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SYNOPSIS 

Diffusion of penetrants through polymers often does not follow the standard Fickian model. 
Such anomalous behavior can cause difficulty when designing polymer networks for specific 
uses. One type of non-Fickian behavior that results is so-called case I1 diffusion, where 
Fickian-like fronts initially move like fi with a transition to a non-Fickian concentration 
profile and front speed for moderate time. A mathematical model is presented that replicates 
this behavior in thin polymer films, and an  analysis is performed that yields relevant 
dimensionless groups for study. An unusual result is derived In certain parameter ranges, 
the concentration profile can change concavity, reflecting Fickian behavior for short times 
and non-Fickian behavior for moderate times. Asymptotic and numerical results are then 
obtained to characterize the dependence of such relevant quantities as failure time, front 
speed, and mass transport on these dimensionless groups. This information can aid in the 
design of effective polymer protectant films. 0 1996 John Wiley & Sons, Inc. 
Keywords: non-Fickian diffusion case I1 diffusion polymer-penetrant systems thin 
films 

INTRODUCTION 

Over the past several decades, much work, both ex- 
perimental and theoretical, has been devoted to the 
study of polymer-penetrant systems. These new 
polymeric materials are fascinating for several rea- 
sons. From the practical side, they are extremely 
versatile and promise remarkable breakthroughs in 
a wide variety of fields. Polymer substrates have be- 
come widely used for microlithographic patterning, 
which has become an important industrial tool for 
VLSI chip etching.' Adhesives made from polymers 
are often much stronger than their conventional 
counterparts, which weigh m ~ r e . ~ ' ~  Polymers are also 
being tested for on-site pharmaceutical administra- 
t i ~ n . ~ - ~  In addition, polymer films have shown great 
promise for providing barriers to toxins as protective 
clothing, equipment, or sealants?-'' It is this last 
application on which we focus in this paper. 

From the theoretical side, the behavior such 
polymers exhibit continues to surprise. Experiments 

* To whom correspondence should be addressed at Depart- 
ment of Mathematics, University of Maryland, College Park, 
College Park, MD 20742-4015. 
Journal of Polymer Science: Part B: Polymer Physics, Vol. 34, 981-997 (1996) 
0 1996 John Wiley & Sons, Inc. CCC 0887-6266/96/050981- 17 

constantly reveal new behavior in these systems; as 
such behavior is discovered, new and more detailed 
models for the physical processes are postulated. To 
verify these hypotheses, experimentalists are con- 
tinually developing new measurement techniques to 
try to discern the exact physical processes in- 
~ o l v e d . ~ ~ ~ ' ~  

Though all the physical mechanisms are not 
known, most scientists agree that one dominant 
factor is a viscoelastic stress in the polymer. This 
viscoelastic stress seems to be related to the con- 
cept of a relaxation time, which measures the time 
it takes one portion of the polymer entaglement 
network to react to changes in another portion. In 
certain polymer-penetrant systems, this stress, 
which is a nonlinear memory effect, is as important 
to the transport process as the well-understood 
Fickian  dynamic^.'^-'^ The type of polymers we 
wish to study are characterized by two states: 
glassy and rubbery. In the glassy region (denoted 
by sub- and superscripts g ) ,  the relaxation time is 
finite, so the stress is an important effect. In the 
rubbery region (denoted by sub- and superscripts 
r ) ,  the relaxation time is nearly instantaneous; 
hence, the memory effect is not as important 
there.lL16.17 
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One type of non-Fickian behavior that results 
in such systems is so-called case I1 diff~si0n. l~ In 
this phenomenon, described by Thomas and Win- 
dle,’8,’9 a Fickian-like front initially moves like 
ii. Then there is a transition period, occurring for 
moderate time, which cannot be described by 
Fickian dynamics. The concentration profile can 
be concave down, can move with constant speed, 
and can be quite sharp. Though other mathemat- 
ical models for this type of diffusion have been 
formulated,” they did not incorporate the impor- 
tant effects of viscoelastic stress. We show in this 
paper that the system we are modeling is indeed 
a non-Fickian diffusion system. However, owing 
to the fact that we are dealing with thin films, the 
full second stage does not have time to develop. 
Such problems are common in experiments with 
and simulations of thin films; theoretically pos- 
sible events do not occur due to the fact that the 
thinness of the film precludes the development of 
moderate- to long-time effects.21 

In this paper, we formulate a model to explain 
this anomalous case I1 behavior. The model, which 
consists of a set of coupled partial-differential 
equations, will be simplified greatly once we con- 
sider the special case in which we are interested 
cylindrically symmetric diffusion in thin annular 
films. It will quickly be shown that to leading order 
the problem reduces to one of studying a Cartesian 
thin film. The moving boundary-value problem that 
results can be solved using asymptotic, numerical, 
and singular perturbation techniques. We shall 
identify dimensionless groups that measure the 
relative effects of the different dynamical processes 
involved in the system in order to see which of them 
are dominant. 

Insofar as we are modeling penetration of a 
substance through a thin polymer film, three im- 
portant measurable quantities can be identified: 
the speed of the front separating the glassy and 
rubbery regions, the flux of the penetrant through 
the inner boundary of the film into the protected 
environment, and the time at  which the polymer 
film can no longer serve as a useful protectant. 
In our analysis, each of these quantities is iden- 
tified and related to the dimensionless parame- 
ters. Numerical computations and graphs will 
show the dependence of these very important 
quantities on our dimensionless groups. These 
computations should provide useful information 
to  chemical engineers who wish to verify our 
model experimentally and, if our model is shown 
to be accurate, to those who wish to design safe 
and effective polymer films. 

GOVERNING EQUATIONS 

We begin with the following set of differential equa- 
tions, which have been postulated as a mathematical 
model for non-Fickian diffusion in polymers 22-25: 

15; = v.[D(C)VC+ E ( C ) V Z ] ,  ( l a )  

where 7 and u are constants. It is obvious that this 
model is derived from the standard diffusion equa- 
tion, with an additional term in the flux. This ad- 
ditional term can be derived by assuming that the 
chemical potential depends not only on c but also 
on C25 given by 

2 = lm exp[ - I p ( ~ ( 2 ,  t ” ) ) d t ”  

[&2,  t’) + VCi(2 ,  t ’ )]dt’ .  ( l c )  

This form for the chemical potential has been de- 
rived phenomenologically by observing the relevant 
processes that contribute to the qualitative features 
of case I1 diffusion, namely, molecular diffusion and 
viscoelastic stresses. 

