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Abstract
The standard of care treatment for neovascular age-related macular degeneration,
delivered as ocular injection, is based on anti-vascular endothelial growth factor (anti-
VEGF). The course of treatment may need to be modified quickly for certain patients
based on their response. Models that track both the concentration and the response
to an anti-VEGF treatment are presented. The specific focus is to assess the exis-
tence of analytical solutions for the different types of models. Both an ODE-based
model and a map-based model illustrate the dependence of the solution on various
biological parameters and allow the measurement of patient-specific parameters from
experimental data. A PDE-based model incorporates diffusive effects. The results are
consistent with observed values, and could provide a framework for practitioners to
understand the effect of the therapy on the progression of the disease in both responsive
and non-responsive patients.
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1 Introduction

Age-related macular degeneration is a leading cause of blindness. In the neovascular
variety (nAMD), abnormal blood vessels leak fluid into the sub-retinal space (see Fig.
1). This causes an increase in the central sub-field (retinal) thickness (CSFT), resulting
in vision loss. CSFT is assessed via the use of optical coherence tomography (OCT),
a non-invasive imaging test that uses light waves to take cross-sectional pictures of
the retina. Drugs targeting vascular endothelial growth factor (VEGF) are delivered as
injections in the vitreous chamber of the eye at regular intervals to stem this leakage
(Wykoff et al. 2018). The introduction of these anti-VEGFdrugs has revolutionized the
treatment of nAMD.Despite this significant progress, gaps and challenges persist in the
diagnosis of nAMD, initiation of treatment, and management of frequent intravitreal
injections. To this day, nAMD remains a leading cause of blindness in the United
States.

Controlled clinical trials typically take two years to complete. Questions and com-
plexities remain when one wants to project the disease progression of an individual
patient over a longer time period and under a real-world treatment paradigm. To elu-
cidate these complexities, long-term extrapolation is needed. Mathematical modeling
lends itself naturally to this task. Multiple efforts exist in the literature (e.g., Martínez-
Cañada et al. 2016; McHugh et al. 2019; Roberts et al. 2016). Some consider the
detailed pharmacokinetics (drug distribution, Awwad et al. 2015; Edington et al. 2017)

Fig. 1 Schematic of the eye. Adapted from Blausencom staff (2014)
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and pharmacodynamics (how the drug impacts the biological system, Semeraro et al.
2015) in general and of specific molecules (e.g., Mulyukov et al. 2018). Others look
at a more detailed representation of the eye, focusing on the delivery of the drug (e.g.,
del Amo et al. 2017; Kotha and Murtomäki 2014). Other authors consider the effects
of the drug on patient outcomes. In particular, some models consider the drug’s effect
on various biological pathways (Hoyle and Aslam 2017), or how the drug impacts
acuity loss (Mulyukov et al. 2018).

The mathematical representation also varies from compartment-based ODE
approaches (both deterministic and stochastic) to computational methods with PDEs
(mostly using finite element approaches). For example, Hoyle and Aslam (2017) cre-
ate a generative model of nAMD, though that is purely based on simulations. In their
elegant works, Hutton-Smith et al. (2016, 2017) use compartment-based ODEmodels
that divide the eye into vitreous, aqueous, and retinal regions, accounting for transport
between them and linking the drug (ranibizumab) concentration to the dynamics of
the VEGF pathway only and not to a clinical outcome. In a detailed PK model, Zhang
et al. (2018) use numerical simulations of PDEs to track the concentration in various
portions of the eye but do not link the results to patient outcomes. In what follows,
we build upon these efforts with the goal of investigating the existence of analytical
solutions.

CSFT (as mentioned above), as well as the best-corrected visual acuity (BCVA)
score, which is essentially the score determined from having the patient read an eye
chart (Mulyukov et al. 2018), are commonly used to evaluate nAMD patients. As the
treatment regimen progresses, the information from these two types of measurements
(and others not considered here) should be able to guide the treating physician on
the progress made by the patient. In a responsive subject, one would expect to see
BCVA increase while CSFT decreases. Since the concentration C̃ of the anti-VEGF
decays over time as it is cleared by the body, this necessitates repeat treatment. Despite
advances in delivery, ocular injections remain invasive. Therefore, it is desired that
an individualized optimal regimen be created for each patient based on their disease
history and response to therapy.

