
Modal analysis of spatial pattern formation
in fused silica under ultraviolet irradiation
DAVID A. EDWARDS1,* AND RICHARD O. MOORE2

1Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA
2Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
*Corresponding author: dedwards@udel.edu

Received 26 April 2016; revised 27 June 2016; accepted 27 June 2016; posted 28 June 2016 (Doc. ID 263869); published 18 July 2016

Focused laser light is used as part of the photolithography process. Finer-resolution applications demand smaller-
wavelength light, but this higher-energy light causes compaction of the lens glass. This changes its index of re-
fraction, eventually rendering the lens unusable. The underlying model requires the use of Maxwell’s equations
with a varying index of refraction coupled to a nonlinear constitutive compaction law. By modeling the light wave
in the paraxial limit, one obtains a nonlocal partial integrodifferential equation for the amplitude. Stability analy-
sis is performed in the steady and quasi-steady cases, and the results show how the instability depends on physical
parameters in the problem. The results compare favorably with experimental analyses of the failure length and
time scales and provide simple laws connecting the relevant failure scales. © 2016 Optical Society of America
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1. INTRODUCTION

Photolithography is an important process used in the fabrica-
tion of microchips and integrated circuits. Silicon wafers are
etched with photosensitive chemicals. A series of chemical
treatments then either engraves the exposure pattern into the
wafer or enables deposition of a new material in the desired
pattern. Repeating this process many times (tens to hundreds
of cycles) allows for the creation of highly complex integrated
circuits. Fused silica lenses are used to steer and focus laser light
used in this process.

As transistor densities have increased, the need for finer
etching resolution has grown as well. This increase has pushed
the industry to use smaller-wavelength light, which comes with
an increase in photon energy. Excimer lasers, which operate
solely within the UV range (100–300 nm), are used extensively
in the semiconductor industry. At these wavelengths, photon
energies are high enough to interact with silica molecules in
the lens.

Even at moderate intensities, exposure to this ultraviolet en-
ergy permanently compacts (densifies) the glass. These effects
(local changes in density, physical shrinkage of lens material)
develop after millions of pulses [1], which (given a normal duty
of 1000 pulses/sec) correspond to time scales as short as a
few hours.

Moreover, local changes in the lens density ρ even on the
order of parts-per-million (such as those imparted by UV–silica
interactions) are significant enough to measurably affect optical

characteristics, in particular, by changing the local index of
refraction. This in turn causes interference through refractive
gradients and nanometer changes in path length from physical
shrinkage of the lens (see Fig. 1).

Due to photolithography’s increasingly stringent resolution
requirements, any degradation in beam quality is highly unde-
sirable. A better understanding of laser/material interactions of
UV photons within silica lenses could lead to ways to mitigate
or eliminate the damage mechanism.

The proposed mechanism of these changes is through two-
photon absorption. On their own, UV photons lack the nec-
essary energy to interact meaningfully with silica molecules.
However, if two photons collide with an atom at once, the si-
multaneous energy transfer is enough to change the orientation
of the silica molecules into a tighter packed, more locally dense
arrangement. This is referred to as “densification” or “compac-
tion” in the literature [2,3]. These local changes in density cre-
ate material stresses within the lens where the compressive
forces of the densified regions generate tension with the
unaffected material around them (see bottom of Fig. 1).
Densification is an accumulative process that continues as
the lens is used; thus, lens stress continues to grow over time.

Under certain conditions, an even more dramatic effect
called “microchanneling” can occur. Experimental observations
show that a few months to a year after a lens has begun den-
sifying, small cylindrical voids on the order of microns (called
microchannels) begin to form. They are parallel to the beam,
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are much smaller in diameter than the beam at the exit face of
the lens, and grow toward the front [1] (see Fig. 2).