Note that by substituting eq. ( l c )  into eq. ( l a ) ,  
we may reduce our system to a single partial inte- 
grodifferential equation. Because 6 follows the evo- 
lution eq. ( l b ) ,  which is quite reminiscent of the 
one for viscoelastic stress, we will refer to 5 as a 
“stress” throughout this paper. The right side of eq. 
( l b )  shows that, in this paper, the stress will depend 
not only on the concentration but also on the time 
derivative of the concentration. Other forms for the 
dependence of C upon and its derivatives are dis- 
cussed by Cohen and White.26 

The model equations ( 1 ) are general enough that 
swelling of the polymer can be taken into consid- 
e r a t i ~ n , ~ ~  though we shall ignore swelling effects for 
the purposes of this paper. This is because the film 
will not swell enough to affect its thickness signifi- 
cantly, and it is the order of magnitude of the thick- 
ness that dictates the qualitative structure of the 
solution. 

The term P(c) is worthy of special attention. 
Note from eq. ( l c )  that p( 6 )  controls the strength 
of the “memory” of the polymer. Therefore, p( c)  is 
the inverse of the relaxation time, and its depen- 
dence on c will be important and nonnegligible. 
However, experiments have shown that variations 
in the relaxation time within states seem to con- 
tribute little to the overall behavior. Therefore, we 



NON-FICKIAN DIFFUSION IN THIN POLYMER FILMS 983 

average the relaxation time in each state and use 
the average as its value there. Thus we have 

where c, is the value of c at which the glass-rubber 
transition takes place. 

In addition, in the polymer-penetrant systems 
we wish to study, the diffusion coefficient often, 
though not always, increases dramatically as the 
polymer goes from the glassy to the rubbery 
state.28 However, changes within states are less 
important. Hence, we perform the same averaging 
as we did with P( 6) to obtain the following form 
for D ( c ) :  

This form for D ( c )  mimics the formulation in Hui 
et a1.28 In order to simplify the problem, we assume 
that E is a constant. More discussion of various 
physically appropriate forms for D ( d )  and E (  c) 
can be found in Cohen and White.26 

Because we know that the relaxation time in the 
glassy polymer is finite, whereas in the rubber it is 
instantaneous, we let & / P r  = t, where 0 < E 4 1 will 
become our perturbation parameter. We consider 
diffusion in an annular film that is cylindrically 
symmetric. Therefore, we need only consider vari- 
ations in r", where Fi I r" I FC. Because we are trying 
to model a polymer film that could be used in pro- 
tective clothing, we assume that the shell is very 
thin. Because the ratio of the relaxation times be- 
tween glassy and rubbery is so large, t is often on 
the order of lo-' to Therefore, to model a 1- 
mm-thick film surrounding a moderately sized item 
to be protected, we should scale in the following 
manner: 

Fi = (1 - bt1/2)r"c, b = 0(1), 

because e l l 2  = 10-7/2 is an appropriate scaling for 
this physical situation. 

Using these facts, we may then make the follow- 
ing substitutions: 

x = - 1 (1 - ;) , t = 2&, C(x, t )  = - e(?, 2) , 
bt 1/2  CC 

G( r", 2) 
Vd, c ( x ,  t )  = - , (4a) 

C(x, t )  = C O ( x ,  t )  + o ( l ) ,  

c ( x ,  t )  = u o ( x ,  t )  + o ( 1 ) .  (4b) 

Note that we have used the relaxation time in the 
glassy polymer as our typical time scale. This is rea- 
sonable insofar as this time scale is of a physically 
observable order, namely, seconds or minutes. 

Following experimental evidence, we see that the 
diffusion coefficient in the rubbery region is much 
greater than that in the glassy region.lg In fact, some 
authors have chosen to let D, = We obtain a 
similar result in a more rigorous way if we set D, 
= Dot-', because, if t = 0, we have D, = co; however, 
in our perturbation analysis, as E + 0, we have that 
D, only becomes very large. Certainly this infinite 
limit could be reached in various ways; we choose 
D, = Doc-' because it yields a dominant balance in 
the equations that follow. 

Since all of our parameters are piecewise con- 
stant, we may combine equations (1) into a single 
partial-differential equation. Substituting equations 
(4) into this result, we have the following, to leading 
order in the glassy region: 

s ( t )  < x < 1, (5a) 

where 

In addition, eq. (Ib) becomes 

where y = ~ / v &  In the rubbery region, we have 

0 < x < s ( t ) ,  (6s) 

where 
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Equations (5a) and (6a) also hold for d' and d, re- 
spectively. Note that to leading order curvature ef- 
fects are unimportant, and we simply have the 
equations for a thin film in Cartesian coordinates. 

Because we have assumed our parameters to be 
piecewise constant, we are now faced with a moving 
boundary-value problem. We must then consider 
conditions at our front x = s(t) .  First, we require 
that at the moving front the concentration C must 
be at the specified transition value C,: 

@(s(t), t )  = CO'(s(t), t )  = c,. (7) 

Note that this condition is different from the dis- 
continuity in concentration at the moving front that 
one might expect to see in more standard systems.29 

In addition, we assume that the stress is contin- 
uous at the moving front3': 

#(s ( t ) ,  t )  = a'(s(t), t). (8) 

Finally, we use a Stefan-like condition at  the front, 
which implies that the flux used up in the change 
of state propels the front along. Then, our front 
condition becomes the following2': 

-c-''~[ [D(C,) + Y E ] C P ] ~  + b ~ E ( 1  - t-') 

where a is a constant and we have used eq. (8). Here 
[ - 1, = .g(s+(t), t ) )  - -'(s-(t), t )  and the dot above s 
represents differentiation with respect to t. 

Here a is the state-change parameter. It relates 
the magnitude of the flux differential to the speed 
of the moving boundary. In a Stefan melting prob- 
lem, this constant would be related to the specific 
heat of the melting substance. However, here the 
interpretation is more subtle and is discussed in 
more detail below. We note that, if the film is to 
have any practical value at all, a must be very large; 
that is, it takes a large difference in flux to move 
the front a small amount. Therefore, in order to yield 
a dominant balance in what follows, we let a = aOt-2 
and to leading order we have 

This type of moving boundary condition is non- 
standard and can lead to computational difficulties." 

We now wish to consider the penetration of some 
substance into this film. We assume that initially 
the polymer is dry: 

Using the nondimensional form of eq. (lc) for IS, we 
see that, if the polymer is initially dry, it must be 
unstressed: 

However, one could just as easily define other forms 
for the stress that would include thermodynamic or 
other mechanisms for "prestressing" to occur in a 
dry polymer. Because a itself occurs in eq. (9), we 
see that such alternative boundary conditions would 
affect the evolution of the front. 