One would hope that there would be a direct relationship between the concentration
C̃ of the anti-VEGF treatment and these measurements. However, with time the body
develops a tolerance for the medication, necessitating higher dosages to achieve the
same result. Such effects are highly variable among patients, and hence so is the
patient’s response to medication. In this study, we gauge this variability by examining
a small but representative sample of clinical data where patients were receiving some
sort of anti-VEGF therapy. None of the patient-specific characteristics were shared,
so we had no information about their age, gender, co-morbidities or co-medications.
Hence we are blinded to the patient-specific journey. Instead, we aim to achieve two
main goals. First, we seek to establish parameter values unique to our mathematical
models that describe patient-specific response. Second, we investigate the existence
of analytical solutions. Answers to these two questions provide feasibility assessment
for the development of a fast and fully-predictive tool.

In this work, we largely focus on the BCVA score; discussion of the specifics
of CSFT is presented in the final section. In Sect. 2, we derive and solve a three-
dimensional ODE system which provides estimates for how the score changes with
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time in the presence of a treatment regimen, and fit the model to actual patient data. In
Sect. 3, we derive an analogous discrete model, and again fit it to actual patient data. In
Sect. 4, we present a spatial model to consider the diffusion aspects of the medication,
at least in an idealized geometry, and fit to the patient data. Despite the limitations
mentioned for each of thesemodeling approaches, they constitute a foundation for how
one can predict long-term behavior based upon short-term results, incorporate patient-
specific characteristics, and investigate the efficacy of different dosing frequencies. In
Sect. 5, we conclude with a discussion of our results and suggestions for future work.

2 An ODEmodel

2.1 Governing equations

We begin by considering a continuous ODE model for the response of the measure-
ments to the treatment regimen, as motivated byMulyukov et al. (2018). Though more
complicated multicompartment ODE models for the concentration C̃ exist (Hutton-
Smith et al. 2016, 2017), our focus here is different: namely to predict patient outcomes
through the BCVAmeasurement ã, preferably through analytic solutions that can eas-
ily be implemented in an app. As will be shown, our model does provide good results
for the acuity, and hence even a simple one-component PK model can capture the
essential features of the system. Of course, an ODE model for the concentration does
not address diffusive transport in the eye; that shortcoming will be remedied in Sect.
4.

During the treatment regime, dosages of mass D̃ are administered at time t̃ = 0
and N subsequent times t̃i . These values can be converted to a mass concentration (the
preferred measurement) by dividing by the apparent volume V of the vitreous fluid in
the eye. (Parameter values may be found in the Appendix.)

As time passes, the amount of medication in the vitreous chamber of the eye will
decrease, either through transport to the aqueous region in the front of the eye, or
transport via the episcleral vein at the back of the eye (Zhang et al. 2018). Following
Hutton-Smith et al. (2017), we model this process as exponential decay with elimina-
tion constant kC . Hence the full governing equation for the concentration becomes

dC̃

dt̃
= −kCC̃ + D̃

V

N∑

i=0

δ(t̃ − t̃i ), C̃(0) = 0, t̃0 = 0. (1)

In the absence of medication, we assume that the BCVA measurement ã(t̃) of a
patient with nAMD decays exponentially at a rate k̃out to a nonzero value which is
consistent with blindness. This decay is then balanced by an “inflow” of acuity, which
the medication is designed to enhance. The resulting equation is

dã

dt̃
= k̃in[1 + E(C̃)] − k̃outã, ã(0) = ã0. (2)
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Here the function E(C̃) is the effectiveness of the medication, and k̃in represents some
natural “inflow” of acuity which balances this decay: hence E(0) = 0. Thus the steady
state of (2) corresponding to blindness is k̃in/k̃out. Since acuity decreases as the disease
progresses, this implies that

k̃in

k̃out
< ã0. (3)

Wemodel E as a product of two factors.With increased exposure to themedication,
the body builds up a tolerance T (t̃) to the drug. As the tolerance increases, the effec-
tiveness of the drug (even at saturation levels) will decrease. We model this through a
maximum effectiveness factor M(T ), where M ′(T ) < 0. Initially, the patient has no
tolerance to the drug, which corresponds to a maximum effectiveness level of M∞:

T (t̃ = 0) = 0, M(T = 0) = M∞. (4)

Though the presence of C̃ increases T , in its absence drug clearance will return T
to 0. We model these dynamics with a simple forced exponential decay model with
rate constant k̃∞:

dT

dt̃
= k̃T C̃ − k̃∞T , (5)

subject to the initial condition in (4). Here k̃T is a proportionality constant for the
effects of the concentration.