At this time, the mechanism for microchannel formation
is unknown, along with any causal relationship to the earlier
densification process. We hypothesize that there is a feedback
mechanism connecting the compaction and microchanneling
phenomena. In particular, a steady transverse nonuniformity
in the beam will create transverse and axial intensity gradients
within the medium. Over a long time scale, these gradients can
cause compaction, which changes the refractive index. This

feedback loop can then cause self-focusing, intensity enhance-
ment, and ultimately damage in the form of microchanneling.

In this paper, we model the physical system using Maxwell’s
equations with a nonuniform index of refraction. The changes
in the index of refraction are coupled to the intensity through a
nonlinear constitutive law. The resulting nonlinear amplitude
equation exhibits rich behavior. We examine both the quasi-
steady and unsteady cases. The analysis leads directly to results
that indicate how the solutions depend on physical parameters
in the problem. Our estimates for the onset of damage compare
favorably with experimental results.

2. GOVERNING EQUATIONS

To remind the reader of the additional terms that result from
a varying refractive index, we briefly derive the governing
equations from first principles. In the absence of free charges
and currents, Maxwell’s equations in an isotropic medium (as-
suming unit permeability) are given by [4, section 7.2]

∇̃ · D̃ � 0; ∇̃ · B̃ � 0; (1a)

∇̃ × Ẽ � −
1

c
∂B̃
∂t̃

; (1b)

D̃ � n2�Ẽ�Ẽ; (1c)

∇̃ × H̃ � 1

c
∂D̃
∂t̃

; B̃ � H̃; (1d)

where Ẽ and B̃ are the electric and magnetic fields, respectively,
D̃ and H̃ are the displacement and magnetizing fields, respec-
tively, and c is the speed of light.

Combining Eqs. (1c) and (1d) gives

∇̃ × B̃ � 1

c
∂�n2Ẽ�
∂t̃

: (2)

Next, substituting Eq. (2) into the curl of Eq. (1b), we
obtain

∇̃ × ∇̃ × Ẽ � ∇̃�∇̃ · Ẽ� − ∇̃2Ẽ � −
1

c2
∂2�n2Ẽ�
∂t̃2

;

where the middle term is a vector identity [6, section 10.31].
Substituting Eq. (1c) into the first of Eq. (1a) yields

∇̃ · Ẽ � −
1

n2
Ẽ · ∇̃n2:

Thus, the generic PDE for Ẽ is given by

∇̃
�
1

n2
Ẽ · ∇̃n2

�
� ∇̃2Ẽ � 1

c2
∂2�n2Ẽ�
∂t̃2

: (3)

We expect that changes in n due to the light wave will be
small; therefore, we write

n � n0 � δn; (4)

where n0 is the uniform background index and where we con-
sider δn to be small. Substituting Eq. (4) into Eq. (3) and
neglecting terms that are O��δn�2�, we have

∇̃
�
1

n20
Ẽ · ∇̃�2n0δn�

�
� ∇̃2Ẽ� 1

c2
∂2��n20�2n0δn�Ẽ�

∂t̃2
: (5)

Fig. 1. Lens damage due to UV irradiation. Top: An interferogram
showing stress birefringence [1]. Bottom: Contours of isostrain in a
finite element simulation [5].

Fig. 2. Formation of microchannels at the exit face [1].
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We consider a system where the glass occupies the half-
space z̃ > 0 and that incident upon it is a transverse plane
wave Ẽ � Ẽ i, where i is the unit vector in the x̃ direction.
Though in reality laser beams usually have Gaussian shape,
damage occurs well before the Rayleigh length [7], making
the plane-wave assumption a good first approximation.