On the outside of the film, we assume that there 
is an infinite supply of penetrant at the saturation 
value of the film: 

This is an idealization of the surface boundary con- 
dition postulated by Long and Richman31 and Hui 
et al.32 If we wished, we could have let the concen- 
tration start at 0 and then quickly transition to 1 
on a time scale such as t / E .  Note that this would be 
the time scale associated with the rubbery polymer. 
This would affect our results only in a narrow initial 
layer; the main results regarding front speed would 
remain the same. From equations (10a) and (ll), 
we immediately deduce that s(0) = 0. 

For the inside of the film, we apply a radiation 
condition, which indicates that the flux through the 
inside of the film is proportional to the difference 
between the concentration at the edge of the film 
and the concentration at the interior of the protected 
body, which we assume to be zero: 

J(1, t )  = -[D(C)c:(l, t )  + vEa,o(l ,  t ) ]  

= kE1"C?(1, t), (12) 

where k is a constant measuring the permeability of 
the inner surface. (In fully dimensional form, k 
would also include b and FC.) 

Next, we examine the question of failure of the 
film. First, we define a function M(t ) ,  which is the 
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accumulated magnitude of the flux through the inner 
boundary: 

n;r = kt1'2C"(1, t ) ,  M ( 0 )  = 0. (13) 

We note that M ( t )  is a strictly increasing function 
oft.  Then, we may define the failure time, tf, to be 
t,, which is the point at which M(t,)  = M,,,, where 
M,,, is the maximal tolerance of flux given by tox- 
icity, spoilage, or other considerations. This is the 
flux-limited case. However, it is possible that, if the 
flux through the inner boundary is small, the front 
separating the two regions will reach the inner 
boundary at  some penetration time, tp, before t,. If 
the rubbery state of the polymer film is useless for 
protectant purposes (as is shown below), then the 
failure time, tf, should be defined as tp  This is the 
front-limited case. Now, we have all the equations 
necessary to facilitate a further consideration of our 
problem. 

PRELIMINARY A N D  BOUNDARY-LAYER 
RESULTS 

We begin by solving the case where k = kot-1'2. 
Then, for t < tp (that is, the time frame in which 
the polymer is in both the glassy and the rubbery 
states), equations ( 12) and ( 13) become 

DgC!g( 1, t )  + vEa,Og( 1, t )  = -koCog( 1, t ) ,  (14) 

&f = koCog( 1, t ) ,  M ( 0 )  = 0. (15) 

ko = 0 corresponds to an impermeable inner surface; 
ko + 00 corresponds to a superpermeable inner sur- 
face. In this paper we examine the cases of im- 
permeability and general permeability but not su- 
perpermeability. Now, letting e + 0 in order to begin 
our perturbation solution, our equations become 
particularly simple. We begin by solving in the glassy 
region. Here we have that 

Unfortunately, because we have neglected the high- 
est order time derivative, we cannot find a solution 
to eq. (16) that satisfies all our boundary conditions. 
Therefore, we must construct an initial layer. 

We introduce the following variables: 

t 
7 = -  , Cog(x ,  t )  - Co'(x, 7). (17) 

t 

Making these substitutions into eq. (5a), we have 
the following, to leading order: 

In addition, eq. (5b) becomes (to leading order) 

Because u and C have the same initial condition, we 
see that 6'' = Co+. Therefore, our boundary con- 
ditions ( 7 ) ,  ( lOa), and ( 14) become 

Integrating eq. (18) once with respect to 7, and using 
our facts about the initial conditions, we have 

We begin by trying to find a steady-state solution 
for this equation. Such a solution C, ( x )  is given by 
setting the left-hand side of eq. (20) equal to 0 and 
using equations ( 19). Then, we have 

where kg = ko/  ( Dg + vE) . kg measures the relative 
strength of the permeability with respect to the flux 
term in the glassy region. Note that with this defi- 
nition of C, ,  Cg always remains in the proper range. 

Letting w + ( x ,  7) = C, (x )  - Co+(x ,  T), we have 
the operator in eq. (20) with the new boundary con- 
ditions 

w+(O,  7 )  = 0, w: (1, 7) + kgw+( 1 , ~ )  = 0, 

W + ( X ,  0) = c*( 1 -A). (22) 
kg + 1 

Equation (20) is simply the heat equation on a finite 
domain. Using the eigenfunction expansion 

00 

w + ( x ,  7) = C wL(7)sin Anx,  (23)  
n=O 

where A, = -kgtan A,, we have 
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where 
S 

Now, we have that 

We note that, because eq. (5a) also holds for ug, eq. 
(24) is also our representation for a'+. 

Thus, we see that, at  the beginning of the exper- 
iment, the polymer quickly equilibrates to some new 
initial state commensurate with whatever boundary 
conditions are imposed at x = 0. This equilibration, 
though it takes place in the glassy polymer, occurs 
on a time scale that is on the order of the relaxation 
time in the rubbery polymer. This is due to the fact 
that it is the rubbery polymer that must coexist with 
the outer boundary. 

Equation (21) now gives us the new initial con- 
ditions for our outer problem, namely, that P g ( x ,  0) 
= CJx) and aog(x, 0) = Cs(x). Using these facts, we 
have 

f ( 0 )  = - " . (25) kg + 1 

We can use eq. (25) to simplify eq. (15), yielding 

riL = kg[l - f(t)(l  - s)], m(0)  = 0, 

Here we have normalized by C,(Dg + uE), which is 
a measure of the effective diffusion coefficient in the 
rubbery polymer, insofar as this is how our graphs 
will be drawn. 

Now, we examine the concentration field in the 
rubbery region. To leading order, eq. (6a) becomes 

so, using the applicable boundary conditions [equa- 
tions (7) and (11)], our solution is 

For t > tp, our system is completely in the rubbery 
state, so it consists of eq. (27), eq. (ll), and our new 
flux condition from eq. (12) replacing eq. (14): 

The solution of this system is trivially (.? = 1. There- 
fore, we see that, as soon as the state-change bound- 
ary reaches the inner boundary of the polymer, the 
polymer immediately becomes saturated. This lends 
credence to our claim that tp is an appropriate choice 
for our failure time if we have not yet reached t,. 

Note that, for t = tp, we have that s = 1, so eq. 
(28) becomes 

e. = 1 - (1 - C*)x. (30) 

Therefore, there must be another boundary layer 
around t = tp. This is once again obvious from the 
fact that we have neglected the highest order deriv- 
ative with respect to time. Because the solution is 
discontinuous for all x > 0, we need stretch only 
time: 

P ( x ,  t )  - P-(x, 7 ) .  

