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Abstract Optical biosensors are often used to measure kinetic rate constants asso-
ciated with chemical reactions. Such instruments operate in the surface–volume
configuration, in which ligand molecules are convected through a fluid-filled vol-
ume over a surface to which receptors are confined. Currently, scientists are using
optical biosensors to measure the kinetic rate constants associated with DNA transle-
sion synthesis—a process critical to DNA damage repair. Biosensor experiments to
study this process involve multiple interacting components on the sensor surface. This
multiple-component biosensor experiment is modeledwith a set of nonlinear integrod-
ifferential equations (IDEs). It is shown that in physically relevant asymptotic limits
these equations reduce to amuch simpler set of ordinary differential equations (ODEs).
To verify the validity of our ODE approximation, a numerical method for the IDE sys-
tem is developed and studied. Results from the ODE model agree with simulations of
the IDE model, rendering our ODE model useful for parameter estimation.
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1 Introduction

Kinetic rate constants associated with chemical reactions are often measured using
optical biosensors. Such instruments operate in the surface–volume configuration in
which ligand molecules are convected through a fluid-filled volume, over a surface
to which receptors are immobilized. Ligand molecules are transported through the
fluid onto the surface to bind with available receptor sites, creating bound ligand
molecules at concentration B(x, t). Mass changes on the surface due to ligand binding
are averaged over a portion of the channel floor [xmin, xmax] to produce measurements
of the form

B(t) = 1

xmax − xmin

∫ xmax

xmin

B(x, t) dx . (1)

See Fig. 1 for a schematic of one such biosensor experiment.
Measuring kinetic rate constants with optical biosensors requires an accurate model

of this process, and models have been successfully proposed and progressively refined
throughout the years: Edwards (1999, 2000, 2001, 2006, 2011), Edwards et al. (1999),
Lebedev et al. (2006) andZumbrumandEdwards (2014, 2015). Although suchmodels
are typically limited to reactions involving only a single molecule or a single step,
chemists are currently using biosensor technology tomeasure rate constants associated
with reactions involving multiple interacting components. In particular, chemists are
now using biosensor experiments to elucidate how cells cope with DNA damage.
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Fig. 1 Cross-sectional schematic of an optical biosensor experiment. The instrument has length l and
height h; for instrument dimensions see Appendix. The origin corresponds to the lower left-hand corner
of the instrument. Ligand molecules are convected into instrument at x = 0 in a Poiseuille flow profile
and transported to the surface to bind with receptors immobilized on reacting zone of the channel floor
[xmin, xmax]
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Fig. 2 (Color figure online) Left an empty receptor E . Right direct binding of L2 with an empty receptor
E . This creates the product EL2. The function B2 is the concentration of EL2

Harmful DNA lesions can impair a cell’s ability to replicate DNA and its ability to
survive. One way a cell may respond to a DNA lesion is through DNA translesion
synthesis (Friedberg 2005; Lehmann et al. 2007; Plosky and Woodgate 2004). For a
description of this process, we refer the interested reader to the references included
herein; however, for our purposes it is sufficient to know thatDNA translesion synthesis
involves three interacting components: a proliferating cell nuclear antigen (PCNA)
molecule, polymerase δ, and polymerase η. Moreover, in order for a successful DNA
translesion synthesis event to occur polymerase η must bind with the PCNAmolecule.
A central question surrounding DNA translesion synthesis is whether the polymerase
η and PCNA complex forms through direct binding or through a catalysis-type ligand
switching process (Zhuang et al. 2008).

The former scenario is depicted in Fig. 2, where we have shown polymerase η

directly binding with a PCNA molecule, i.e., the reaction:

P1 : E + L2
2ka−−⇀↽−−
2kd

EL2. (2a)

Here,wehavedenoted thePCNAmolecule andpolymeraseη as E and L2, respectively.
Additionally, 2ka denotes the rate at which L2 binds with an empty receptor E , and
2kd denotes the rate at which L2 dissociates from a receptor E . We will refer to this
as pathway one, or simply P1 as in (2a).

The catalysis-type ligand switching process is depicted in Fig. 3 and stated precisely
as:

P2 : E + L1
1ka−−⇀↽−−
1kd

EL1, EL1 + L2

1
2ka−−⇀↽−−
1
2kd

EL1L2

2
1kd−−⇀↽−−
2
1ka

EL2 + L1, EL2
2kd−−⇀ E + L2. (2b)

In (2b) and Fig. 3 we have denoted polymerase δ as L1. This process is summarized
as follows: First, L1 binds with an available receptor E ; next, L2 associates with EL1
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Fig. 3 (Color figure online) Schematic of the ligand switching process. First, L1 binds with an available
receptor E ; next, L2 associates with EL1 to create the product EL1L2; then, L1 dissociates from the
complex EL1L2 to leave EL2; finally, L2 dissociates from EL2. Below each of the species EL1, EL1L2,
and EL2, we have listed their corresponding concentrations B1, B12, and B2

to create the product EL1L2; then, L1 dissociates from EL1L2, leaving EL2; finally,
L2 dissociates from EL2. Furthermore, in (2b) and Fig. 3 the rate constants 1ka and

1kd denote the rates at which L1 binds and unbinds with a receptor E ,
j
i ka denotes the

rate at which ligand Li binds with the product EL j , and
j
i kd denotes the rate at which

Li dissociates from the product EL1L2. In the latter two expressions, the indices i
and j can equal one or two. We shall refer to this pathway two, or simply P2 as in (2b).

Though Zhuang et al. provided indirect evidence of the ligand switch in Zhuang
et al. (2008), a direct demonstration of this process has not been possible with conven-
tional techniques such as fluorescencemicroscopy, since such techniques introduce the
possibility of modifying protein activity. Hence, scientists are using label-free optical
biosensors to measure the rate constants in (2). By measuring the rate constants in (2),
one could determine whether EL2 forms through direct binding or the catalysis-type
ligand switching process. We note that the latter manifests itself mathematically with
2ka = 0, while the former with 2

1ka = 2
1kd = 1

2ka = 1
2kd = 0.

However, the presence of multiple interacting components on the sensor surface
complicates parameter estimation. In the present scenario, there are three species
EL1, EL1L2, and EL2 at concentrations B1(x, t), B12(x, t), and B2(x, t), and since
optical biosensors typically measure only mass changes at the surface, lumped mea-
surements of the form

S (t) = s1B1(t) + (s1 + s2) B12(t) + s2B2(t) (3)

are produced. In (3)

Bi (t) = 1

xmax − xmin

∫ xmax

xmin

Bi (x, t) dx (4)

denotes the average reacting species concentration, for i = 1, 12, 2, and si denotes
the molecular weight of Li . The lumped signal (3) raises uniqueness concerns, since
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more than one set of rate constants may possibly correspond to the same signal
(3). Fortunately, through varying the uniform inflow concentrations of the ligands,
C1(0, y, t) = C1,u and C2(0, y, t) = C2,u, one may resolve this ill-posedness in cer-
tain physically relevant scenarios (Edwards et al. 2017). This approach to identifying
the correct set of rate constants in the presence of ambiguous data is related to the
“global analysis” technique in biological literature (Karlsson and Fält 1997; Morton
et al. 1995).