In keepingwith our goal of simplicity, we takeM to be linear in T , using aHeaviside
step function H to ensure that M remains non-negative:

M(T ) = M∞(1 − T )H(1 − T ) ≡ M∞(1 − T )+. (6)

The second factor in E is the dosage effectiveness factorwhich describes howmuch
of the maximum effectiveness is achieved for a certain concentration C̃ . Mulyukov
et al. (2018) use a sigmoidal function, but note that in most of the treatment regime, the
medication is at maximum effectiveness. Hence, in order to obtain analytical results,
we simplify the sigmoidal curve to a Heaviside function which turns on at some half-
constant C∗. Substituting this result and (6) into (2), we obtain

dã

dt̃
= k̃in

{
1 + M∞(1 − T )+H(C̃ − C∗)

}
− k̃outã, ã(0) = ã0. (7)

For later algebraic simplicity, we scale these equations tomake themdimensionless.
For ã, it is natural to normalize by the initial value a0. For t̃ and C̃ , we choose kC and
C∗, which have little inter-patient variability (Mulyukov et al. 2018). Substituting our
chosen scales

a(t) = ã(t̃)

ã0
, C(t) = C̃(t̃)

C∗
, t = kC t̃ (8)
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into (1), (5), and (4), we obtain the following:

dC

dt
= −C + D

N∑

i=0

δ(t − ti ), C(0) = 0, t0 = 0, D = D̃

VC∗
, (9)

dT

dt
= kTC − k∞T , T (0) = 0, kT = k̃T C∗

kC
, k∞ = k̃∞

kC
. (10)

Finally, we scale the equation for ã, which yields

da

dt
= kin

{
1 + M∞(1 − T )+H(C − 1)

} − kouta, a(0) = 1, (11a)

kin = k̃in

k̃C ã0
, kout = k̃out

k̃C
. (11b)

Note from the Heaviside function in (11a) that D must be greater than 1 for the
medication to have any efficacy.

We may use (11a) to determine whether a patient will show any improvement
initially. With D > 1, initially C > 1. Then using the given initial conditions for a
and T , we may determine the initial derivative of a from (11a):

da

dt
(0) = kin(1 + M∞) − kout.

Patients will show improvement initially whenever da/dt(0) > 0, i.e., when

kin(1 + M∞)

kout
> 1. (12)

Note that all the parameters in (12) are patient-dependent. Physically, with a large
value of M∞, the maximum effectiveness of the initial dosage is enhanced, leading to
initial improvement.

2.2 Analytical solutions

The solution of (9) is easily found using Laplace transform or integrating factor tech-
niques:

C(t) = D
N∑

i=0

H(t − ti )e
−(t−ti ). (13)

Similarly, the solution of (10) is also easily found to be

T (t) = kT D

1 − k∞

N∑

i=0

H(t − ti )
[
e−k∞(t−ti ) − e−(t−ti )

]
. (14)
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If k∞ > 1, the denominator is less than zero, but so is the bracketed term, yielding
the positive value of T (t) desired.

Because of the Heaviside functions in (11a), wemay compute our solutions directly
up until t∗, which is defined to be the first time for which either of the Heaviside
functions switches off. (In other words, eitherC(t∗) = 1+ or T (t∗) = 1−.) Once a(t∗)
has been computed, we can then solve (11a) in the region t > t∗ by remembering
that in this region, E(C) = 0 and there is simple exponential decay. This exponential
decay occurs until both of the Heaviside functions are switched on, at which point we
solve the full system again with a new initial condition.

For realizable parameter values, C(t) never falls below 1 until the dosing reg-
imen ends (see Fig. 2a below). This is consistent with experimental results, since
according to Mulyukov et al. (2018), C decays below 1 only if there are around three
months between doses. In the treatment regime under consideration, the furthest spac-
ing between doses is two months.

