCT −

(
k̃aCT + k̃d

)
B0

]
H(w − y),

where we have used (3.10), (3.4), (2.12b), and (2.5b). Therefore, in this case a plot
of ∂B0/∂t̃ vs. B0 at any point y will yield a straight line with slope

(4.7) S = k̃aCT + k̃d.

Since CT is a known quantity that can be varied from experiment to experiment, a
graph of S vs. CT will be a straight line with slope k̃a and intercept k̃d. Note also that
due to the special form of (4.7), we do not use the steady-state solution to provide
information about K.
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Solving (4.5) subject to (4.2b), we obtain

(4.8) B0(y, t) =

(
1 − e−αt

α
+Bie

−αt

)
H(w − y).

Of course, this is the standard type of exponential behavior one would expect from
an operator like (4.5). In addition, we note that on the reacting strip B0 is constant
in y, as postulated in section 3.3, since both C0 and Bi are constant in y. Therefore,
noting that

(4.9)
∂B0

∂t
= χe−αtH(w − y), χ = 1 − αBi,

we obtain the substitution

(4.10a) C1(r, y, t) = χe−αth(r, y),

where h(r, y) satisfies (4.3a) and

(4.10b)
∂h

∂r
(1, y) = H(w − y).

To solve for h, we introduce the standard notion of a complex Fourier series in
the y-direction:

f(y) =
∞∑

n=−∞
fne

iny, fn =
1

2π

∫ 2π

0

f(y)e−iny dy.

In order to simplify our algebra, we write

(4.11a) hn(r) = gn(r)[H(w − y)]n,

where [H(w− y)]n is the finite Fourier transform of the Heaviside function and gn(r)
satisfies

(4.11b) r2
d2gn
dr2

+ r
dgn
dr

− n2(λ2r2 + 1)gn = 0, gn(R) = 0,
dgn
dr

(1) = 1.

Equation (4.11b) is the modified Bessel equation of order n with respect to the
parameter λr. Thus our solution is

(4.12) gn(r) =




In(λnr)Kn(λnR) −Kn(λnr)In(λnR)

λn[I ′n(λn)Kn(λnR) −K ′
n(λn)In(λnR)]

, n �= 0,

log
( r
R

)
, n = 0.

We note from the operator in (4.11b) that gn(r) is even in n. The surface of interest
is r = 1, where we have

C1(1, y, t) = χe−αth(1, y),(4.13a)

h(1, y) = −w logR

2π
+

1

2iπ

∑
n∈Z
n�=0

gn(1)einy(1 − e−inw)

n
.(4.13b)
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Substituting our expression for C0, (4.8), and (4.13a) into (4.4a) and then solving
yield

(4.14) B1(y, t) =
χe−αth(1, y)

α

[
Kt− χ

α
(e−αt − 1)

]
,

where we have used (4.4b). Note that (4.14) is a secular term since for times larger
than O(Da−1), it will be larger than the deviation of B0 from the steady state Bs.
However, this need not concern us, as any experiment can provide useful data on
much shorter time scales.

5. Averaged expressions. Though from a mathematical point of view it may
be nice to have closed-form expressions for C and B as functions of x and t, often
from an experimental point of view the spatial average of B is of primary interest.

5.1. General structure. We begin by considering the general problem of sec-
tion 3.3. Substituting (3.17) into (3.15) and rearranging, we have

(5.1)
∂B

∂t
− Da(1 −B0)

dB0

dt
h = (1 −B)C0 −KB +O(Da2), x ∈ ∂Rr.

We define the average of B in the usual way:

B̄(t) =
1

|∂Rr|
∫
∂Rr

B(x, t) dA,

where |∂Rr| is the area of ∂Rr. Performing this averaging procedure on (5.1), we
obtain

(5.2)
dB̄

dt
=

(1 − B̄)C0 −KB̄

1 − Da(1 − B̄)h̄
+O(Da2), x ∈ ∂Rr.

In the absence of transport, we have that Da = 0, and (5.2) reduces to the
standard ODE governing the reaction. However, if there is transport, the Da term
describes the effect on the evolution of the bound state caused by the fact that the
analyte is not in equilibrium. Since h̄ < 0, the Dah̄ term indicates the deficit in
the supply of analyte due to imperfect transport. The 1 − B̄ term is the average
concentration of vacant receptor sites available for rebinding.