Substituting our plane-wave assumption into Eq. (5), we
obtain

2

n0

∂
∂x̃

�
Ẽ
∂�δn�
∂x̃

�
� ∂2Ẽ

∂x̃2
� ∂2Ẽ

∂ỹ2
� ∂2Ẽ

∂z̃2

� 1

c2
∂2��n20 � 2n0δn�Ẽ�

∂t̃2
: (6)

Next, allowing for slow variations in the transverse plane
wave, we have

Ẽ�x̃; ỹ; z̃; t̃� � R0A�x; y; z; t�ei�ωt̃−n0kz̃�; R0 ∈R; (7a)

where ω is the frequency of the light wave, k is the free-space
wavenumber of the light wave, and R0 is a scaling factor to be
determined later. We choose our variable scalings so that A is an
amplitude (envelope) function that is slowly varying in both
space and time, compared to the carrier wave multiplying it.
Hence, we take

x� εxn0kx̃; y� εyn0kỹ; z� εzn0kz̃; t� εtωt̃ ; (7b)

where each of the ε�·� are small parameters. εx and εy will be
dictated by the wavelength of perturbations in the transverse
directions. In contrast, εz represents the wavelength of the re-
sponse in the z direction to those transverse perturbations.
As such, it will be determined later when balancing terms in
the amplitude equation. The changes to the refractive index
are caused by the variance in the amplitude; hence, we have
that n depends on the slow time scale t, not the fast time
scale t̃. (A schematic of all the time scales in the problem is
shown in Fig. 3.)

Substituting Eq. (7) into Eq. (6) and rearranging yields

ω2

c2

�
ε2t

�
�n20�2n0δn�

∂2A
∂t2

�2
∂A
∂t

∂�2n0δn�
∂t

�A
∂2�2n0δn�

∂t2

�

�2iεt

�
�n20�2n0δn�

∂A
∂t

�A
∂�2n0δn�

∂t

�
−A�n20�2n0δn�

�

� n20k
2

�
ε2x
∂2A
∂x2

�ε2y
∂2A
∂y2

�
�n20k

2

�
ε2z
∂2A
∂z2

−2iεz
∂A
∂z

−A
�

�2n0k2ε2x
∂
∂x

�
A
∂�δn�
∂x

�
: (8)

Note here that k as defined relates to the variation of
the incoming plane wave in vacuum so we have k � ω∕c.
Keeping only the leading-order terms in each of the ε variables,
we have

2i
�
εz
∂A
∂z

� εt
∂A
∂t

�
� ε2x

∂2A
∂x2

� ε2y
∂2A
∂y2

� 2δnA
n0

; (9)

where we have used the fact that δn ≪ 1. We absorb the initial
amplitude into R0 and pose the problem of Eq. (9) in the region
z ≥ 0 with boundary condition

A�x; y; 0; t� � 1: (10)

Experiments suggest that two-photon processes are impor-
tant in the compaction process; hence, we assume that the rel-
ative compaction scales with the total “two-photon dose” D̃
[3,5,8]:

δρ

ρ
� κD̃b; D̃ � I2eN

T p

; (11)

where I e is the fluence of a single pulse, N is the number of
pulses, T p is the duration of the pulse, b is an exponent deter-
mined experimentally, and κ is a constant of proportionality.

The fluence I e of each pulse is approximately the product
of the irradiance I p for that pulse and the temporal width T p of
the pulse. Therefore, substituting this result into Eq. (11), we
would have D̃ � I 2pNT p for N pulses of constant intensity.
To better account for the time-varying irradiance of each pulse,
we use a Riemann sum in the limit of infinitely many pulses of
infinitesimally small duration to obtain

D̃ � lim
N→∞

XN
j�1

Ĩ2�t̃ j��Δt̃�j �
Z

t̃

0

Ĩ2�t̃ 0�dt̃ 0; (12)

where we have dropped the subscript “p” to emphasize that we
are considering the case of time-varying irradiance.

We associate the amplitude scaling R0 with the irradiance I 0
obtained by distributing each pulse’s two-photon dose evenly
throughout the pulse separation window T c, i.e., by imposing
the same dose under a 100% duty cycle. In other words,

I 20 �
I 2pT p

T c

� I 2e
T pT c

; (13)

where we rewrite in terms of I e since it is the quantity com-
monly given in the literature.