We could also have stretched time by E ,  but the 
equation that results has no solution that can match 
to a bounded solution as T + -a. Therefore, this 
equilibration takes place on a time scale that is even 
faster than the relaxation time of the rubbery region. 
To leading order, eq. (6a) becomes 

where we have used the fact that C"-(x, co) = 1. In 
addition, we have 

P-(x, -m) = 1 - (1 - C*)X, (32b) 

Note the extra condition on 7 in eq. (32c). 
There is a slight ambiguity about what conditions 

to impose at x = 1 for T < 0. Rewriting s ( t )  in terms 
of our new variables, we see that, because s(tp) # 0, 
we have s ( t )  - 1 + c2s(tp)? + o(t2), so to leading 
order we see that s (7 )  = 1. Therefore, our expres- 
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sions for the front speed in the outer region for t 
< tp must hold in the inner region for 7 < 0. Thus, 
we could use the concentration condition (7): 

Co-(l, 7 )  = c*, 7 < 0. (334 

Alternatively, we could use the flux condition (9), 
which simply requires that the flux be continuous 
at t = tp. Therefore, we have from eq. (30) that 

C,O-(l, 7 )  = -(I - C*), 7 < 0. (33b) 

We will resolve that ambiguity while demon- 
strating the following amazing simplification: The 
solution is the same (within transcendentally small 
corrections) if we restrict our operator (31) to the 
region 7 > 0 and use an initial condition given by 
eq. (32b). This statement can be interpreted in three 
different ways, as follows. 

1. Because the change of state is complete at t 
= tp, the problem is fundamentally different, so it is 
not necessary to continue our boundary layer for 7 
< 0. Mercifully, eq. (6a) has a solution for 7 > 0 
that is as smooth as necessary, so there are no trou- 
bling discontinuities in the system. 

2. If we use eq. (33a) as our boundary condition, 
we may introduce the quantity w-(x, 7)  = 1 - (1 
- C,)x - C?-(x, 7 ) ,  which yields the operator in eq. 
(31) with the following boundary conditions: 

w-(x ,  00) = -(1 - C*)x, w-(o, 7 )  = 0, 

w-(x ,  -00) = 0, wL(1, 7 )  = 0, 7 > 0, 

w-(l ,  7 )  = 0, 7 < 0. (34) 

However, we see that this system is quiescent for 
7 < 0, so we may as well begin at time 7 = 0. 

3. Similarly, if we use eq. (33b), eq. (34) becomes 

w i ( l , ? )  = 0, 7 < 0, 

and once again we have a quiescent system for 7 
< 0. 

Therefore, we are free to reduce our problem from 
a very complicated problem on a fully infinite in- 
terval to a much simpler one on a semiinfinite in- 
terval. Letting w-(x,  7 )  = 1 - C?-(x,  ?), we have the 
operator in eq. (31) on the interval 7 > 0 with the 
boundary conditions 

w-(o,7)  = 0, w-(x ,  0) = (1 - C*)x, wL(1, ?)  = 0. 

We now see that our boundary conditions are anal- 
ogous to those in eq. (22). The only difference is that 
in this system kg = 0, which implies that A, = (n  
+ ;)a. Performing the same sort of analysis as be- 
fore, we have that 

O3 2(-1),(1 - C,) 
(2n + 1)2a2 

C?-(x, 7 )  = 1 - c 
n=O 

To complete our solution, we now consider the 
stress in the rubbery region. Equation (6b) becomes 
uor = 0 to leading order. This is consistent with our 
understanding that the change of state from glass 
to rubber reduces the stress in the polymer. It also 
means that there must be a boundary layer around 
x = s ( t )  to match the discontinuous values of IT in 
each region. Introducing the boundary layer vari- 
ables 

x - s ( t )  , ITO'(x, t )  - I T 0 - ( { ,  t )  + o(l), {=- 
t 

eq. (6b) becomes, to leading order, 

uO-(O, t) = ITOg(s ( t ) ,  t ) ,  uO-(-00, t )  = 0, 

where the right-hand side has vanished, because 
there is no boundary layer in C .  Therefore, we have 

Now, we have a full description of m, C, and IT 

given by equations (24) to (26), (28), (35) ,  and (36). 
However, most of these descriptions are dependent 
on the front position, s(t). Therefore, in order to 
complete the solution of our problem, we must track 
the front, which we begin in the next section. 

FRONT EVOLUTION FOR SMALL TIME 

In order to examine the evolution of the moving 
front s ( t )  , we use our results from the previous sec- 
tion. Using eq. (28) in eq. ( 9 ) ,  we have 
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We note that we may use eq. (37) to obtain a short- 
time asymptotic solution for s ( t )  . By using the fact 
that o o g (  0, 0) = C ,  and letting s( t )  cc t ' /2  (which 
yields a dominant balance), we have 

,- 

Thus, trivially we see that a. > 0, which is not true 
of all polymer-penetrant systems of this Here, 
p1 measures the ratio of the flux needed to move the 
front along (represented by the numerator) to the 
effective diffusion coefficient of the rubbery region 
(given by the denominator). We see, then, that by 
measuring the initial progression of our front, we 
can measure the parameter a, because all of the other 
parameters in eq. (38) would be given in a particular 
experiment. 

Our expression for s ( t )  in eq. (38) would hold 
whenever t'l2 is large compared with other larger 
powers of t-that is, when t 6 1. Therefore, we see 
that, for small t,  the front speed does not depend 
on k. This matches our physical intuition; we would 
not expect the speed of the front near the outer 
boundary to be affected by the properties of the inner 
boundary. In addition, for small t ,  the front moves 
proportional to t 1/2,  consistent with Fickian theory. 
The reason for this is that the nonlinear memory 
effects have not yet had time to develop. 

Letting u = pls2 and rewriting eq. (37) ,  we have 

u =  1 + dl d s ( t ) ,  c, t )  1 ,  u ( 0 )  = o ,  

4u EC, 
* (39) - 4xu c, - P2 = 

C , )  Do(1- C , )  

Therefore, we see that, if a( s ( t )  , t )  is relatively easy 
to calculate, we have a simple expression for u ( t )  
[and hence s( t ) ]  . Here, p2 measures the relative 
contributions to the flux from the stress term (nu- 
merator) and the concentration gradient term (de- 
nominator). 

Equation (39) also yields several clues to the 
qualitative behavior of our solution. We immediately 
see that a must remain bounded, a result we could 
have expected on physical grounds. Note from eq. 
(39) that our front u can never move at  speeds faster 
than a constant. What we would expect to see, how- 

ever, were we able to monitor the system for all time, 
is a transition from the small-time behavior u = 2 
to a long-time behavior where u is some other con- 
stant. This is one observed characteristic of non- 
Fickian diffusion.20 However, we note that the front 
will always reach the inner boundary in this for- 
mulation; hence, we would not expect to see the long- 
time behavior fully develop in experiments. This 
completes our analysis for small time. We next ex- 
amine a special, simpler case before proceeding with 
the full-blown analysis. 