Since we are studying a bimolecular reaction, the product of the terms is related
to a binding probability. If we rewrite (5.2), we note that it is related to the transport
reduction P in the probability of binding from the perfect binding case where the
probability is 1:

(5.3)
dB̄

dt
= [(1 − B̄)C0 −KB̄](1 − P ) +O(Da2), P = − Da(1 − B̄)h̄

1 − Da(1 − B̄)h̄
.

Here P roughly represents the probability that a ligand available for binding will be
swept away from a receptor site rather than bind to it. Thus using the standard
ODE model when transport is important causes one to underestimate the true rate
constant. However, using the effective rate constant model in (5.2) produces more
correct estimates.

Therefore, if one wishes to obtain an effective rate constant equation as in (5.2),
one need calculate only h̄ if all the other assumptions in this section are satisfied.
This usually occurs in biological systems of this type.
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5.2. Cylindrical problem. In the cylindrical problem at hand, we note that
the salient average is the one measured across the reacting strip:

(5.4) B̄(t) =
1

w

∫ w

0

B(y, t) dy.

Taking the average of (4.8), we have

(5.5) B̄0(t) =
1 − e−αt

α
+Bie

−αt.

Averaging (4.14), we obtain the following:

(5.6) B̄1(t) =
χe−αth̄(1)

α

[
Kt− χ

α
(e−αt − 1)

]
.

We also note that upon substituting C0 = 1 into (5.2), we find that

(5.7)
dB̄

dt
=

1 − αB̄

1 − Da(1 − B̄)h̄(1)
+O(Da2).

Evaluating h̄(1) while using the fact that gn is even in n, we obtain

(5.8) h̄(1) = −w logR

2π
+

2

πw

∞∑
n=1

gn(1)(1 − cosnw)

n2
.

Note that the terms in the sum decay like n−3 since gn decays like n−1.
Graphs of these results are shown in Figure 6.1.

6. Multiple-scale expansion for the Neumann condition. At the outer
surface of the second compartment (r = R) we now impose the Neumann condition
given by (2.10a) instead of the Dirichlet condition given by (2.10b). In this case, the
boundary conditions at r = R in (4.1) and (4.3a) are replaced by

∂C0

∂r
(R, y, t) = 0,(6.1a)

∂C1

∂r
(R, y, t) = 0.(6.1b)

We note that the solution to (4.1) (with the Dirichlet condition removed) and (6.1a)
is an unknown constant. To determine it, we must return to the evolution on the tD
time scale. Since the reaction has not yet started, it is clear that the initial data has
not been affected to leading order, and hence C0 ≡ 1 is still the solution.

Therefore our expressions in (4.5) and (4.8) still hold, and so (4.11b) holds with
the following new condition at r = R:

(6.2)
dgn
dr

(R) = 0.

Thus the solution is

(6.3) gn(r) =
In(λnr)K ′

n(λnR) −Kn(λnr)I ′n(λnR)

λn[I ′n(λn)K ′
n(λnR) −K ′

n(λn)I ′n(λnR)]
, n �= 0.
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However, the case n = 0 is much more troublesome, for then (4.11b) becomes

r2
d2g0
dr2

+ r
dg0
dr

= 0,
dg0
dr

(R) = 0,
dg0
dr

(1) = 1.

Since the condition at r = R is fixed, this equation has no solution unless dg0/dr is
really zero, which can occur only if the rate of change of the mean of the bound state
(dB,0/dt) is zero; but this is not true, and hence we have a contradiction. This results
from the fact that we are trying to solve Laplace’s equation with no flux through one
boundary and a nonzero flux at the other.