The relationship between intensity and the electric field is
given by [9, section 9.2.3]

Fig. 3. Schematic of various time scales. T n as defined in Eq. (17) is
several orders of magnitude larger than T c.
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Ĩ � cnϵ0
2

jẼ j2; (14a)

where ϵ0 is the permittivity of vacuum. This motivates the
following relationship between I 0 and R0:

I 0 �
cnϵ0
2

R2
0 ⇒ Ĩ2�t̃� � I 20jA�t̃�j4; (14b)

where we have used Eq. (7a). Substituting Eq. (14b) into
Eq. (12), we have

D̃� I 20T nD; D�
Z

tn

0

jA�t 0�j4dt 0; tn �
t̃
T n

; (15)

where T n is a characteristic time scale chosen to balance the δn
term in Eq. (9) with the terms on the left-hand side. (In other
words, T n should be the time scale on which the δn terms be-
come important and refractive index changes occur.) Note that
as the dose depends on the time-averaged fluence, we do not
expect it to be affected greatly by pulse-to-pulse fluctuations.

The constitutive relationship between ρ and n is given by [7]
δn
n0

� α
δρ

ρ
⇒

δn
n0

� ακ�I 20T nD�b; (16)

where α is a constant, and we have used Eqs. (11) and (15).
We want the δn term in Eq. (9) to balance with the terms on
the left-hand side so we set δn � n0εzDb, which implies that

T n �
1

I 20

�
εz
ακ

�
1∕b

: (17)

Substituting Eqs. (16) and (17) into Eq. (9), we obtain the
following final governing equation for A:

2i
�
εz
∂A
∂z

� εt
∂A
∂t

�
� ε2x

∂2A
∂x2

� ε2y
∂2A
∂y2

� 2εzDbA: (18)

Note that Eq. (18) is of an unusual form: a nonlinear partial
integrodifferential equation, due to the inclusion of a linear
history-dependent term D. This term is critical, as it models
the accumulation of the two-photon dose over time and its
accompanying damage to the silica.

3. LINEARIZATION OF QUASI-STEADY CASE
WITH NO EXPLICIT TIME

As a first approximation, we assume that εt ≪ εz so the first-
order time derivative in Eq. (18) may be neglected, yielding

2iεz
∂A
∂z

� ε2x
∂2A
∂x2

� ε2y
∂2A
∂y2

� 2εzDbA: (19)

We perform a linear stability analysis on transverse perturba-
tions from the plane wave. Hence, we assume a solution of
the form

A�x; y; z; t� � A0�z; t��1� εA1�x; y; z; t��; (20)

where ε is a small parameter characterizing the size of the
perturbations.

Substituting Eq. (20) into Eq. (19) yields to leading orders

2iεz
∂
∂z

fA0�1� εA1�g � εA0

�
ε2x

∂2A1

∂x2
� ε2y

∂2A1

∂y2

�

� 2εzf�Db�0A0 � ε��Db�0A0A1 � �Db�1A0�g; (21a)

where we have introduced the notation

�D�A0�1� εA1���b � �Db�0 � ε�Db�1 � O�ε2�; (21b)

where the exact forms for �Db�0 and �Db�1 differ between cases
and will be defined subsequently. Note that for Eq. (21a) to be
valid, ε must be large enough for any terms involving ε in
Eq. (21a) to be larger than any terms neglected in going from
Eq. (8) to Eq. (9), i.e., maxfεt ; εz ; ε2x ; ε2y g ≪ ε ≪ 1.