Hence t∗ is determined by whether T > 1. We may derive a rough bound on the
parameters by noting from (14) that

T (t) <
kT D(N + 1)

1 − k∞

(
e−k∞t − e−t

)
. (15)

It is a simple exercise in calculus to show that the right-hand side of (15) is bounded
above by

kT D(N + 1)k−k∞/(k∞−1)∞ .

Bounding the above expression by 1 yields the following bound on kT :

kT <
kk∞/(k∞−1)∞
D(N + 1)

. (16)

As D or N increases, the amount of medication in the eye increases, increasing toler-
ance, anddecreasing the boundon kT . For the values in theAppendix (usingmedication
B), the bound becomes

kT <
9.30 × 10−2

(N + 1)
, (17)

which is quite tight. Indeed, there are patient cases where T rises above 1, and hence
t∗ exists (see Fig. 2b below).
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Table 1 Base values for
dimensionless parameters used
in the plots

Dimensionless parameter Base value

k∞ 0.643

M∞ 1

D 238

kT 0.001

kin 0.4

kout 0.5

(a) (b) (c)

Fig. 2 Plots of a the medication concentration C , b the body’s tolerance T , and c the acuity measurement
a for varying dosage D: 1 (purple), 10 (orange), 238 (blue), 357 (red), 714 (green). (The last three values
are consistent with experiments) (color figure online)

To write the full solution, we take t j < τ < t j+1. Then Laplace transform or
integrating factor techniques yield the solution

a(t) =
[
1 − kin(1 + M∞)

kout

]
e−kout t + kin(1 + M∞)

kout

− M∞kT kinD

1 − k∞

j∑

i=0

H(t − ti )

[(
1

kout − 1
− 1

kout − k∞

)
e−kout(t−ti )

+ e−k∞(t−ti )

(kout − k∞)
− e−(t−ti )

(kout − 1)

]
.

(18)

We may plot the solutions of the system (9)–(11) using Mathematica. In the fol-
lowing figures, the parameters are given in Table 1, except for the parameter that is
varying. These parameters are consistent with parameter fitting to patient data. Note
that kT is quite small, reflecting the slow buildup of tolerance in the body compared
to the other biological processes in the system. In each plot, an injection is given at
every dimensionless time unit until t = 10.

In Fig. 2, we show plots of the concentration, tolerance, and acuity for different
values of D. For the high dosages typical of treatment regimes, the concentration
remains well above the threshold value 1 between injections. As the dosage increases,
the peaks of the concentration increase as expected and tolerance increases as well.
(The concentration and tolerance graphs for the two lowest dosages stay near the
axis.) The acuity graph with the lowest concentration (D = 1) oscillates because
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(a) (b) (c)

Fig. 3 Plots of the acuity measurement a varying a the rate of “inflow” of acuity kin: 0.1 (blue), 0.3 (red),
0.4 (green); b the decay rate of acuity kout: 0.5 (blue), 0.7 (red), 0.9 (green); c and the largest possible
maximum effectiveness factor M∞ of the drug: 0.1 (blue), 1 (red), 7 (green) (color figure online)

(a) (b)

Fig. 4 Plots of a the body’s tolerance T and b the acuity measurement a varying kT (coefficient relating
increased concentration to tolerance): 0.001 (blue), 0.01 (red), 0.1 (green) (color figure online)

the concentration is low enough that the Heaviside function in (11a) is triggered. For
higher values of the concentration, the acuity graph is smooth, increasing for smaller
values of C , but then decreasing as the high tolerance inhibits it.

For clinically relevant values of the dosage (D ≥ 238), we see a characteristic spike
after the injections end. This is due to the fact that the tolerance is decaying while the
concentration remains high enough for the treatment regimen to be effective.

In Fig. 3, we show plots of the acuity for different values of the parameters kin, kout,
and M∞, all three of which are patient-specific. (C and T are unaffected by changing
these parameters.) The steady state of (11a) in the absence of medication is kin/kout.
As acuity declines in the absence of medication, on physical grounds we require
that kin/kout should be less than the initial condition 1, which is the dimensionless
equivalent of (3).

As expected, we obtain higher acuity when we increase kin (increasing the inflow)
or decrease kout (reducing the decay rate). As we increase M∞, the maximum effec-
tiveness of the drug increases, which increases acuity. Moreover, the initial rate of
improvement increases, as indicated by (12).