To resolve this paradox, we note that the full problem actually has a time deriva-
tive that can compensate for the nonzero flux. The trouble occurs because we have
separated the two time scales t and tD in our perturbation analysis. Hence we must
use both scales in our solution for C. Since the problem appears at first order and
only in the zeroth mode, we now let

(6.4) CD(r, y, tD) = 1 + Da

∞∑
n=−∞

cn(r, tD, t)e
iny

and focus on c0. At the present stage we consider this to be an exact transformation;
we shall consider a perturbation series later. (We do not adjust our form for B. Doing
so would simply lead to ∂B/∂tD = 0 as in section 3.1.) Substituting (6.4) and our
form for B into (2.8), (2.9), (2.10a), and (2.11a), we have, to leading order,
(6.5a)

1

r

∂

∂r

(
r
∂c0
∂r

)
=

∂c0
∂tD

+ ka
∂c0
∂t

,
∂c0
∂r

(1, tD, t) =
dB,0

dt
,

∂c0
∂r

(R, tD, t) = 0,

(6.5b) c0(r, 0, 0) = 0,

where we denote the nth Fourier coefficient of B by B,n.
Equations (6.5) allow a separation-of-variables solution of the following form:

(6.6a)

c0(r, tD, t) =

∞∑
m=1

a,m(tD, t)φm(r), a,m(tD, t) =
1

pm

∫ R

1

rφm(r)c0(r, tD, t) dr,

(6.6b) pm =

∫ R

1

rφ2
m dr,

where φm(r) satisfies the homogeneous system

(6.7)
d2φm

dr2
+ r

dφm

dr
+ ν2

mr
2φm = 0, φ′

m(1) = φ′
m(R) = 0, νm > 0.

Since this is an eigenvalue problem, we may pick an additional normalization. We
choose to set φm(1) = 1. Then the solution of (6.7) is

φm(r) =
Y1(νmR)J0(νmr) − J1(νmR)Y0(νmr)

Y1(νmR)J0(νm) − J1(νmR)Y0(νm)
,(6.8a)

Y1(νmR)J1(νm) = J1(νmR)Y1(νm).(6.8b)
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Multiplying the operator in (6.5a) by rφm and integrating from r = 1 to r = R
while using the boundary conditions in (6.5a), we have

(6.9a) − 1

pm

dB,0

dt
− ν2

ma,m =
∂a,m
∂tD

+ ka
∂a,m
∂t

.

The initial condition for (6.9a) results from (6.5b):

(6.9b) a,m(0, 0) = 0.

Since we have reduced the number of variables in the problem, we now exploit the
smallness of ka by assuming the following series expansion for a,m and B,0:

a,m(tD, t; ka) ∼ a0,m(tD, t) + kaa1,m(tD, t) + · · · ,

B,0(t; ka) ∼ B0,0(t) + kaB1,0(t) + · · · .
Note that we are using the same subscript notation for a different series from the one
in section 4. However, this does not matter since it is only the leading-order term
with which we will be concerned, and this will be the same in both cases. Thus the
first two orders of (6.9) become

− 1

pm

dB0,0

dt
− ν2

ma0,m =
∂a0,m

∂tD
, a0,m(0, 0) = 0,(6.10a)

− 1

pm

dB1,0

dt
− ν2

ma1,m =
∂a1,m

∂tD
+
∂a0,m

∂t
, a1,m(0, 0) = 0.(6.10b)

The solution of (6.10a) is

(6.11) a0,m(tD, t) = − 1

pmν2
m

dB0,0

dt
+f(t) exp

(−ν2
mtD

)
, f(0) =

1

pmν2
m

dB0,0

dt
(0).

To calculate the right-hand side of the initial condition, we note that if we now consider
Da to be small, we may use our previous expression for ∂B0/∂t to obtain B0,n, and
hence

(6.12) f(0) =
wχ

2πpmν2
m

.

Substituting (6.11) into (6.10b) and rearranging, we obtain

(6.13)
∂a1,m

∂tD
+ ν2

ma1,m = − 1

pm

dB1,0

dt
+

1

pmν2
m

d2B0,0

dt2
− f ′(t) exp

(−ν2
mtD

)
.

Hence for there to be no forcing at resonance, f(t) must be a constant. Therefore,
our solution is given by the following:

(6.14) a0,m(tD, t) =
1

pmν2
m

[
wχ

2π
exp

(−ν2
mtD

)− dB0,0

dt

]
.