FRONT EVOLUTION: THE NEAR- 
IMPERMEABLE CASE 

We begin with the near-impermeable case, where k 
= o ( tp1/2), so K O  = 0, which simplifies our equations. 
Equation (14) becomes 

DgC:g (1, t)  + v E u : ~  (1, t )  = 0, (40) 

so we see that, to leading order, there is no flux 
through the inner film boundary; hence, t, is a bad 
measure of failure. Thus, we are in the front-limited 
case, and we use tp as our failure time. 

With ko = 0, A, = ( n  + +)a in eq. (23),  so eq. 
(24) becomes 

L* 

2 (2n + 1 ) a  
C O + ( x ,  7 )  = c, - 

n=O 

Xexp - n + -  T ~ K ~ T  sin n + -  ax . (41) [ ( Y 1 [( 3 1 
We note that eq. (41) is also our representation 
for a'+. 

Because C o g ( x ,  0)  = C , ,  we see that our front 
conditions are automatically satisfied for all t ,  so 
f (  t )  = 0, and eq. (25)  becomes 

Then, substituting eq. (42) into eq. (5b) and using 
our boundary condition that aog(x, 0) = C o g ( x ,  0)  
= C , ,  we have 

We immediately see that a o g  varies monotonically 
from C ,  at time t = 0 to C,y as t --* 00. Therefore, 
aog either increases or decreases as the experiment 
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Figure 1. 
and t = 0.1, 0.2, 0.3, 0.4, and 0.5. 

C vs. x for p ,  = 1; p2 = 0.3; y = 0.8; C, = ;; 

progresses, depending on the sign of y - 1. Using 
eq. (43 ) , we see that eq. (39) assumes a simple form: 

u ( 0 )  = 0. (44) 

We also know that u I p l ,  so we may deduce a re- 
quirement on our parameters that ensures that our 
discriminant is never negative: 

We see, then, that the entire solution depends on 
the three dimensionless groups p l ,  p 2 ,  and y. 

Equation (44) is a simple first-order ordinary dif- 
ferential equation for u ( t )  . We solve eq. (44) using 
a standard fourth-order Runge-Kutta method to 
construct graphs of C o g ,  Cor,  and s for various pa- 
rameter ranges. In addition, we shall run many ex- 
periments and plot tp vs. various parameters to see 
if we gain some sort of insight into the parameter 
dependence. 

To obtain some qualitative feel for the behavior 
of our solution, we first solve some simple cases an- 
alytically. If either p 1  or p2  + 0, the leading-order 
solution of eq. (44) is 

P1 
2 

u = 2t, tp = - .  

Note this is the solution given by eq. (38). In ad- 
dition, we see that in this case there is no non-Fick- 
ian diffusion, because there is not enough time for 
the transition phase to develop. Note also that the 
penetration time depends linearly on p l ,  which var- 
ies as the square of the width of the film b .  This is 
perfectly consistent with our statement that s ( t )  

varies as t'I2. Next, we consider the case where y 
= 1. Then, we have 

+ log( + ':-"")1 = t ,  (47) 

t p = -  1 - G  
P2 2 [  

(I+-)]. (48) 
2 

+ log 

Note that, in the limit that p1  or p2  + 0, equations 
(47) and (48) reduce to eq. (46). 

Figure 1 shows a graph of C vs. x for various pa- 
rameters and various times. The graph illustrates the 
progression of the front, as well as the discontinuity 
in C, that drives the motion of the front. Figure 2 
shows a graph of c vs. x for the same parameters and 
times. Note that, because y < 1, the stress in the 
glassy polymer decreases with respect to time. Note 
also the relaxation effect, which dramatically de- 
creases the stress in the polymer as it changes from 
glassy to rubbery. Here, E = 0.002, which makes for 
relatively sharp fronts. The fronts seen experimen- 
tally would only be steeper when one considers that 
E is normally much smaller. Figure 3 is a graph of a 
typical profile of s(  t )  vs. t .  Note that the profile is 
nearly parabolic, as predicted by eq. (46). 

Figure 4 shows a graph of tp - p 1 / 2  vs. p 1  for 
various y. As expected, because we have subtracted 
out the linear dependence of tp on p1  given by eq. 
(46), we have only terms of quadratic and higher 
order left. Note that this approximation holds even 
when p 1  is not small, with the error being no more 

U 

0 . 2  0'44 1 

0 0  0 . 2  0 . 4  0 . 6  0 . 8  
5 

Figure 2. 
= 0.002; and t = 0.1, 0.2, 0.3, 0.4, and 0.5. 

u vs. x for p ,  = 1; p2 = 0.3; y = 0.8; C, = i; c 
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Figure 3. s ( t )  vs. t forp, = 1,p2 = 0.3, y = 0.8. 

than 10%. This is because, as p1 gets larger, by eq. 
(45)  we know that p 2  must become smaller, so eq. 
(46)  still holds. As p1 increases, so does tp .  The rea- 
son for this can be deduced from eq. (37 ) .  Rear- 
ranging, we have 

In this formulation, the flux remains relatively con- 
stant. Therefore, if p1 decreases, s must increase in 
the right-hand side of eq. (49),  implying a smaller tp. 

Figure 5 shows a graph of tp vs. p 2  for various pl. 
Note that, for small p2, tp FT p1 / 2, as predicted by eq. 
(46). Here we see that, asp2 decreases, the stress con- 
tribution in eq. (49) becomes negligible. Because the 
stress contribution is negative, this implies that, at 
any s ,  s grows as p2 decreases, implying a smaller tp. 

Figure 6 shows a graph of tp vs. y for various p 2 .  
Note that the entire graphed region is within 20% 
of the value p1 = 0.375 predicted by eq. (46).  As y 
decreases, eq. (43)  tells us that a( s ( t )  , t )  decreases. 
Therefore, by the reasoning described above, we see 
that tp would also decrease. 

t ,  - P1/2 

----t garnma=l.o 
--C garnrna=1.5 
-+- g a m m a 2 0  

0 1 2 3 

Figure 4. tp - p1/2 vs. p1 for pz = 0.333 and various y. 

0.5 I /  1- p111.2 I 

, P2 
0 0  0.6 1 .2  1.8 

Figure 5. tp vs. p2 for y = 0.5 and various pl. 