The presence of multiple interacting species and the lumped signal (3) complicate
parameter estimation even for systems accurately described by the well-stirred kinet-
ics approximation. However, in Edwards (1999), Edwards has shown that transport
dynamics affect ligand binding in a thin boundary layer near the sensor surface. Hence,
we begin in Sect. 2 by summarizing the relevant boundary layer equations, which take
the formof a set of nonlinear integrodifferential equations (IDEs). In Sect. 3, it is shown
that in experimentally relevant asymptotic limits our IDE model reduces to a much
simpler set of ordinary differential equations (ODEs) which can be used for parameter
estimation. To verify the accuracy of our ODE approximation, a numerical method
is developed in Sect. 4.1. Convergence properties are examined in Sect. 4.2, and in
Sect. 5 the accuracy of our ODE approximation is verified by comparing results of our
ODEmodel with results from our numerical method described in Sect. 4. Conclusions
and plans for future work are discussed in Sect. 6.

2 Governing Equations

For our purposes, biosensor experiments are partitioned into two phases: an injection
phase and a wash phase. During the injection phase, L1 and L2 are injected into the
biosensor via a buffer fluid at the uniform concentrations C1(x, y, 0) = C1,u and
C2(x, y, t) = C2,u. Injection continues until the signal (3) reaches a steady state, at
which point the biosensor is washed with the buffer fluid—this is the wash phase of the
experiment. Only pure buffer is flowing through biosensor during the wash phase, not
buffer containing ligand molecules. This causes all bound ligand molecules at the sur-
face to dissociate andflowout of the biosensor, thereby preparing the device for another
experiment. We first summarize the governing equations for the injection phase.

2.1 Injection Phase

To present our governing equations, we introduce the dimensionless variables:

x̃ = x

L
, ỹ = y

H
, t̃ = 1kaC1,ut, B̃i (x, t) = Bi (x, t)

RT
, C̃i (x, y, t) = Ci (x, y, t)

Ci,u
,

j
i K̃a = Ci,u · j

i ka
C1,u · 1ka ,

j
i K̃d = kd

C1,u · 1ka , F̃r = C̃r D̃r, C̃r = C1,u

C2,u
, D̃r = D1

D2
. (5)

We have scaled the spatial variables with the instrument’s dimensions, time with the
association rate of L1 onto an empty receptor, the bound ligand concentrations Bi with
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the initial free receptor concentration, and the unbound ligand concentrations with
their respective uniform inflow concentrations. The rate constants j

i K̃a and
j
i K̃d are

the dimensionless analogs of j
i ka and

j
i kd. In the latter expressions the index i = 1, 2,

whereas j = 1, 2, or can be blank. Furthermore, F̃r measures the diffusion strength of
each reacting species, as characterized by the product of the input concentrations and
the diffusion coefficients. Henceforth, we shall drop the tildes on our dimensionless
variables for simplicity. In particular, we denote the dimensionless sensogram reading
as

S(t) = S (t)

RT · s1 = B1(t) +
(
1 + s2

s1

)
B12(t) + s2

s1
B2(t). (6)

Moreover, we may use (4) to denote the dimensionless average concentration, as it is
of the same form in both the dimensionless and dimensional contexts.

Applying the law of mass action to (2) gives the kinetics equations:

∂B1

∂t
= (1 − B�)C1(x, 0, t) − 1KdB1 − 1

2KaB1C2(x, 0, t)

+ 1
2KdB12, (7a)

∂B12

∂t
= 1

2KaB1C2(x, 0, t) − 1
2KdB12 + 2

1KaB2C1(x, 0, t)

− 2
1KdB12, (7b)

∂B2

∂t
= 2Ka(1 − B�)C2(x, 0, t) − 2KdB2 + 2

1KdB12

− 2
1KaB2C1(x, 0, t), (7c)

B(x, 0) = 0, (7d)

which hold on the reacting surface when y = 0 and x ∈ [0, 1]. In (7d), B =
(B1, B12, B2)

T is a vector in R
3 whose components contain the three bound state

concentrations. In addition, the terms in Eqs. (7a)–(7c) are ordered in accordance with
Figs. 2 and 3.

Edwards has shown (Edwards 1999) that transport effects dominate in a thin bound-
ary layer near the reacting surface where diffusion and convection balance. Hence, the
governing equations for Ci are

Dr
∂2C1

∂η2
= η

∂C1

∂x
, (8a)

∂2C2

∂η2
= η

∂C2

∂x
. (8b)

In (8a)–(8b) η = Pe1/3y is the boundary layer variable, Pe = V H2/(LD2) � 1 is
the Péclet number, and V is the characteristic velocity associated with our flow.
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Since C1 is used up in the production of B1 and B12, and C2 is used up in the
production of B12 and B2, we have the diffusive flux conditions:

∂C1

∂η
(x, 0, t) = Da

Fr

(
∂B1

∂t
+ ∂B12

∂t

)
, (8c)

∂C2

∂η
(x, 0, t) = Da

(
∂B12

∂t
+ ∂B2

∂t

)
. (8d)

Equations (8a)–(8d) reflect the fact that in the boundary layer C is in a quasi-steady
state where change is driven solely by the surface reactions (8c)–(8d). Then, given the
inflow and matching conditions

Ci (0, η, t) = 1, (8e)

lim
η→∞Ci (x, η, t) = 1, (8f)

the solution to (8) is given by

C1(x, 0, t) = 1 − D1/3
r Da

Fr�(2/3)31/3

∫ x

0

(
∂B1

∂t
+ ∂B12

∂t

)
(x − ν, t)

dν

ν2/3
, (9a)

C2(x, 0, t) = 1 − Da

�(2/3)31/3

∫ x

0

(
∂B12

∂t
+ ∂B2

∂t

)
(x − ν, t)

dν

ν2/3
. (9b)

See Edwards (1999) for details of a similar calculation. During the injection phase,
the bound state concentration is then governed by (7) using (9).

In (8c)–(8d) and (9)

Da = 1kaRT(HL)1/3

(V D2)1/3
(10)

is the Damköhler number—a key dimensionless parameter which measures the speed
of reaction relative to the transport into the surface. In the experimentally relevant
parameter regime of Da � 1, the timescale for transport into the surface is much faster
than the timescale for reaction. In this case there is a only a weak coupling between
the two processes, and (9) shows that the unbound concentration at the surface is only
a perturbation away from uniform inlet concentration. When Da → 0 in (7) using
(9), one recovers the well-stirred approximation in which transport into the surface
completely decouples from reaction.

On the other hand, whenDa = O(1) the two processes occur on the same timescale,
and ligand depletion effects become more evident. This is a phenomenon in which
ligand molecules are transported into the surface to bind with receptor sites upstream,
before they bind with receptor sites downstream. Mathematically, this is reflected in
the convolution integrals in (9). When x � 1, the convolution integral influences the
unbound concentration at the surface less than when x is larger.

A sample space–time curve for each of the reacting species concentrations Bi (x, t)
is depicted in Fig. 4, where we have shown the results of our numerical simulations
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Fig. 4 (Color figure online) Injection phase of biosensor experiment, up to t = 5, obtained through solving
(7), (9) with the numerical method described in Sect. 4. All rate constants were taken equal to one, and Da
is taken equal to two to visualize upstream ligand depletion, which is especially evident in B12

described in Sect. 4. The x-axis represents the sensor, and t-axis represents time.
Injection begins at t = 0, and ligand molecules bind with receptor sites as they are
transported into the surface. Binding proceeds as the injection continues; finally, each
of the concentrations achieves a chemical equilibrium in which there is a balance
between association and dissociation. Observe the spatial heterogeneity present in
each of the bound state concentrations—the reaction proceeds faster near the inlet at
x = 0 than the rest of the surface. This is precisely the ligand depletion phenomenon
described in the above paragraph and is particularly evident in the surface plot of B12.
This is because in this simulation we have taken all of the rate constants equal to one,
and either EL1 or EL2 must be present in order for EL1L2 to form. Thus, in this
case EL1L2 experiences effectively twice the ligand depletion of the other reacting
species.