Note that we have essentially treated t as a parameter, and recalling the differing
time scales, on the t time scale we have that

(6.15) C1,0(1, t) = lim
tD→∞ c,0(1, t, tD) = −

∞∑
m=1

1

pmν2
m

dB,0

dt
.
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Table 2
First several eigenvalues, R = 4.

m pm νm m pm νm
1 1.899 1.112 6 1.517 6.298
2 1.633 2.134 7 1.513 7.343
3 1.565 3.170 8 1.510 8.389
4 1.538 4.210 9 1.508 9.435
5 1.525 5.253 10 1.506 10.481

–1.4
h (1)

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

1 2 3 4 5 6

Fig. 6.1. h̄(1) and − logR (thin line) vs. w for λ = 9.24, R = 4 (medium line: Neumann;
thick line: Dirichlet).

Using our new definition of gn(r) in (6.4), we see that (4.13b) now becomes the
following:

(6.16) h(1, y) = − w

2π

∞∑
m=1

1

pmν2
m

+
1

2iπ

∑
n∈Z
n�=0

gn(1)einy(1 − e−inw)

n
.

Note that the first sum is a function of R only.
The rest of the equations in section 4 still hold with our new definition of h(y).

Therefore, the only change to the results of section 5 is the replacement of the first
term in (5.8) with the first sum in (6.16). To show how quickly the terms decay,
in Table 2 we list the first 10 values of pm and νm for R = 4. (This choice of R
corresponds to a DNA volume fraction of roughly 0.25%.) We note that νm increases
roughly linearly with m, and hence to get the same error in h̄(1) we must take more
terms in the first sum (where the terms decay like m−2) than in the second sum
(where the terms decay like n−3).

In Figure 6.1 we display a plot of h̄(1) vs. w for the Dirichlet problem, indicated
by the thick line, using the first 10 terms of (5.8). The parameters used are λ = 9.24
and R = 4. If w = 0, there is no reacting strip, and hence there is no deviation
from the equilibrium solution. Therefore in this case h̄(1) = 0. If w = 2π, the
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–0.0022
correction

–0.002

–0.0018

–0.0016

–0.0014

–0.0012

–0.001

–0.0008

–0.0006

–0.0004

–0.0002

0.2 0.4 0.6 0.8 1
t

Fig. 6.2. Effect of transport on B̄(t) from Dirichlet (thick) and Neumann (thin) lines, λ = 9.24,
R = 4, w = π, Da = 0.02.

entire cylinder is reacting and the problem has no θ-dependence. Thus the infinite
sum drops out and h̄(1) = − logR. As the width of the reacting strip increases, the
analyte must diffuse to a larger area to keep the reaction going. Therefore, the net
effect of transport upon the reaction increases with increasing w.

Figure 6.1 also shows a graph for the Neumann case, indicated by the medium
line, which has been calculated by adding the first 32 terms of the first sum in (6.16).
We note that the average value is lower in the Dirichlet case. In the Neumann case,
the concentration at the outer boundary need not remain at C = 1. Therefore, as
analyte binds to the surface, a steep concentration gradient need not form since no
new analyte is entering the system. Combining (4.10), (4.11a), and (4.13a), we obtain

∂C1,n

∂r
(1, t) = − 1

gn(1)
C1,n(r, t).

Therefore, a smaller gradient implies a larger (less negative) value for h̄(1).
Figure 6.2 shows the corresponding deviation of the solution given by (5.7) from

that in (5.5) for the two different boundary conditions for the case when w = π and
Da = 0.02. Note that with a less negative value of h̄(1), the effects of transport
are smaller in the Neumann case. Therefore, the Neumann solution is closer to the
equilibrium solution.

This concludes our examination of association kinetics; the case of dissociation
kinetics is discussed in the appendix.

7. Conclusions. Key to the understanding of certain biological reactions are
the values of their association and dissociation rate constants. However, in order
to translate experimental measurements into useful estimates of the rate constants,
accurate mathematical models are needed.

We presented the full set of transport-reaction equations for the system. By mak-
ing reasonable assumptions about the DNA geometry, we were able to transform our
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equations into helical coordinates. The introduction of proper dimensionless variables
demonstrated that in the case without bulk flow there are three separate time scales
associated with the problem. On the diffusive time scale the concentration of unbound
ligand in the channel equilibrates as if no receptors are present. Whenever diffusion
into the binding surface dominates, the evolution of the bound state evolves on that
time scale. However, in the more physically realizable case, the evolution of the bound
state evolves on the reaction time scale t.