Expanding out the terms at each order, we obtain at O�1�

i
∂A0

∂z
� �Db�0A0; A0�0; t� � 1; (22)

while at O�ε�, we obtain the following:

2iεz
∂A1

∂z
� ε2x

∂2A1

∂x2
� ε2y

∂2A1

∂y2
� 2εz�Db�1: (23)

Now we consider the quasi-steady case. In this case, we as-
sume that A varies slowly with respect to the tn time scale, so we
may treat jAj in Eq. (15) as a constant, yielding

D�A� � jAj4tn: (24)

With this result, we see from Eq. (22) that A0 is independent of
t, so we let

A0�z; t� � r0�z�eiθ0�z�; r0�0� � 1; θ0�0� � 0; (25)

in Eq. (22) to obtain

i
d r0
dz

−
dθ0
dz

r0 � �Db�0r0: (26)

We see from Eq. (24) that the right-hand side of Eq. (26) is real
so dr0∕dz � 0, and

r0�z� � 1 ⇒ D�A0� � tn; (27a)

where we have used Eq. (24). Next, substituting Eq. (27a) into
the real part of Eq. (26), we have

θ0 � −tbnz: (27b)

Since the problem (at this order) has no transverse variation, we
have no focusing but just a phase shift that increases in z. Using
these results, we obtain

�Db�1 � 2btbn�A1 � A1�:
Since �Db�1 is real, we must use a pair of transverse complex

exponentials to perturb the plane wave as follows:

A1�x; y; z; t� � A��z; t�Φ�x; y� � A−�z; t�Φ�x; y�;
Φ�x; y� � ei�x�y�; (28)

where the wavenumber of the transverse perturbations has been
absorbed into the scaling. Substituting Eq. (28) into Eq. (23),
we obtain

2iεz
∂A�
∂z

Φ � �−ε2x − ε2y �A�Φ� 2εz �2btbn�A�Φ� A�Φ��:
(29)

Equation (29) yields a natural physical spatial scale to de-
termine εz . In particular, if we choose

εz �
ε2x � ε2y

2
; (30)

then all of the terms in Eq. (29) will balance. This scaling is
characteristic of fields evolving under the paraxial approxima-
tion. The actual transverse spatial scales are likely selected by
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nonlinear terms at O�ε2�, but this is beyond the scope of
the paper.

To verify this scaling, we examine typical parameter values
from the literature, as shown in Table 1. The final column
shows the parameters used in the paper. Most are from
Wright [7]; in the two exceptions, the parameter values were
provided by an industrial representative working in the area.

By rewriting our definition for εz in terms of wavelengths
λ�·� � 2πk�·�, we have

εz �
λ2

2n20�λ2x � λ2y �
� 1.66 × 10−6;

which is small, as theorized. Moreover, the normalization scale
for z is given by �εzn0k�−1 � 1.23 cm, a length scale along
which the damage can be seen [5].

We may also use the values to confirm our interpretation of
T n as the time scale on which refractive index changes occur.
Using the values in Table 1, we obtain T n � 6.80 × 102 s, or
around 6.8 × 105 pulses. In Wright [7], they observe their first
“hot spots” around 6 × 106 pulses, which verifies that this nor-
malization provides the right order of magnitude.

With the confidence in our scalings that the experimental
measurements provide, we substitute Eq. (30) into Eq. (23)
and use the replacement in Eq. (28) to obtain the following:

i
�
∂A�
∂z

Φ� ∂A−

∂z
Φ̄
�

� −A�Φ

� 2btbn�A�Φ� A�Φ� A−Φ̄� A−Φ̄�: (31)

The PDE Eq. (31) is actually an ODE in z parametrized by tn
so we replace ∂ with d in the subsequent analysis. Collecting
coefficients of the positive and negative exponentials, we have

i
dA�
dz

� −A� � 2btbn�A� � A−�; (32a)

−i
dA−

dz
� −A− � 2btbn�A− � A��; (32b)

where in the last line we have taken the complex conjugate so
we have a system in fA�; A−g.