Furthermore, one may notice an apparent discontinuity in each of the surface plots
depicted in Fig. 4—this reflects the weakly singular nature of the functions which we
are attempting to approximate. When x � 1, one may show B has the perturbation
expansion

B(x, t) = 0B(t) + Da x1/3 · 1B(t) + O(Da2 x2/3) (11)
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(this is simply (19) for x � 1). It therefore follows that

∂B
∂x

(x, t) = Da 1B(t)

3x2/3
+ O

(
Da2

x1/3

)
. (12)

Hence, although the function B is well defined and continuous near x = 0, it has a
vertical tangent at x = 0. The weakly singular nature of B is magnified since Da = 2.
To resolve this region, one may think to adaptively change 
x with the magnitude of
∂B/∂x . However, because the sensogram reading S(t) is computed over the region
[xmin, xmax], we are not concerned with resolving this region and a uniform step size
is sufficient. Moreover, our convergence results in Sect. 4.2 demonstrate that a lack of
resolution at x = 0 does not affect our results in the region of interest [xmin, xmax].

2.2 Wash Phase

We now summarize the relevant equations for the wash phase. In practice the injection
phase is run until the bound state concentration reaches a steady state (Rich andMyszka
2009). This implies that because the bound ligand concentration evolves on a much
slower timescale than the unbound ligand concentration (Edwards 1999), the unbound
ligand concentration will have also reached steady state by the time the wash phase
begins. In particular, the unbound concentration on the surface will be uniform by
the time the wash phase starts—i.e., Ci (x, 0, 0) = 1. Thus, the kinetics equations are
given by (7), with (35d) replaced by the steady solution to (7) during the injection
phase:

B(x, 0) = A−1f, (13a)

A =
⎛
⎜⎝

(1 + 1Kd + 1
2Ka) 1 − 1

2Kd 1

− 1
2Ka (12Kd + 2

1Kd) − 2
1Ka

2Ka 2Ka − 2
1Kd (2Ka + 2Kd + 2

1Ka)

⎞
⎟⎠ , (13b)

f =
⎛
⎝ 1

0

2Ka

⎞
⎠ . (13c)

Equations similar to (8) hold:

Ci (0, η, t) = 0, (14a)

lim
η→∞Ci (x, η, t) = 0. (14b)

Equation (14a) is the inflow condition, and (14b) expresses the requirement that the
concentration in the boundary layer must match the concentration Ci (x, y, t) = 0 in
the outer region. Moreover, as in the injection phase one can use (8a)–(8d) together
with (14) to show:

123



2224 R. M. Evans, D. A. Edwards

C1(x, 0, t) = − D1/3
r Da

Fr�(2/3)31/3

∫ x

0

(
∂B1

∂t
+ ∂B12

∂t

)
(x − ν, t)

dν

x2/3
, (15a)

C2(x, 0, t) = − Da

�(2/3)31/3

∫ x

0

(
∂B12

∂t
+ ∂B2

∂t

)
(x − ν, t)

dν

ν2/3
. (15b)

Thus, during the wash phase the bound state evolution is governed by (7a)–(7c), (13),
and (15).

3 Effective Rate Constant Approximation

During both phases of the experiment, the bound state concentration B(x, t) obeys
a nonlinear set of IDEs which is hopeless to solve in closed form. However, we
are ultimately interested in the average concentration B(t), rather than the spatially
dependent function B(x, t), since from B(t) we can construct the sensogram signal
(6) (the quantity of interest). Thus, we seek to find an approximation to B(t), and
begin by finding one during the injection phase. We first average each side of (7),
with C1(x, 0, t) and C2(x, 0, t) given by (9), in the sense of (4). Immediately, we are
confronted with terms such as

B1C2 = B1

(
1 − Da

31/3�(2/3)

∫ x

0

(
∂B12

∂t
+ ∂B2

∂t

)
dν

(x − ν)2/3

)
, (16)

on the right-hand side of (7a). In the experimentally relevant case of small Da, we are
motivated to expand B(x, t) in a perturbation series:

B(x, t) = 0B(x, t) + O(Da). (17)

In this limit, the leading order of (9) is just Ci = 1. Using this result in (7), we have
that the governing equation for 0B is independent of x :

d 0B
dt

= −A 0B + f,

where A is given by (13b) and f by (13c). Hence, the leading-order approximation

0B(t) = A−1(I − e−At )f (18)

is independent of space. Substituting (18) into (9), the time-dependent terms may be
factored out of the integrand, leaving the spatial dependence of C j varying as x1/3.
This is the only spatial variation in (7) at O(Da); hence, we may write

B(x, t) = 0B(t) + Da x1/3 · 1B(t) + O(Da2). (19)

As a result of (19), we have the relation

Da Bi (x, t) = Da 0Bi (t) + O(Da2), (20)
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which may be used to show the right-hand side of (16) is equal to

B1 − Da h · 0B1

(
d 0B12

dt
+ d 0B2

dt

)
+ O(Da2),

h(x) = 32/3x1/3

�(2/3)
. (21)

We then average (20) and use the resulting relation in (21) to show the right-hand side
of (16) reduces to:

B1C2 = B1

[
1 − Da h

(
dB12

dt
+ dB2

dt

)]
+ O(Da2).

In this manner, we can derive a set of nonlinear ODEs for B(t) of the form:

dB
dt

= M−1(B)(−AB + f) + O(Da2), (22a)

B(0) = 0, (22b)

where

M(B) = I + Da N (B), (22c)

N (B) =

⎛
⎜⎜⎜⎜⎝

D1/3
r h
Fr

(1 − B�)
D1/3
r h
Fr

(1 − B�) − 1
2Kah · B1 − 1

2Kah · B1

1
2Kah · B1

1
2Kah · B1 + 2

1Ka

(
D1/3
r h
Fr

)
B2

2
1Ka

(
D1/3
r h
Fr

)
B2

− 1
2Ka

(
D1/3
r h
Fr

)
B2 − 1

2Ka

(
D1/3
r h
Fr

)
B2 + 2Kah(1 − B�) 2Kah(1 − B�)

⎞
⎟⎟⎟⎟⎠ .

(22d)

We have also derived a set of ERC equations for the wash phase, and they take the
form:

dB
dt

= M−1(B)(−DB) + O(Da2), (23a)

B(0) = A−1f, (23b)

D =
⎛
⎝1Kd − 1

2Kd 0
0 2

1Kd + 1
2Kd 0

0 − 2
1Kd 2Kd

⎞
⎠ , (23c)

where M(B) is as in (22c)
Following Edwards and Jackson (2002), we refer to the ordinary differential equa-

tion (ODE) systems (22) and (23) as our effective rate constant (ERC) equations. A
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Fig. 5 (Color figure online) Left the solution of injection phase ERC equations (22) is depicted from t = 0
to t = 5, and the solution of the wash phase ERC equations (23) is depicted from t = 5 to t = 10. Here all
of the rate constants were taken equal to 1. Right the injection phase (22) is depicted from t = 0 to t = 5,
and the wash phase (23) is depicted from t = 5 to t = 10. Here all of the rate constants were taken equal
to 1 except 12Ka = 10. Both the Damköhler number was taken equal to Da = 0.1

significant advantage of our ERC equations is that these ODEs are far easier to solve
numerically than their IDE counterparts. To solve (22) or (23), one may simply apply
their linear multistage or multistep formula of choice. This feature renders our ERC
equations attractive for data analysis, since they can be readily implemented into a
regression algorithm when attempting to determine the rate constants associated with
the reactions (2). Since experimental data are still forthcoming, we do not employ
a regression algorithm to fit the rate constants in (22) and (23) to biosensor data.
Synthetic data for the kinetic rate constants were used in our numerical simulations.