Scaling also showed that the key dimensionless group is the Damköhler number,
Da, which measures the ratio of the time scales of reaction and diffusion. If Da � 1,
the reaction kinetics decouple from the transport effects and to leading order our
model produces the well-known result from kinetic theory [17]. The form of the next-
order correction for small Da depends on the quantity h̄, which measures the average
correction due to transport. The calculation of h̄ in the case with Dirichlet condition
was relatively straightforward.

In the Neumann case, in order to resolve the nonzero-flux paradox for the result-
ing Laplace’s equation, a multiple-scale expansion was used. The way in which the
secular terms appeared in the equations was highly unusual and clearly suggested the
inappropriateness of considering the diffusion and reaction time scales separately.

Once the solutions were obtained, we constructed averages since they are what
experimentalists measure in practice. Examination of these averages showed that
the solution for the bound state to leading two orders in Da may be written as the
solution of an ODE. The effective rate constants in this ODE demonstrated the effects
of transport on the reaction. We showed that these effective rate constants appear in
a wide class of problems associated with these systems.

In addition to providing improved estimates to the rate constants in selected
situations, the careful modeling and scaling in sections 2 and 3 provides a sturdy
mathematical framework for further studies in cylindrical geometries. In particular,
further research will focus on the effect of external analyte flow on the reaction process.

We also note that the Dirichlet and Neumann conditions (2.3) considered in this
work are simply special cases of the radiation condition

(7.1) D̃
∂C̃

∂r̃
(reffR, θ, z̃, t̃) = κ(CT − C̃(reffR, θ, z̃, t̃)),

where κ is a measure of the “permeability” of the outer boundary. Here the Dirichlet
condition is the limit of (7.1) as κ → ∞ and the Neumann condition is the limit of
(7.1) as κ→ 0. Therefore, another interesting avenue of further research would be to
examine the system for the full flux condition (7.1). In particular, we might expect the
κ = 0 limit to be singular due to the nature of the new expansion needed. However,
the small κ limit may lead to other interesting behavior, such as the influence of the
correction term on the O(1) solution, as in [37].

8. Nomenclature.

8.1. Variables and parameters. Units are listed in terms of length (L), moles
(N), or time (T ). If the same letter appears both with and without tildes, the letter
with a tilde has dimensions, while the letter without a tilde is dimensionless. Boldface
letters indicate vectors. The equation where a quantity first appears is listed, if
appropriate.
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a(·): amplitude function for eigenfunction expansion (6.6a).

B̃(θ, z̃, t̃): bound ligand concentration on surface r̃ = reff at position (θ, z̃)
and time t̃, units N/L2 (2.5a).

C̃(r̃, θ, z̃, t̃): unbound ligand concentration at position (r̃, θ, z̃) and time t̃, units
N/L3 (2.1).

cn(r, tD, t): Fourier coefficient of unbound ligand concentration in multiple-
scale expansion (6.4).

D: molecular diffusion coefficient, units L2/T (2.1).
Da: the Damköhler number, which measures the ratio of reaction and

diffusion effects, value ka/γ.
F : boundary operator in generalized problem (3.11).

f(·): arbitrary function, variously defined.
gn(r): eigenfunction, variously defined (4.11a).
h(·): analyte concentration for uniform boundary conditions (3.17).

K̃: equilibrium constant for system, defined as k̃d/k̃a, units N/L3

(2.5b).

k̃a: association rate constant, units L3/(NT ).

k̃d: dissociation rate constant, units T−1.
L: linear operator (3.11).
L: wavelength of helical structure, units L (2.1).
m: indexing variable.
n: normal direction (3.11) or indexing variable.
P : transport reduction in probability of binding (5.3).
pm: normalization constant for eigenfunction φm (6.6a).
R: region containing analyte in generalized problem (3.11).
R: dimensionless radius of external compartment.
r̃: variable in radial direction, units L.
S: slope of a line (4.7).
t̃: dimensional time, units T (2.1).
w: radian measure of the reacting strip.
x: spatial variable in generalized problem (3.11).
y: variable that fixes the helical strip position, defined as θ − z̃/L

(2.7a).
Z: the integers.
z̃: variable along the cylindrical structure, units L (2.1).
α: dimensionless constant, defined as 1 +K (3.10).
γ: dimensionless constant, defined as CTreff/BT (2.11a).
θ: angular coordinate (2.1).
κ: permeability constant, units L/T (7.1).
λ: aspect ratio of cylinder, defined as reff/L (2.8).