FRONT EVOLUTION: GENERAL 
PERMEABILITY 

We have gained some insight into our problem by 
solving the simpler case of an impermeable inner 
boundary; we will now solve the case of general per- 
meability. Our first step is to solve for the stress in 
the glassy region. Making the substitution cog( x ,  t )  
= ua(x, t )  + C o g ( x ,  t ) ,  we have 

u: + aa = (7 - l)Cog, aa(x, 0 )  = 0, (50)  

which yields 

f ( t ’ ) [ x  - ~ ( t ’ ) ]  dt’ . (51)  I1 x [ ,-t + , - ( t - t ’ ,  

tP 

04,1 

0 44 - p2=0.6 - p2=0.e - p2=1.0 - p2.1.2 

0.40 

0 39 
000 0.25 0 50 0 7 5  1 0 0  1 2 5  1 50 1.75 2.00 2.25 

Figure 6. tp vs. y for p1 = 0.75 and various p2. 
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Now we use equations (25)  and (51)  in eq. (14):  

= ko[l - ( 1  - s ) f ] .  (52)  

For small time, solving eq. (52)  directly for f is ex- 
pedient. Therefore, we have 

1 
f ( t )  = 1 + kg( 1 - s )  

where p3 = Dg/vE .  p3 measures the relative contri- 
butions to the flux in the glassy region from the 
concentration and stress gradients. 

To get our flux front condition, we can substitute 
eq. ( 51 ) evaluated at x = s ( t )  into eq. (49)  : 

x f ( t ' ) [ s ( t )  - s ( t ' ) J  dt' =p1s2. (54)  11 

We note from eq. (51)  that, in the case y > 1, the 
maximum of a( s ( t )  , t )  is trivially given by yC, . 
However, in the case y < 1, we must establish a 
maximum on the integral, which involves finding 
the maximum of f ( t ) .  We begin by deriving a dif- 
ferential equation for f ( t )  from eq. (53) : 

k g ( l +  S f )  - (Y - l)f/(p3 + 1 ) .  
(56)  f = - f +  

k g ( l  - S )  + 1 

We expect f always to be positive from eq. ( 2 5 ) .  
To find the maximum, we solve eq. ( 5 6 )  for when 
the derivative is 0: 

( 5 7 )  

Next, we note that, because a' > 0, we see from eq. 
(49 ) that we have 

1 

PlS 
s < - .  

Using that fact in eq. ( 5 7 ) ,  we have 
Alternatively, we can substitute directly into eq. ( 39) : 

U = l  

+ 

u ( 0 )  = o .  (55)  

Once again, we see that, if p2 --* 0, the stress is not 
important, and eq. (38)  becomes our solution for 
s ( t )  for all time. Equations (53)  and (55)  now form 
a system of integrodifferential equations, which can 
be solved with a Runge-Kutta algorithm adapted to 
keep track of the integral terms. Since our flux at 
the inner boundary is no longer negligible, we must 
also solve eq. (26)  to see if the failure time, tf, is 
given by t, or tp .  

By direct analogy with eq. (45) ,  we see that we 
have solutions whenever 

Now, considering the right-hand side of eq. (58) to 
be a function of s only, we see that we have a max- 
imum when s = l/G. If p1 > 1, this case occurs, 
in which case we have 

However, if p1 < 1, then we have 

We denote the maximal values of f by f *. 
Therefore, using the fact that the maximal value 

of the bracketed quantity in the integrand is 1, we 
have that the integral must be bounded below f*(1 
- e-t). Then, we see that 
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already been addressed. When kg + co, eq. (56) be- 
comes, to leading order, 

1 + if 
f= - f+ -  , f ( 0 )  = 1, 1 - s  

so 

I?, if y > 1,  
the solution of which is 1 

if y c 1 and f *  < 1,  

if y < 1 and f*  > 1. y + f * ( 1  - y), 

Because eq. (55) is analogous to eq. (44), we see that 
our results for p1 small and y = 1 still hold. Also, 
when y = 1 orp3 + 03, eq. (53) becomes 

In the limit that k o  -+ 0, recall that f *  -+ 0, so eq. 
(59) reduces to eq. (45). 

Unfortunately, owing to the integrals in equations 
(53) and (55), a Runge-Kutta algorithm for these 
equations requires that values of s and f must be 
stored for all time steps. This quickly becomes un- 
tenable if one uses small time steps. Therefore, it is 
expedient to transform equations (53) and (54) into 
purely differential equations. 

Equation (56) is the transformation of eq. (53). 
Note that, in the case where k o  = 0, we have f = - f ,  
f(0) = 0, which has zero for a solution, as was ex- 
pected from our work in the previous section. From 
eq. (56) we can obtain an asymptotic solution for 
f ( t )  for small time. Substituting equations (25) and 
(38) in eq. (56) and asymptotically expanding, we 
have 

We also see from eq. (26) that, if kg is small but 
nonzero, 

The work necessary to calculate the stress profile 
in this case is more difficult. First, we know that eq. 
(36) still holds in the rubbery region. In addition, 
owing to the form of eq. (5b), a linear profile in x 
for C implies a linear profile in x for IJ. Therefore, 
it is sufficient to know the stress in two points. We 
choose the points x = s ( t )  and x = 1. As long as we 
are using eq. (55) to track the progression of the 
front, which we do for the vast majority of the time 
involved, then aog(s(t), t )  is available as a byproduct 
of this calculation. For the point x = 1, we may sub- 
stitute eq. (25) evaluated at x = 1 into eq. (50) to 
obtain ~ ' ( 1 ,  t). Then, aog( l ,  t )  is easily calculated by 
adding this result to eq. (25) evaluated at x = 1.  
Once we have the values at these two points, we 
simply use the point-slope formula: 

Next we transform our solution of eq. (54). Using 
equations (52) and (56), we have 

aOg(s(t), t )  - aOg(1, t )  
u0qx, t )  = ( x  - 1 )  + a o q l ,  t). 

s - 1  However, we note that, because s ( t )  cc t1/2 for small 
t, the right-hand sides of equations (56) and (61) 
become unbounded for t + 0. Therefore, the solution 
process adopted is a combined approach: For small 
time, equations (53) and (55) are solved, because 
they are numerically stable for t + 0. Then, at some 
intermediate time when memory storage becomes a 
problem, equations (56) and (61) are solved until 
either t, or tp is reached. 