Solutions of our ERC equations for different parameter values are depicted in Fig. 5.
First, consider the solutions depicted on the left. Here the injection phase (22) has been
run from t = 0 to t = 5, and the wash phase (23) has been run from t = 5 to t = 10.
Furthermore, all rate constants were taken equal to one and the Damköhler number
was Da = 0.1. During the injection phase, it is seen that B1 and B2 reach equilibrium
after approximately 1 s, while B12 takes approximately 2 s. This is not a surprise: We
are injecting equal amounts of both ligands, all the rate constants are the same, and
either EL1 or EL2 must already be present in order for EL1L2 to form. The equality
of the rate constants is also the reason why all three species attain the same steady
state. Mathematically, the steady state of B during the injection phase is given by
(13a), and one can readily verify that A−1f = (1/4, 1/4, 1/4)T when all of the rate
constants are equal to one. Physically, each of the species ultimately achieves the same
balance between association and dissociation. Furthermore, the fact that all of the rate
constants are the same is the reason why B12 decays to zero faster than the other two
species: EL1L2 transitions to either EL1 or EL2 at the same rate as the latter two
species transition into an empty receptor E .

Now consider the solutions depicted on the right in Fig. 5. As with the previous
case, the injection phase has been run from t = 0 to t = 5 and the wash phase
has been run from t = 5 to t = 10. However, this time, all the rate constants have
been taken equal to one except 12Ka, which was taken equal to 1

2Ka = 10. During the
injection phase, it is seen that B1 quickly reaches a local maximum and then decreases
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to steady state. Since 1
2Ka is an order of magnitude larger than the other rate constants,

after a short period of time L2, molecules bind with EL1 at a faster rate than L1
molecules bind with empty receptor sites. This results in the chemical equilibrium
between EL1 and EL1L2 depicted on the right in Fig. 5. From these observations, it
is clear why the steady-state value of B12 is larger than the previous case. However,
it may be counterintuitive to observe that B2 reaches a larger steady-state value in
the solutions depicted on the right than the solutions depicted to the left. Although
one may think the vast majority L2 molecules should be used in forming EL1L2,
the increase in EL1L2 also increases the concentration of empty receptor sites. The
continuous injection of L2 therefore drives the average concentration B2 to a larger
steady-state value. During thewash phase, it is seen that B1 reaches a global maximum
after approximately t ≈ 5.75s. The increase in B1 during the wash phase is a direct
consequence of L2 molecules dissociating from EL1L2. Since only pure buffer is
flowing through the biosensor during the wash phase, it is shown in Fig. 5 that each
of the average concentrations Bi decay to zero.

4 Numerics

To verify the O(Da2) accuracy of our ERC approximation derived in Sect. 3, we
now develop a numerical approximation to the IDE system (7), where C1(x, 0, t) and
C2(x, 0, t) are given by (9). We focus on the injection phase, since the wash phase
is similar. Our approach is based on the numerical method described in Edwards
and Jackson (2002). Semi-implicit methods have been previously used with great
success to solve reaction–diffusion equations (Nie et al. 2006), as they are typically
robust, efficient, and accurate. Similarly, in our problem we exploit the structure of
the integrodifferential operator, which naturally suggests a semi-implicit method in
time. Moreover, since our method is semi-implicit in time, we avoid the expense and
complication of solving a nonlinear system at each time step. Convergence properties
and remarks concerning stability are discussed in Sect. 4.2; however, we first turn our
attention to deriving our numerical method in Sect. 4.1.

4.1 Semi-implicit Finite Difference Algorithm

Wediscretize the spatial interval [0, 1] by choosing N+1 equally spaced discretization
nodes xi = i
x , for i = 0, . . . , N , and discretize time by setting tn = n
t , for n =
0, . . .. Having chosen our discretization nodes and time steps, we seek to discretize (7),
where C1(x, 0, t) and C2(x, 0, t) are given by (9). Note that this requires discretizing
both the time derivatives and the convolution integrals; we first turn our attention to
the latter and focus on C1(x, 0, t). We would like to apply the trapezoidal rule to
spatially discretize (9a); however, the integrand of C1(x, 0, t) is singular when ν = 0.
To handle the singularity, we subtract and add

(
∂B1

∂t
+ ∂B12

∂t

)
(x − ν, t)|ν=0 (24)
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from the integrand. Doing so yields

C1(x, 0, t) = 1 − D1/3
r Da

Fr31/3�(2/3)

{ ∫ x

0

[(
∂B1

∂t
+ ∂B12

∂t

)
(x − ν, t)

−
(

∂B1

∂t
+ ∂B12

∂t

)
(x, t)

]
dν

ν2/3
+3x1/3

(
∂B1

∂t
+ ∂B12

∂t

)
(x, t)

}
,

(25)

where we have used the fact that (24) is independent of ν. Then choosing a discretiza-
tion node x = xi and a time step t = tn , we apply the trapezoidal rule to (25) to
obtain

C1(xi , 0, tn) =1 − D1/3
r Da

Fr31/3�(2/3)

{
0 · 
x

2
+

i−1∑
j=1

[(
∂B1

∂t
+ ∂B12

∂t

)
(xi − x j , tn)

−
(

∂B1

∂t
+ ∂B12

∂t

)
(xi , tn)

]

x

x2/3j

+
[(

∂B1

∂t
+ ∂B12

∂t

)
(0, tn)

−
(

∂B1

∂t
+ ∂B12

∂t

)
(xi , tn)

]

x

2x2/3i

+ 3x1/3i

(
∂B1

∂t
+ ∂B12

∂t

)
(xi , tn)

}
,

(26)

when xi > 0; simply evaluating (25) at x = x0 gives C(x0, 0, tn) = 1. The first term
in the sum is zero, because in a similar manner to Appendix B of Zumbrum (2013)
we have

lim
ν→0

(
∂Bk

∂t
(x − ν, tn) − ∂Bk

∂t
(x, t)

)
1

ν2/3

= lim
ν→0

ν1/3
(

∂Bk

∂t
(x − ν, tn) − ∂Bk

∂t
(x, t)

)
1

ν
, (27)

which implies

lim
ν→0

(
∂Bk

∂t
(x − ν, tn) − ∂Bk

∂t
(x, t)

)
1

ν2/3
= lim

ν→0
ν1/3

∂2Bk

∂x∂t
(x, t) = 0, (28)

for k = 1, 12, or 2. The last equality follows since we expect ∂Bi/∂t to be sufficiently
regular for fixed x > 0. The expansion (19) shows that this is certainly true when
Da � 1; however, when Da = O(1) or larger, the nonlinearity in (7) renders any
analytic approximation to Bi beyond reach. Our results in Sect. 4.2 show that our
method indeed converges when Da = O(1) or larger.