νm: positive square root of eigenvalue for Neumann problem (6.7).
φm(r): eigenfunction for Neumann problem (6.6a).

χ: dimensionless constant, defined as 1 − αBi (4.9).

8.2. Other notation.

a: as a subscript on r, used to indicate the analyte molecule.
c: as a subscript, used to indicate the cylinder.
D: as a subscript, used to indicate the diffusive time scale (2.7a).
eff: as a subscript, used to indicate the effective cylinder.

i: as a subscript, used to indicate the initial state of a quantity (2.6).



BIOCHEMICAL REACTIONS ON HELICAL STRUCTURES 1443

n ∈ Z: as a subscript, used to indicate a term in an expansion in Da (3.13a)
or eigenfunctions.

n: as a subscript, used to indicate the nonreacting portion of the
boundary in the generalized problem (3.11).

r: as a subscript, used to indicate the reacting portion of the bound-
ary in the generalized problem (3.11).

s: as a subscript, used to indicate the steady state.
T: as a subscript, used to indicate the total value of a quantity (2.2).
¯ : used to denote the mean of the bound concentration over the re-

acting surface.

Appendix. Dissociation. In the main body of this paper, we focused on asso-
ciation kinetics, where the primary mechanism is the binding of ligand and receptor.
However, an equally important system involves dissociation kinetics, where there is
no analyte and hence the bound state must dissociate to achieve equilibrium.

In a typical dissociation experiment, the environment surrounding the cylinder is
evacuated of all analyte. Thus, initially we have

(A.1) CD(r, y, 0) = 0,

and at the boundary of the exterior compartment we have one of the following con-
ditions:

(A.2) CD(R, y, tD) = 0,
∂CD

∂r
(R, y, tD) = 0.

Due to the linear nature of the transport operator, we see that by letting

(A.3) (association) CD �→ 1 − CD (dissociation),

we obtain a solution to the transport equation. The value of this new solution for the
analyte at the reacting surface will then affect the evolution of the bound state there.

In particular, in this case we have C0 ≡ 0, and hence (4.5) becomes

(A.4)
∂B0

∂t
= −KB0H(w − y),

and its dimensional counterpart (4.6) becomes the following:

∂B0

∂t̃
= −k̃dB0H(w − y).

Thus to leading order, no association kinetics occur, and hence a plot of ∂B0/∂t̃ vs.
B0 will yield a straight line with slope S = −k̃d.

A typical dissociation experiment occurs after the association phase has reached
steady state; hence, our initial condition is given by (3.10):

(A.5) B0(y, 0) =
H(w − y)

α
.

Solving (A.4) subject to (A.5), we obtain

(A.6) B0(y, t) = H(w − y)
e−Kt

α
.
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Of course, this is the standard type of exponential behavior one would expect.
We begin by considering the case where the Dirichlet condition is given. Since

the operators and boundary conditions are the same for C1 in both cases, the analysis
through (4.13a) holds, but (4.9) becomes

(A.7)
∂B0

∂t
= −Ke

−Kt

α
H(w − y).

Substituting (A.7) into (4.13a), we obtain

(A.8) C1(1, y, t) = −Ke
−Kt

α
h(1, y),

where h(y) is as defined in (4.13b). Substituting (A.6) and (A.8) into (4.4a), we have
the following:

(A.9) B1(y, t) = −e
−Kth(1, y)

α

(
Kt+

e−Kt − 1

α

)
,

where we have used (4.4b). Note that we again have a secular term. Our averaged
expression becomes

(A.10)
dB̄

dt
=

−KB̄
1 − Da(1 − B̄)h̄(1)

+O(Da2),

which is exactly analogous to (5.7) except that to leading order there is no association.
If instead we use the Neumann condition, all the analysis in section 6 holds, except

now (6.14) is replaced by

(A.11) a0,m(tD, t) = − 1

pmν2
m

[
wK

2πα
exp

(−ν2
mtD

)
+
dB0,0

∂t

]
,

and hence since C1 is as given in (A.8), the new definition of h(y) in (6.16) does not
change.
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