Finally, we perform asymptotic analyses on our 
remaining parameters. The case where kg + 0 has 

Figure 7 shows C vs. x for various parameters and 
times. Note in this case that we have two linear pro- 
files with a discontinuity in slope at s(t).  Also note 
that there is a change in concavity as the front pro- 
gresses; for small times, the front is concave upward, 
as is standard in Fickian polymer-penetrant sys- 
t e m ~ . ~ ~  As was indicated above, this short-time be- 
havior indicates that the effects of stress are not yet 
important. However, as time progresses, the graph 
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i r x  
0 0  0 . 2  0 . 4  0 . 6  0 . 8  1 

1 

ob 0.1 0.2  0 . 3  0.4 0 . 5  

Figure 7. C vs. x for p ,  = 1; p2  = 0.3; p3  = 0.5; kg = 8; 
y = 0.8; C, = 3; mmax = co; and t = 0.1, 0.2, 0.3, 0.4, and 
0.5. 

becomes concave downward, as seen in other sim- 
ulations of non-Fickian ~ystems.'~,'~ Thus, memory 
effects are starting to play a significant role. What 
is unique is the fact that the growing strength of 
this effect causes a concavity change. In other sim- 
ulations, the concavity remains the ~ame. '~- '~  

Figure 8 shows CT vs. x for the same parameters 
and times. Note that in this case we have a slow 
increase in stress as we progress from the inner 
boundary outward. This corresponds to the stress 
slowly building as the concentration increases in the 
glassy region. We did not see such a profile in the 
impermeable case; there was no variation in C with 
respect to x.  Once we reach the rubber-glass tran- 
sition, there is a quick dropoff as the stress is released 
in the change of state. Though the trend is not as 
pronounced as in Figure 2, the maximal value of the 
stress is decreasing as time progresses, consistent 
with our choice of y < 1. 

0 . 1  

0 . 6  

0 . 2  0 . 4  0 . 6  0 . 8  1 

Figure 8. u vs. x for p 1  = 1; p2  = 0.3; p3 = 0.5; kg = 3; 
y = 0.8; c, = t;  t = 0.002; mmax = co; and t = 0.1, 0.2, 0.3, 
and 0.4. 

Figure 9. 
y = 0.8, and mmax = co. 

s ( t )  vs. t f o r p ,  = 1, p 2  = 0.3, p3  = 0.5, kg = 3, 

Figure 9 shows s(t)  vs. t for the same parameters. 
Note that there is very little change in the graph 
from the analogous Figure 3. Figure 10 shows the 
accumulated flux at  the inner boundary m(t)  vs. t 
for the same parameters. 

Figure 11 shows tf vs. kg for various values of mmax. 
Note here that, because mmax changes, in some cases 
the failure time is given by t, and in others it is 
given by tp. Note that, if it is given by t ,  (that is, 
we are in the flux-limited case), the time decreases 
with increasing kc This is perfectly consistent with 
our interpretation of kg as a measure of the perme- 
ability of the inner boundary. Compare the rather 
strong dependence of t ,  on kg with the rather weak 
dependence of tp on ke This is due to the fact that 
kg plays a secondary role in the evolution of the front 
position, coupled only through the integral term. 

Figure 12 echoes the findings in Figure 11, showing 
a graph of t, vs. p3 for various kc We once again see 
the extreme dependence of tf on kg when we are in the 
flux-limited case. Note that, in all cases, the depen- 
dence of t, on p3 is negligible. Once again, this is due 

Figure 10. 
= 3, y = 0.8, and mmax = co. 

m(t) vs. t for p 1  = 1, p2  = 0.3, p3 = 0.5, kg 
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Figure 11. 
and various mmax. 

t,vs. kg forp, = 1 . 2 , ~ ~  = 0.5,ps = 1, y = 1.5, 

to the fact that p3 plays only a secondary role in the 
evolution off, which itself plays only a secondary role 
in the evolution of s. This weak dependence is also 
evident in Figure 13. Note that, for all listed values of 
p3, the dependence of tp - p1/2 on p3 is the same to 
the resolution of the graph. Note again that our 
expression tp x p1/2 is valid to within 10%. 

Figure 14 shows tp vs. kg for various values of y. 
Note the small scale of the tp axis. As was indicated 
above, tp varies very weakly with k,. The important 
thing to note is the fact that, for y < 1, tp increases 
for increasing kg, and, for y > 1, tp decreases for 
increasing kg. 

These results indicate the same general trends as 
we found in the impermeable case. However, the 
added layer of sophistication due to the introduction 
of permeability considerations yielded several im- 
portant differences. There was the addition of two 
more parameters, kg andp,, as dimensionless groups 

tf 

o . 2 8 1 b - - - - - - - ; - - - - - - -  
0.26 -/ -t kg.1.3 (tp) - kg=21 (lm) 

Figure 12. 
= 0.31, and various kr 

tfvs. p3 for p1 = 0 . 5 , ~ ~  = 1.2, y = 1.5, mmax 

0 20 - - p3=0.6 - p3=1 4 
---t p3=22 

0.15 - 
1 

0 20 - p3=1 4 
---t p3=22 

0.15 

0 10 

0 05 

000 PI 
0 0  0.7 1.4 2.1 2.8 3.5 

ole] 
0 05 

000 PI 
0 0  0.7 1.4 2.1 2.8 3.5 

Figure 13. 
mmal = 00, and various p3. 

tp -p1/2 vs.pl forp, = 0.25, kg = 1, y = 0.75, 

worth examining. In addition, now the failure time, 
tf, could be given by either t, or tp, which was not 
true in the impermeable case. Finally, the concen- 
tration profiles changed concavity, indicating the 
growing influence of the viscoelastic stress on the 
qualitative structure of the solution. 

CONCLUSIONS 

Protectant films made from polymers exhibit great 
potential for use under a wide variety of conditions. 
However, to custom-design polymer films efficiently 
for many different uses, a fuller understanding of 
the relevant physical processes must be gained. In 
this paper, we have presented a model for such films 
in the presence of a penetrant. By simplifying our 
complicated model while retaining features of the 
salient physical processes, we were able to obtain 
results that gave explicit dependence of our solutions 

Figure 14. 
= a, and various y. 

tp vs. kg for p1 = 0.25, pz = 2, p3 = 0.5, mmax 
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on various dimensionless groups of physical param- 
eters. 

When first exposed to a penetrant, the polymer 
equilibrates on a fast time scale-the relaxation time 
scale of the rubbery polymer, because the glassy 
polymer must change to rubbery near the outer 
boundary. This pseudoequilibrium provides a “true” 
initial condition for the rest of the dynamics. Then, 
over a much slower time scale, a moving state- 
change front progresses through the polymer. The 
time scale here is that of the relaxation time of the 
glassy polymer, because the dynamics of the glassy 
polymer determine the progression of the moving 
front. For small time, this front behaves in a Fickian 
manner, moving proportional to t”’ as given by eq. 
(38). The equation governing the movement of the 
front is capable of exhibiting the anomalous behavior 
of case I1 diffusion. However, with the time limita- 
tions imposed by such a thin film, such behavior 
cannot fully develop. Once the front has progressed 
all the way to the inner boundary of the film, the 
polymer, now totally in the rubbery state, equili- 
brates again by becoming totally saturated on a fast 
time scale. 