Wenow turn our attention to discretizing the timederivatives.Wedenote our approx-
imation to Bj (xi , tn) by

Bj (xi , tn) ≈ B j
i,n, (29)
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and approximate the time derivatives through the formula

∂Bj

∂t
(xi , tn) ≈ B j

i,n − B j
i,n−1


t
:= 
B j

i,n


t
. (30)

Our approximation (30) holds for all reacting species j = 1, 12, 2, each of our
discretization nodes xi , and each time step tn . As we shall show below, we treat 
B j

i,n

as separate variable used to update B j
i,n at each iteration of our algorithm.

With our time derivatives discretized as (30), the fully discretized version of
C1(x, 0, t) is given by substituting (30) into (26):

C1
i,n = 1 − D1/3

r Da

Fr31/3�(2/3)

{ i−1∑
j=1

[(

B1

i− j,n


t
+ 
B12

i− j,n


t

)

−
(


B1
i,n


t
+ 
B12

i,n


t

)]

x

x2/3j

+
[(


B1
0,n


t
+ 
B12

0,n


t

)
−

(

B1

i,n


t
+ 
B12

i,n


t

)]


x

2x2/3i

+ 3x1/3i

(

B1

i,n


t
+ 
B12

i,n


t

)}
, (31a)

for i > 0, and C1
0,n = 1. The function C2(x, 0, t) has a similar discretization which

we denote as C2(xi , 0, tn) ≈ C2
i,n . Thus, our numerical method takes the form:


B1
i,n+1


t
= (1 − B�

i,n)C
1
i,n+1 − 1KdB

1
i,n

− 1
2KaB

1
i,nC

2
i,n+1 + 1

2KdB
12
i,n, (31b)


B12
i,n+1


t
= 1

2KaB
1
i,nC

2
i,n+1 − 1

2KdB
12
i,n

+ 2
1KaB

2
i,nC

1
i,n+1 − 2

1KdB
12
i,n, (31c)


B2
i,n+1


t
= 2Ka(1 − B�

i,n)C
2
i,n+1 − 2KdB

2
i,n

+ 2
1KdB

12
i,n − 2

1KaB
2
i,nC

1
i,n+1. (31d)

We enforce the initial condition (35d) at our N + 1 discretization nodes through the
condition B j

i,0 = 0 for j = 1, 12, 2, and i = 1, . . . , N . Observe that our method (31)

is semi-implicit rather than fully implicit. This renders (31) linear in 
B j
i,n+1, and as

a result we can write


Bi,n+1


t
= M−1

i,n (Bi,n)(A
−1
i,n+1Bi,n + fi,n+1), (32a)
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where Bi,n = (B1
i,n, B12

i,n, B2
i,n)

T . Hence, by using a method which is only semi-
implicit in time we avoid the expense and complication of solving a nonlinear system
at each time step. Having solved for 
Bi,n+1 using (32a), we march forward in time
at a given node xi through the formula

Bi,n+1 = Bi,n + 1

2
(3
Bi,n+1 − 
Bi,n), (32b)

which is analogous to a second-order Adams–Bashforth formula.
In addition, we chose amethod that is implicit inC1(x, 0, t) andC2(x, 0, t) also due

to the form of the convolution integrals. From (9) we see C1(x, 0, t) and C2(x, 0, t)
depend on Bj (ν, t) only for ν ≤ x . Thus, by choosing a method that is implicit in
C1(x, 0, t) and C2(x, 0, t), we are able to use the updated values of Bj (x, t) in the
convolution integrals by first computing the solution at x = 0 and marching our way
downstream at each time step.

To make this notion more precise, we note that in (32a) the matrix M−1
i,n (Bi,n)

depends only upon Bi,n ; however, because of the convolution integrals C1
i,n+1 and

C2
i,n+1, the matrix Ai,n+1 and vector fi,n+1 depend upon Bl,n+1 for l < i . Thus, at

each time step n + 1 we first determine B0,n+1. Next, we increment i and use the
value of B0,n+1 in (32) to determine B1,N+1. We proceed by iteratively marching our
way downstream from x2 to xN to determine B2,n+1, . . . , BN ,n+1. Intuitively, the
updated information from the convolution integral flows downstream from left to right
at each time step. We may repeat this procedure for as many time steps as we wish.
In addition, we remark that the formula (31) was initialized with one step of Euler’s
method.

Furthermore, with our finite difference approximation toB(x, t), we can determine
the average quantity

B(t) = (B1(t), B12(t), B2(t))
T (33)

with the trapezoidal rule

B(tn) ≈ 1

xmax − xmin

(

x

2
Bm,n + 
x

M−1∑
i=m+1

Bi,n + 
x

2
BM,n

)
. (34)

In (34), the indices i = m and i = M correspond to xmin = m
x and xmax = M
x .
Our nodes were chosen to align with xmin and xmax to avoid interpolation error.

4.2 Convergence Study

4.2.1 Spatial Convergence

We now examine the spatial rate of convergence of our numerical method. Since from
Bwe can compute the quantity of interest (6), we derive estimates for the rate at which
our numerical approximation converges to B. Furthermore, because systems (7), (9)
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are nonlinear, our analysis will focus on the experimentally relevant case of Da � 1.
In addition, we will derive estimates only for the injection phase of the experiment,
since the wash phase is similar.

To proceed, we consider the average variant of (7), (9). Averaging (7) in the sense
of (4) gives:

dB1

dt
= (1 − B�)C1(x, 0, t) − 1KdB1

− 1
2KaB1C2(x, 0, t) + 1

2KdB12, (35a)

dB12

dt
= 1

2KaB1C2(x, 0, t) − 1
2KdB12

+ 2
1KaB2C1(x, 0, t) − 2

1KdB12, (35b)

dB2

dt
= 2Ka(1 − B�)C2(x, 0, t) − 2KdB2 + 2

1KdB12

− 2
1KaB2C1(x, 0, t). (35c)

B(0) = 0. (35d)

As in Sect. 4.1, we handle the singularity in (9a) by adding and subtracting (24) from
the integrand of (9a) to write C1(x, 0, t) as in (25). The unbound ligand concentration
C2(x, 0, t) has a representation analogous to (25). In the following analysis, we limit
our attention to (35a), since the analysis for Eqs. (35b)–(35c) is nearly identical.

We proceed by analyzing each of the terms in (35a):

− 1KdB1, (36a)

1
2KdB12, (36b)

C1(x, 0, t), (36c)

− B�C1(x, 0, t), (36d)

− 1
2KaB1C2(x, 0, t). (36e)

Upon inspecting (25) and using linearity of the averaging operator, we see that three
terms contribute to (36c):

1 (37a)

− D1/3
r Da

Fr31/3�(2/3)

∫ x
0

(
∂B1
∂t + ∂B12

∂t

)
(x − ν, t) −

(
∂B1
∂t + ∂B12

∂t

)
(x, t) dν

ν2/3
, (37b)

3x1/3
(

∂B1
∂t + ∂B12

∂t

)
. (37c)
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In a similar manner, (36d) and (36e) each imply that we incur error from the terms:

−B� (38a)

D1/3
r DaB�

Fr31/3�(2/3)

∫ x
0

(
∂B1
∂t + ∂B12

∂t

)
(x − ν, t) −

(
∂B1
∂t + ∂B12

∂t

)
(x, t) dν

ν2/3
,

(38b)

−3x1/3B�

(
∂B1
∂t + ∂B12

∂t

)
, (38c)

−1
2KaB1 (38d)

1
2KaDaB1

31/3�(2/3)

∫ x

0

(
∂B12

∂t
+ ∂B2

∂t

)
(x − ν, t) −

(
∂B12

∂t
+ ∂B2

∂t

)
(x, t)

dν

ν2/3
, (38e)

−3 1
2Kax1/3B1

(
∂B12

∂t
+ ∂B2

∂t

)
. (38f)

Let us denote the trapezoidal rule of a function f (x) over the interval [a, b] by
T ( f (x), [a, b]). Then sinceT (1, [xmin, xmax]) is exact, the term (37a) does not con-
tribute to the spatial discretization error.