To solve Eqs. (32), we assume that

A� � γ�eiμz ; A− � γ−eiμz ; (33)

and find the eigenvalues μ. Substituting Eq. (33) into Eqs. (32),
we have

γ��μ� 2btbn − 1� � 2btbnγ− � 0;

2btbnγ� � γ−�−μ� 2btbn − 1� � 0; (34)

which has a nontrivial solution only when

μ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1–4btbn

q
: (35)

At tn � 0, μ � �1, which is consistent with our choice
of length scale in Eq. (30). However, for tn > �4b�−1∕b, the
eigenvalues become imaginary, which causes exponential
growth in z. Note that the maximal amplitude will be at the
end furthest from the beam, as seen experimentally [1]. Using
the parameters in Table 1, we state that the transition occurs
at tn � 1∕4, or around 3 min, which is on the same order as
experimental results.

4. LINEARIZATION OF UNSTEADY CASE WITH
NO EXPLICIT TIME

Next we consider the more realistic case where tn � t.
However, we still assume that εt ≪ εz so we neglect the
∂∕∂t term in Eq. (18). In that case, we may follow the analysis
in Section 3, but we keep the full form of D in Eq. (15).
Nevertheless, since Db is still real, Eqs. (27) hold with tn
replaced by t.

In this case, we may expand our expression for Db to yield

Db �
�Z

t

0

1� 2ε�A1 � A1�dt 0
�
b

(36a)

∼tb
�
1� 2bε

t

Z
t

0

A1 � A1dt 0
�
;

�Db�1 � 2btb−1
Z

t

0

A1 � A1dt 0: (36b)

Again �Db�1 is real, so we must use both A� and A− in our
analysis, as in Section 3. Substituting Eqs. (36b) and (28) into
Eq. (23), we have

i
∂
∂z
�A�Φ�A−Φ̄��−�A�Φ�A−Φ̄�

�2btb−1
Z

t

0

A�Φ�A−Φ̄�A�Φ�A−Φ̄dt 0;

(37)

Table 1. Parameter Values from the Literature

Parameter

Reference

UsedBorrelli [5] Piao [2] Primak [3,8] Wright [7]

b 0.5–0.7 2/3 2/3 0.5 0.5
f c � �T c�−1�Hz� 330 1000
n0 1.5 1.5
I e �mJ∕�cm2 · pulse�� 10–20 50 50
T p �ns∕pulse� 30 20 20
α 0.3 0.3
κ �10−6�cm4 · ns∕�106 mJ2��b� 0.916–1.45 0.6 0.6
λ �μm� 0.193 0.193
λx ; λy �μm� 50
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where we have used Eq. (30). Equation (37) is analogous to
Eq. (31). Hence, we again separate coefficients of the positive
and negative exponentials to obtain

i
∂A�
∂z

� −A� � 2btb−1
Z

t

0

A� � A−dt 0; (38a)

−i
∂A−

∂z
� −A− � 2btb−1

Z
t

0

A− � A�dt 0: (38b)

In the case where A− and A� are constant, Eqs. (38) reduce to
Eqs. (32) with t replacing tn. The above analysis assumes that
Db is O�1�, and is therefore not valid if t � O�ε�.

The form of the normal modes is more complicated; we try
functions of the form

A� � γ�eiμzF�t�; A− � γ−eiμzF�t�; (39)

where F�t� is to be determined. Substituting Eq. (39) into
Eq. (38a) yields the following:

�μ − 1�γ�F �t� � 2btb−1�γ� � γ−�
Z

t

0

F�t 0�dt 0 � 0: (40)

In order for this to reduce to an algebraic equation, we must
have the F �t� terms cancel, so

F �t� � btb−1

ϕ

Z
t

0

F �t 0�dt 0; ϕ � �1 − μ�γ�
2�γ� � γ−�

:

Solving this equation, we have

F �t� � F 0tb−1et
b∕ϕ: (41)

We recall from our previous discussion that Eq. (21b) does
not hold as t → 0; hence, neither does Eq. (41). (In fact, F
diverges as t → 0, which also causes our expansion to break
down.) These results suggest the presence of an initial layer.
An analytical study of the solution in this layer is beyond the
scope of the current work, but we define F 0 as the constant
required to asymptotically match our solution to the initial-
layer solution.