There are two ways to characterize the failure of 
a polymer protectant film. First, if the front reaches 
the inner boundary and the film becomes saturated 
nearly immediately, then one would expect that the 
film would no longer have any protective value. 
However, if before that point the amount of flux 
through the inner boundary exceeds some tolerance 
threshold, then that time should be used as the time 
of failure. In this paper, we examined both possi- 
bilities. 

First, we considered the case where the inner 
boundary was impermeable. In this case, our mea- 
surement of the failure time was totally dictated by 
the front movement. Our equations simplified, and 
we were able to reduce our system to a first-order 
nonlinear ordinary differential equation. By using a 
standard Runge-Kutta algorithm, we were able to 
obtain the dependence of the solution on various 
dimensionless groups. The failure time increased as 
p, increased, because as p1 increases more flux is 
required to push the front along. The failure time 
also increased as p2 or y increased this corresponds 
to a larger stress term, and the stress term retards 
front motion. 

Next, we considered the case where the inner 
boundary had arbitrary, though moderate, perme- 
ability. The equations in this case were more com- 
plicated integrodifferential equations, and a more 
sophisticated numerical algorithm had to be used. 
The results in this section were similar to those in 

the previous section, although there were several 
significant differences. 

First, we found two new dimensionless groups 
upon which the solution depended. An interesting 
phenomenon developed in the concentration pro- 
files: They changed concavity, something not seen 
in previous simulations of these equations. For small 
time, the graphs were concave upward, as is typical 
in standard Fickian systems.33 This is consistent 
with the interpretation that for small time the effects 
of the stress, which are related to the memory, are 
not fully developed. However, as time progressed, 
the effects of memory became important, and the 
profile more closely resembled the profiles of non- 
Fickian polymer-penetrant  system^.'^,'^ The stress 
built up slowly in the glassy region and then was 
quickly released during the change of state to the 
rubbery region, which is also consistent with non- 
Fickian b e h a v i ~ r . ’ ~ . ~ ~  

Also, in this case we now had to consider failure 
times caused not only by front penetration but also 
by flux considerations. The penetration time weakly 
increased as kg andp, increased, because an increase 
in kg or p3 is weakly coupled to a larger stress term. 
In contrast, t, decreased quite considerably with in- 
creasing kg, because, the higher kg is, the more pen- 
etrant can flow through the inner boundary. 

The results of this paper lay the groundwork for 
further study of thin polymer films. We have intro- 
duced a mathematical model that is simple enough 
to analyze yet complicated enough to contain the 
salient nonlinear features. By doing so, we hope to 
have postulated a model that can be experimentally 
verified. If it is found to be valid, then its simplicity 
and the explicit parameter dependence in its solu- 
tions might aid chemical engineers in the design of 
safe and effective thin polymer films. 
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N 0 MEN C LAT U RE 

Variables and Parameters 

Units are listed in terms of length (L) ,  mass (M), 
moles (N), or time (T). If the same letter appears 
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both with and without tildes, the letter with a tilde 
has dimensions, whereas the letter without a tilde 
is dimensionless, The equation where a quantity first 
appears is listed, if appropriate. 

coefficient in flux-front speed relationship 
measurement of width of film (4a) 
concentration of penetrant at position - 

and time t; units N/L3 ( la)  
binary diffusion coefficient for system; units 

L2/T (la) 
coefficient preceding the stress term in the 

modified diffusion equation; units NT/  

arbitrary function in expression for Cg (25) 
flux at position x and time t; units L2/T 

coefficient in inner-surface boundary con- 

dimensionless version of M(t) ,  value M(t ) /  

accumulated flux through the inner bound- 
ary; units L2/T (13) 

indexing variable (23) 
dimensionless parameter, variously defined 

by subscript (38) 
distance coordinate in the curvilinear co- 

ordinate system; units L 
position of state-change front in the x-co- 

ordinate system (7) 
time from imposition of external concen- 

tration; units T (la) 
transformed front position; value u = pls2 

(39) 
dummy function used to simplify boundary- 

layer equations (22) 
dimensionless distance coordinate in the 

thin-film coordinate system (4a) 
dimensionless parameter, variously defined 

by subscript 
inverse of the relaxation time; units T-' 

(1b) 
dimensionless parameter; value q/vPg (5b) 
perturbation expansion parameter; value 

dimensionless spatial boundary layer vari- 
able 

coefficient of concentration in stress evo- 
lution equation (Ib); units ML2/NT3 

dimensionless parameter, variously defined 
by subscript 

coefficient of in stress evolution equation 
(Ib); units ML2/NT2 

M (14 

(12) 

dition; units L2/T (12) 

C*(Dg + vE) (26) 

Pg/P, ( 4 4  

5( - , t )  stress in polymer at position * and time 

7 dimensionless temporal boundary-layer 

X dimensionless parameter, variously defined 

t; units MILT2 ( la)  

variable 

by subscript 

Other Notation 

C 

f 

g 

i 

m 

max 

P 

r 

S 

* 

+ 

- 

I 

- 

[ - IS 

as a subscript, used to indicate the char- 
acteristic value of a quantity (4a) 

as a subscript, used to indicate the failure 
time 

as a sub- or superscript, used to indicate 
the glassy state (2) 

as a subscript, used to indicate the inner 
boundary 

as a subscript, used to indicate the time at 
which the flux through the inner bound- 
ary exceeds some critical threshold 

as a subscript, used to indicate the maximal 
value of M or m allowed before failure of 
the film 

as a subscript, used to indicate the pene- 
tration time 

as a sub- or superscript, used to indicate 
the rubbery state (2) 

as a subscript, used to indicate the steady 
state of the initial layer equations (21) 

as a subscript, used to indicate at the tran- 
sition value between the glassy and rub- 
bery states (2) 

as a superscript on a dependent variable, 
used to indicate a boundary-layer expan- 
sion in the glassy region (17) 

as a superscript on a dependent variable, 
used to indicate a boundary-layer expan- 
sion in the rubbery region 

used to indicate a dummy variable of in- 
tegration 

used to indicate the internal layer near t = tp 
used to indicate differentiation with respect 

jump across the front s ( t ) ,  defined as 
to t 

-g(s+(t), t )  - * Ys-( t ) ,  .t) 
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