Next, we decompose the expansion (19) into its individual components to obtain

Bj (x, t) = 0Bj (t) + Da x1/3 · 1Bj (t) + O(x2/3Da2), (39)

for j = 1, 12, 2. Substituting (39) into (36b), (36a), (38a) (38d) and using the fact
that T (x1/3, [xmin, xmax]) converges at a rate O(
x2) show that each of these terms
converges at a rate of O(Da
x2). Similarly, one can substitute (39) into (37c), (38c),
and (38f) and use the fact that T (x1/3, [xmin, xmax]) converges at a rate of O(
x2),
to show that each of these terms converges at a rate of O(Da
x2).

It remains to determine the error associated with (37b), (38b), and (38e), so we turn
our attention to (37b) and substitute (39) into (37b) to obtain

− D1/3
r Da

Fr31/3�(2/3)(xmax − xmin)

(
d1B1

dt
+ d1B12

dt

)
(t)

∫ xmax

xmin

∫ x

0
(x − ν)1/3 − x1/2)

dν

ν2/3
, (40)

where we have used the definition of our averaging operator (4). In writing (40),
neglected higher-order terms which do not contribute to the leading-order spatial
discretization error. Since the coefficient of the integral in (40) is a function of time
alone, this coefficient does not contribute to the leading-order spatial discretization
error andweneglect it in our analysis.Hence, to compute the spatial discretization error
associated with (40), we calculate the error associated with applying the trapezoidal
rule to the double integral
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∫ xmax

xmin

∫ x

0

[
(x − ν)1/3 − x1/3

] dν

ν2/3
dx . (41)

Treating the inner integral as a function of x , we define

f (x) =
∫ x

0

(
(x − ν)1/3 − x1/3

)
ν−2/3 dν, (42)

whose closed form is given by

f (x) = x2/3

2

⎛
⎝21/3

√
π�

( 1
3

)
�

(
5
6

) − 6

⎞
⎠ . (43)

Toward applying the trapezoidal rule to (41), we first note T ( f, [0, xi ]) converges at
a rate of O(
x4/3). This is seen by first rewriting (42) as

∫ 
x

0

[
(x − ν)1/3 − x1/3

]
ν−2/3 dν +

∫ xi


x

[
(x − ν)1/3 − x1/3

]
ν−2/3 dν. (44)

The term on the right converges at a rate of O(
x2), and the term on the left converges
at a rate of O(
x4/3), which follows from expanding (x − ν)1/3 about ν = 0, and
using the definition of the trapezoidal rule.

Applying the trapezoidal rule to (41) then gives

Da2
∫ xmax

xmin

∫ x

0

(
(x − ν)1/3 − x1/3

)
ν−2/3 dν dx

= Da2
x

2
T ( f (x), [0, xm]) +

M−1∑
i=m+1

Da2
xT ( f (x), [0, xi ])

+ Da2
x

2
T ( f (x), [0, xM ]) + O(Da2
x2),

(45)

where we have let xmin = xm = m
x , and xmax = xM = M
x . Since T ( f, [0, xi ])
converges at a rate of O(
x4/3), the right-hand side of the above is

(
Da2
x

2
f (xm) + O(Da2
x7/3)

)
+

M−1∑
i=m+1

(Da2
x f (xi ) + O(Da2
x7/3))

+
(
Da2
x

2
f (xM ) + O(Da2
x7/3)

)
+ O(Da2
x2).

(46)

To compute our results in Sect. 5, we took xmin = 0.2, xmax = 0.8, in accordance
with the literature Edwards and Jackson (2002). Hence, in the above sum there are
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Fig. 6 (Color figure online) Spatial convergence for B1,Da = .01, 1, 10. The (solid) line y0 = −2.10x −
9.49 was fit to the error when Da = .01. The (dashed) line y1 = −1.33x − 5.17 was fit to the error when
Da = 1. The (dotted) line y2 = −1.48x − 2.36 was fit to the error when Da = 10. All three lines have an
R2 coefficient of R2 = .99. The rate constants were taken equal to: 1Kd = 1, 2Ka = 1, 2Kd = 1, 2

1Ka =
1/2, 2

1Kd = 2, 1
2Ka = 2, and 1

2Kd = 1/2

approximately 0.6N = 0.6
x−1 terms on the order of O(Da2
x7/3), and the above
sum reduces to

Da2
(


x

2
f (xm) +

M−1∑
i=m+1


x f (xi ) + 
x

2
f (xM )

)
+ O(Da2
x4/3)

+ O(Da2
x5/3).

(47)

The dominant error in (47) is O(Da2
x4/3); thus, the spatial discretization error
associated with (37b) is O(Da2
x4/3). Whenmeasuring convergence, we used values
of xmin = .25, xmax = .75 to facilitate progressive grid refinement; however, it is clear
that these values of xmin and xmax do not change our argument. A similar argument
shows the spatial discretization error associated with the nonlinear terms (38b) and
(38f) is O(Da2
x4/3).

We have depicted our spatial convergence measurements for B1 in Fig. 6 and
tabulated them in Table 1. To obtain these results, we first computed a reference
solution, with 
x = 
t = 1/512. We then created a series of test solutions with
mesh width 
x = 1/2 j , for j = 2, . . . , 7, keeping 
t = 1/512 constant. Next, we
computed B by averaging our reference solution and test solutions at each time step
with the trapezoidal rule as in (34). We then computed the error between each test
solution and the reference solution by taking the maximum difference of the two over
all time steps.

From our results, we see that our method converges at a rate of O(
x2) when
Da � 1, O(
x4/3) when Da = O(1), and O(
x3/2) when Da � 1. The reduction
in convergence when Da increases from small to moderate may be attributed to the
O(Da2
x4/3) contributions from (37b), (38b), and (38e). There are two competing
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Table 1 Convergence results
for the reacting species

Da � 1 Da = O(1) Da � 1

B1 O(
x2.09) O(
x1.33) O(
x1.48)

B12 O(
x2.04) O(
x1.42) O(
x1.53)

B2 O(
x2.09) O(
x1.33) O(
x1.46)
Here Da = .01, 1, 10

magnitudes of error in (35a): one of O(Da 
x2) (from terms (36b), (36a), (37c),
(38a), (38c), (38d), and (38f)) and one of O(Da2
x4/3) (from the integral terms
(37b), (38b), and (38e)). When Da2
x4/3 < Da 
x2, or Da < 
x2/3, the former is
larger. Conversely, when 
x2/3 < Da the latter is larger.

When Da � 1, the bound state evolves on a longer timescale of the form (Edwards
1999)

tw = t/Da. (48)

In this case, the characteristic timescale for reaction for reaction is much faster than
the characteristic timescale for transport into the surface, and one typically refers to
Da � 1 as the transport-limited regime. Substituting (48) into (7), (9), one may find
the leading-order approximation to the resulting system for Da � 1 by neglecting the
left-hand side of (7a)–(7c). Doing so one finds that even a leading-order approximation
to (7a)–(7c) is nonlinear, rendering any error estimates in the transport-limited regime
beyond reach. Nonetheless, our results in Fig. 6 and Table 1 show that convergence is
not an issue when Da � 1.