Repeating this analysis using Eq. (38b) yields

ϕ � �1� μ�γ−
2�γ� � γ−�

:

Compatibility between the two expressions for ϕ requires that

�1 − μ�γ� � �1� μ�γ−:
Thus,

ϕ � 1 − μ2

4
; (42)

which has solutions for all positive μ so there are always oscil-
lations in z. For μ < 1 (which corresponds to low frequencies),
ϕ > 0, which corresponds to exponential growth in time.
We note from Eq. (41) that the fastest-growing mode has
ϕ → 0�, which corresponds to μ → 1−.

The mode μ � 1 corresponds to the normalization length
scale

�εxn0k�−1 � k−1x � λx
2π

;

and hence the fastest growing mode corresponds to the as-
sumed scale of the transverse perturbations. Again, this length
scale is comparable to the one on which damage is seen [1].

5. EXPLICIT TIME DEPENDENCE

We return to the consideration of the quasi-steady case, but
now we include the ∂∕∂t term in Eq. (18) by taking εt �
εz∕cε, where cε � O�1�. Therefore, Eq. (18) is replaced by

2iεz

�
∂A
∂z

� 1

cε

∂A
∂t

�
� ε2x

∂2A
∂x2

� ε2y
∂2A
∂y2

� 2εzDbA: (43)

However, by defining

τ � t −
z
cε
; (44)

and writing A�x; y; z; t� as A�x; y; z; τ�, we have

2iεz
∂A
∂z

� ε2x
∂2A
∂x2

� ε2y
∂2A
∂y2

� 2εzDbA;

which is just Eq. (19). Therefore, all our results from Section 3
hold with t replaced by τ since in this case D is independent
of t.

In the unsteady case where D does depend on t, we substi-
tute Eq. (20) into Eq. (43) to obtain, to leading two orders,

i
�
∂A0

∂z
� 1

cε

∂A0

∂t

�
� �Db�0A0; (45a)

2iεz

�
∂A1

∂z
� 1

cε

∂A1

∂t

�
� ε2x

∂2A1

∂x2
� ε2y

∂2A1

∂y2
� 2εz�Db�1;

(45b)

analogous to Eqs. (22) and (23). For this problem, we need the
following boundary and initial conditions:

A0�0; t� � 1; A0�z; 0� � 0: (46)

We may posit a solution of the form in Eq. (25), but in this
case both r0 and θ0 must be functions of time. Therefore,
we have

A0�z; t� � r0�z; t�eiθ�z;t�;
r0�0; t� � 1; θ0�0; t� � 0; r0�z; 0� � 0; (47)

where we have used Eq. (46). Substituting Eq. (47) into
Eq. (45a), we obtain

i
�
∂r0
∂z

� 1

cε

∂r0
∂t

�
−

�
∂θ0
∂z

� 1

cε

∂θ0
∂t

�
r0 � �Db�0r0; (48)

analogous to Eq. (26).
With the definition of D in Eq. (15), the right-hand side of

Eq. (48) is still real, so the imaginary part of Eq. (48) is

∂r0
∂z

� 1

cε

∂r0
∂t

� 0 ⇒ r0�z; t� � r0�z − cεt� �
�
1; z < cεt;
0; z > cεt;

where we have used the initial and boundary conditions in
Eq. (47). Continuing to simplify, we obtain

r0�z; t� � H �cεt − z� ⇒ r0�z; τ� � H �τ�; (49)

where H �·� is the Heaviside function.
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Substituting Eq. (49) and the definition of D into the real
part of Eq. (48), we have�

∂θ0
∂z

� 1

cε

∂θ0
∂t

�
� −H �cεt − z�

�
t −

z
cε

�
b
: (50)

Next, writing θ0 as a function of τ and using Eq. (44), we ob-
tain the following:

∂θ0
∂z

� −τbH �τ�; θ�0;τ�� 0

θ0�z;τ�� −τbH �τ�z; (51)

where we have used Eq. (47). Equation (51) is Eq. (27b) with t
replaced by τ, multiplied by H �τ�.