4.2.2 Temporal Convergence

Since our time stepping method (32b) is analogous to a second-order Adams–
Bashforth formula, we expect our method to achieve second-order accuracy in time.
Figure 7 shows that this is indeed the case when Da = .01, and the rate constants are

1Kd = 1, 2Ka = 1, 2Kd = 1, 2
1Ka = 1/2, 2

1Kd = 2, 1
2Ka = 2, and 1

2Kd = 1/2
(as in Sect. 4.2.1 when measuring spatial convergence). Temporal convergence was
measured in an analogous manner to spatial convergence.

However, we note that measuring temporal convergence when Da = O(1) is com-
putationally prohibitive, since spatial convergence is O(Da2
x4/3) in this case, so in
order for the spatial and temporal errors to balance one must have O(Da2
x4/3) =
O(
t2) or 
x = 
t3/2. Nonetheless, our results from Sect. 5 demonstrate that our
finite difference approximation agrees with our ERC approximation for a wide param-
eter range, so we are not concerned with temporal convergence of our method when
Da = O(1) or larger.

4.2.3 Stability Remarks

We now make brief remarks concerning the stability of our method. Recall from
Sect. 4.1, we first determine the value of Bi (x, t) upstream at x = 0 and iteratively
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Fig. 7 (Color figure online)
Temporal convergence when
Da = .01, and 1Kd = 1, 2Ka =
1, 2Kd = 1, 2

1Ka =
1/2, 2

1Kd = 2, 1
2Ka = 2, and

1
2Kd = 1/2. As expected, our
method converges at a rate on
the order of O(
t2)
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march our way downstream to x = 1 at each time step. Therefore, we expect any
instabilities at x = 0 to propagate downstream. Requiring that there are no instabilities
at x = 0 is equivalent to asking that our time stepping method (32b) is stable for the
ODE system found by replacing C1(x, 0, t) and C2(x, 0, t)with the constant function
1 in (7). Though we do not have precise stability estimates for this system, numerical
experimentation has shown that our time steps need to be sufficiently small in order
to ensure that our numerical approximation is well behaved.

5 Effective Rate Constant Approximation Verification

With our numerical method in hand, we are now in a position to verify the accuracy of
our ERC approximations (22) and (23). We tested the accuracy of our ERC equations
when Da = 0.1, and Da = 0.45; the results are shown in Fig. 8 and Tables 2 and 3.
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Fig. 8 (Color figure online) Left error in the reacting species concentrations during the injection phase,
computed by taking the absolute difference between the solution of our ERC equation (22) and our finite
difference solution. We have taken Da = 0.1, and all of the rate constants equal to 1. Since the errors for
B1 and B2 are identical, we plotted the error for B2 on a coarser mesh; however, the errors for all three
species were computed on precisely the same time steps. Right the error in the sensogram signal during
both phases, when Da = .1 and all of the rate constants are taken equal to 1
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Table 2 Maximum difference between our injection phase ERC approximation (22) and our finite differ-
ence solution

B1 B12 B2 S

Da = .1 7.81×10−5 5.04 × 10−5 7.81 × 10−5 1.47 × 10−4

Da = .45 1.00 × 10−3 6.93 × 10−4 1.00 × 10−3 2.00 × 10−3

All rate constants take equal to 1 in both cases

Table 3 Maximum difference between our wash phase ERC approximation (22) and our finite difference
solution

B1 B12 B2 S

Da = .1 3.578×10−5 3.40 × 10−5 3.58 × 10−5 7.37 × 10−5

Da = .45 4.33 × 10−4 4.62 × 10−4 4.33 × 10−4 9.45 × 10−4

All rate constants take equal to 1 in both cases
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Fig. 9 (Color figure online) Left absolute error in our injection phase approximation (22) over all time,
for different values of Da. Right absolute error in our wash phase approximation (23) over all time, for
different values of Da. Both the rate constants were taken equal to: 1Kd = 1/2, 2Ka = 1, 2Kd = 1, 21Ka =
1, 21Kd = 2, 12Ka = 2, and f12Kd = 1/2. Similar results hold for B12, and B2

From these results, it is evident that our ERC equations accurately characterize B
and the sensogram reading (6) not only for small Da, but for moderate Da as well.
Motivated by Edwards and Jackson (2002), we ran a series of simulations for different
values of Da, ranging from Da ≈ 0.02 to Da = 150. We measured the maximum
absolute error for each value of Da and created the curves shown in Fig. 9. The error
starts off small as expected and increases at rates which compares favorably with
our O(Da2) prediction, and finally reaches an asymptote corresponding to roughly
two percent absolute error. Thus, although our ERC approximations (22) and (23)
are formally valid for only small values of Da, their solutions agree with our finite
difference approximation for moderate and large values of Da.
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6 Conclusions

Scientists are attempting to determine whether the polymerase η and PCNA com-
plex (denoted EL2 throughout) which results from DNA translesion synthesis forms
through direct binding (2a), or through a catalysis-type ligand switching process (2b).
Since fluorescent labeling techniques may modify protein behavior, label-free optical
biosensor experiments are used. Interpreting experimental data relies on a mathe-
matical model, and modeling multiple-component biosensor experiments results in
a complicated and unwieldy set of equations. We have shown that in experimentally
relevant limits this model reduces to a much simpler set of ODEs (our ERC equations),
which can be used to fit rate constants using biosensor data. In contrast with the stan-
dard well-stirred kinetics approximation, our ERC equations accurately characterize
binding when mass transport effects are significant. This renders our ERC equations
a flexible tool for estimating the rate constants in (2). In turn, estimates for the rate
constants in (2) will reveal whether the polymerase η and PCNA complex forms via
direct binding (2a) or the catalysis-type ligand switching process (2b).

Furthermore, the consideration of both direct binding (2a) and the ligand switching
process (2b) has several mathematical and physical consequences. First, due to the
form of (2), the species are directly coupled through the kinetics equations. This is
true even in the well-stirred limit in which Da → 0 and (9) reduces to C1(x, 0, t) =
C2(x, 0, t) = 1. However, transport effects manifested in (9) nonlinearly couple the
reacting species. So we see in Fig. 4 that there is a more pronounced depletion region
in B12 than in either of the other two species. Physically, this is a consequence of the
fact that either EL1 or EL2 must be present in order for EL1L2 to form; thus, the
latter is affected by depletion of the former two species. Additionally, the multiple-
component reactions (2) alter the form of the sensogram reading to the lumped signal
(6), thereby complicating parameter estimation.

In addition to establishing a firm foundation for studying the inverse problem of
estimating the rate constants in (2), the present work also opens the door for future
work on modeling and simulating multiple-component biosensor experiments. This
includes considering other physical effects like cross-diffusion or steric hinderance
and comparing the finite difference method described herein to the method of lines
algorithm discussed in Zumbrum (2013).

Appendix: Parameter Values

Parameter values from the literature are tabulated.
The variablesW, Q represent the dimensional width and flow rate; the other dimen-

sional variables are as in Sect. 2. The flow rate is related to the velocity through the
formula (Edwards 2011)

V = 6Q

WH
. (A.1)
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Using the dimensional values above, we calculated the following extremal bounds
on the dimensionless variables.
Here ε = H/L is the aspect ratio, and Re = V H2/(νL) is the appropriate Reynolds
number associated with our system.