Continuing our analysis, we compute �Db�1 in the case
where A0 is not constant by examining

Db ∼H �τ�
�Z

τ

0

1� 2ε�A1 � A1�dτ
�
b
; (52)

which is essentially the same as Eq. (36a) with t replaced by τ.
Hence, writing A1�x; y; z; t� as A1�x; y; z; τ� and using Eq. (44),
Eq. (45b) becomes

2iεz
∂A1

∂z
� ε2x

∂2A1

∂x2
� ε2y

∂2A1

∂y2
� 2εz�Db�1�τ�;

where we have explicitly written the dependence of �Db�1 on τ.
This is just Eq. (23) with t replaced by τ. Therefore, our analy-
sis in Section 4 holds with t replaced by τ.

Thus, we have shown that in both cases of interest, retaining
the ∂∕∂t term in Eq. (18) simply introduces a variable shift.

6. CONCLUSIONS AND FURTHER RESEARCH

When using fused silica lenses for photolithography and other
applications, it is critical to maintain the optical integrity of the
lens for as long as possible. The desire for finer beam control
has led to the use of smaller wavelengths in the UV range.
Unfortunately, these wavelengths correspond to higher inten-
sities, which increase the two-photon dosage imparted by the
beam. The increased dosage, in turn, yields to compaction
or densification of the lens, and eventually the formation of
microchannels.

To model this situation, we employed Maxwell’s equations
with an index of refraction that depended on the electric field.
In the case of small perturbations from the plane wave, spatial
variations in the index of refraction could be neglected. The
resulting nonlinear partial integrodifferential equation for the
amplitude models the cumulative effects of the two-photon
absorption through the term D. The theory for the dose–
compaction relationship was established in [3,5,8].

We examined the case of a slightly perturbed plane wave
moving through the fused silica. The leading-order solution
satisfies both the linear and nonlinear terms. The inclusion
of transverse perturbations leads to a linear stability analysis,
where the paraxial approximation is shown to hold.

We examined both the quasi-steady case, where the dosage
is assumed to be occurring on a different time scale from
the slowly varying amplitude, and the unsteady case, where
both processes are assumed to occur on the same time scale.

We began by considering the case where the explicit time
dependence is suppressed.

In the quasi-steady case, the stability analysis leads to an es-
timate for the time at which the modes become unsteady and
begin to grow exponentially in space. This time compares fa-
vorably with experimental and simulated results and the solu-
tion profile, with maximal amplitude at the exit face. As large
gradients in intensity produce a strong electrostrictive force out
of the back face [7], these results are consistent with experimen-
tal observations of microchanneling, especially considering that
surface damage thresholds are smaller than those in the bulk.

In the unsteady case, the form of the time-dependent eigen-
functions is more complicated. We derived expressions that
hold away from an initial layer. In this analysis, the growth rate
of the mode depends on its wavelength, with the fastest growth
rate occurring for μ near 1, or on the typical transverse pertur-
bation wavelength.

We concluded with the case where the time derivative in
Eq. (18) is explicitly included. This simply introduces a change
of variable in the problem, as all our previous results held with t
replaced by the shifted time variable τ.

Our results demonstrate that the nonlinear constitutive
relation Eq. (16) is robust enough to model the growth in am-
plitude perturbations associated with the compaction phe-
nomenon, even in the relatively straightforward case of a slowly
varying plane wave. They also demonstrate directly the depend-
ence of the solution on the physical parameters in the problem.
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