The authors wish to emphasize that the bounds in Table 5 are naïve extremal bounds
calculated by using minimum and maximum values for the dimensional parameters in
Table 4. In particular, the values for the dimensionless rate constants in Table 5 are not
estimates of their true values; they areminimum andmaximumvalues calculated using
combinations of extremal values for the parameters in Table 5. A large variation in the
dimensionless rate constants is highly unlikely, since this scenario corresponds to one
in which one of the association rate constants is very large, and another association
rate constant very small. We would also like to note that a large variation in some of

Table 4 Dimensional parameter ranges, taken from references de la Torre et al. (2000), Gen (2013), Rich
et al. (2008), and Yarmush et al. (1996)

Parameter Rich et al. (2008) Yarmush BIAcore T200 Torre

ka[108 cm3/(mol s)] 10−4–10−2 .5–5 × 10 10−5–3 × 10

kd(10−3 s−1) 1 8.9 10−2–103

D1 (10−7 cm2/s) 4.0

D2 (10−7 cm2/s) 6.88

H (1 cm) .05 .04

L (1 cm) 2

W (1 cm) 1.3

RT (10−12 mol/cm2) 1.11 × 10−1–2.33 × 101 2.5–4

Q (1 µL/min) 100–1500 1–100

V (1 cm/s) .153–2.88 .36–.6 .001–1.92

Ci,u (10−11 mol/cm3) 2.96 × 10−1 − 2 × 101

Table 5 Dimensionless
parameters

Parameter Bound

ε 0.02–0.025

Re 8.00 × 10−5 − 0.36

Pe 0.12–523.26

Da 9.29 × 10−8 − 1.49 × 103

2Ka 2.96 × 10−9 − 3.38 × 108

1
2Ka 2.96 × 10−9 − 3.38 × 108

2
1Ka 2 × 10−7 − 5 × 106

i Kd 1 × 10−5 − 3.38 × 108

j
i Kd 1 × 10−5 − 3.38 × 108

Dr 0.58

Fr 0.01–39.28
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the parameters, such as the kinetic rate constants or Da, would necessitate very small
values for either or both of 
t and 
x in our numerical method.

Furthermore, onemaybe concerned about the upper boundon theReynolds number,
the lower bound on the Péclet number, and the upper bound on the Damköhler number.
All of these extremal bounds were calculated using a flow rate of 1 µL/min—the
slowest flow rate possible on the BIAcore T200 (Gen 2013). Even with the fastest
reactions, one can still design experiments to minimize transport effects by increasing
the flow rate Q (thus the velocity), decreasing the initial empty receptor concentration
RT, and decreasing the ligand inflow concentrations C1,u and C2,u. In the case of the
fastest reaction 1ka = 3 × 109 cm3/(mol s), we can take: Q = 390 µL/min, V =
.75 cm/s, RT = 7.76 × 10−13 mol/cm2, C1,u = C2,u = 2.96 × 10−12 mol/cm3.

These choices yield the dimensionless parameters Re = 0.09, Pe = 136.26, Da =
5.16; these values are perfectly in line with our analysis and the validity of our ERC
equations.

References

BIAcore T200 data file (2013) General electric life sciences, GE Healthcare bio-sciences AB, Björkgatan
30, 751 84 Uppsala, Sweden, April 2013

de la Torre JG, HuertasML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins
from their atomic-level structure. Biophys J 78(2):719–730

Edwards DA (1999) Estimating rate constants in a convection-diffusion system with a boundary reaction.
IMA J Appl Math 63(1):89–112

Edwards DA (2000) Biochemical reactions on helical structures. SIAM J Appl Math 42(4):1425–1446
Edwards DA (2001) The effect of a receptor layer on the measurement of rate constants. Bull Math Biol

63(2):301–327
Edwards DA (2006) Convection effects in the BIAcore dextran layer: surface reaction model. Bull Math

Biol 68:627–654
Edwards DA (2011) Transport effects on surface reaction arrays: biosensor applications. Math Biosci

230(1):12–22
Edwards DA, Evans RM, Li W (2017) Measuring kinetic rate constants of multiple-component reactions

with optical biosensors. Anal Biochem 533:41–47
Edwards DA, Jackson S (2002) Testing the validity of the effective rate constant approximation for surface

reaction with transport. Appl Math Lett 15(5):547–552
Edwards DA, Goldstein B, Cohen DS (1999) Transport effects on surface–volume biological reactions. J

Math Biol 39(6):533–561
Friedberg EC (2005) Suffering in silence: the tolerance of DNA damage. Nat RevMol Cell Biol 6(12):943–

953
Karlsson R, Fält A (1997) Experimental design for kinetic analysis of protein-protein interactions with

surface plasmon resonance biosensors. J Immunol Methods 200(1):121–133
Lebedev K, Mafé S, Stroeve P (2006) Convection, diffusion, and reaction in a surface-based biosensor:

modeling of cooperativity and binding site competition and in the hydrogel. J Colloid Interface Sci
296:527–537

Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, Kannouche PL, Green CM (2007)
Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair 6(7):891–899

Morton TA,Myszka DG, Chaiken IM (1995) Interpreting complex binding kinetics from optical biosensors:
a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal
Biochem 227(1):176–185

Nie Q, Zhang Y-T, Zhao R (2006) Efficient semi-implicit schemes for stiff systems. J Comput Phys
214(2):521–537

Plosky BS, Woodgate R (2004) Switching from high-fidelity replicases to low-fidelity lesion-bypass poly-
merases. Curr Opin Genet Dev 14(2):113–119

123



Transport Effects on Multiple-Component Reactions in Optical… 2241

Rich RL, Myszka DG (2009) Extracting kinetic rate constants from binding responses. In: Cooper MA (ed)
Label-free bioesnsors. Cambridge University Press, Cambridge

Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R, Brockman J, Lambert J, Myszka DG
(2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem
373(1):112–120

Yarmush ML, Patankar DB, Yarmush DM (1996) An analysis of transport resistances in the operation of
BIAcore; implications for kinetic studies of biospecific interactions. Mol Immunol 33(15):1203–1214

Zhuang Z, Johnson RE, Haracska L, Prakash L, Prakash S, Benkovic SJ (2008) Regulation of polymerase
exchange between polη and polδ by monoubiquitination of pcna and the movement of dna polymerase
holoenzyme. Proc Natl Acad Sci 105(14):5361–5366

ZumbrumM (2013) Extensions for a surface–volume reaction model with application to optical biosensors.
Ph.D. thesis, University of Delaware

Zumbrum M, Edwards DA (2014) Multiple surface reactions in arrays with applications to optical biosen-
sors. Bull Math Biol 76(7):1783–1808

Zumbrum M, Edwards DA (2015) Conformal mapping in optical biosensor applications. J Math Biol
71(3):533–550

123


	Transport Effects on Multiple-Component Reactions  in Optical Biosensors
	Abstract
	1 Introduction
	2 Governing Equations
	2.1 Injection Phase
	2.2 Wash Phase

	3 Effective Rate Constant Approximation
	4 Numerics
	4.1 Semi-implicit Finite Difference Algorithm
	4.2 Convergence Study
	4.2.1 Spatial Convergence
	4.2.2 Temporal Convergence
	4.2.3 Stability Remarks


	5 Effective Rate Constant Approximation Verification
	6 Conclusions
	Appendix: Parameter Values
	References