In Fig. 4, we show plots of the tolerance and acuity for different values of kT . (C
is unaffected by changing kT .) Increasing kT increases the tolerance for a given C ,
which in turns reduces the acuity. Note that when kT is largest, by the time T decays
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(a) (b)

Fig. 5 Plots of a the body’s tolerance T and b the acuity measurement a varying k∞ (decay rate of
tolerance): 0.01 (blue), 0.643 (red), 0.9 (green) (color figure online)

(a) (b)

Fig. 6 Curves: optimized trajectory of ODE model for (dimensional) acuity of Patients 28 (left) and 67
(right). The blue triangles indicate when patient measurements were taken. Here the dosage D = 238 and
the decay rate of tolerance k∞ = 0.643 (color figure online)

below 1, the concentration has decayed away as well, suppressing the post-treatment
spike seen for the other values.

In Fig. 5, we show plots of the tolerance and acuity for different values of k∞. (C
is unaffected by changing k∞.) Increasing k∞ enhances the decay of the tolerance for
a given C , which in turns increases the acuity. As in Fig. 4, the slow decay rate of T
for the smallest value of k∞ suppresses the post-treatment spike.

Our model is useful only if it can replicate patient experience. To that end, we fit
the model (18) to a few representative curves for BCVA, completely devoid of any
patient-specific information. The fitting parameters in the model are the ones which
vary amongst patients, namely {kin, kout, kT , M∞}. When fitting, we have used the
FindFit package in Mathematica, which makes use of the Levenberg–Marquardt
method for non-linear least squares. The results are shown in Fig. 6, which compares
the results from themodel with the data from two patients. The curve does exceedingly
well at tracking the values for Patient 28 (who responded well to the treatment), while
for Patient 67 (who did not respond well), the model captures the general trendline.
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Plots of the acuity measurement a using (20) and varying a dosage D [1 (purple), 10 (orange), 238
(blue), 357 (red), 714 (green)]; b the rate of “inflow” of acuity kin [0.1 (blue), 0.3 (red), 0.4 (green)]; c the
decay rate of acuity kout: [0.5 (blue), 0.7 (red), 0.9 (green)]; d the largest possible maximum effectiveness
factor M∞ of the drug [0.1 (blue), 1 (red), 7 (green)]; e kT (coefficient relating increased concentration
to tolerance) [0.001 (blue), 0.01 (red), 0.1 (green)]; and f k∞ (decay rate of tolerance) [0.01 (blue), 0.643
(red), 0.9 (green)]. Note the parameter values are the same as in the corresponding Figs. 2, 3, 4 and 5 (color
figure online)

In particular, if we define the error quantity for the fit as

1

N

N∑

i=1

[aexperimental(ti ) − afit(ti )]2, (19)

where a is the dimensionless acuity, we obtain values of 1.50× 10−3 for the graph at
left, and 8.00 × 10−3 for the graph at right.

2.3 Other forms

As indicated above, the appeal of such a simple model for E(C) is that analytical
solutions with explicit parameter dependence can be easily obtained. Though the
solutions have been shown in Fig. 6 to match patient data, such solutions are more
useful if they also mimic the results from more realistic models. One such example is
to replace (6) with

M(T ) = M∞
1 + T

, (20)

which replicates the behavior of (6) for small T , but which decays to 0 for larger T
without the nonsmooth behavior of the Heaviside function. Acuity plots using (20)
instead of (6) are shown in Fig. 7. Note that we obtain the same qualitative results.
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Plots of the acuity measurement a using (21) and varying a dosage D [1 (purple), 10 (orange), 238
(blue), 357 (red), 714 (green)]; b the rate of “inflow” of acuity kin [0.1 (blue), 0.3 (red), 0.4 (green)]; c the
decay rate of acuity kout: [0.5 (blue), 0.7 (red), 0.9 (green)]; d the largest possible maximum effectiveness
factor M∞ of the drug [0.1 (blue), 1 (red), 7 (green)]; e kT (coefficient relating increased concentration
to tolerance) [0.001 (blue), 0.01 (red), 0.1 (green)]; and f k∞ (decay rate of tolerance) [0.01 (blue), 0.643
(red), 0.9 (green)]. Note the parameter values are the same as in the corresponding Figs. 2, 3, 4 and 5 (color
figure online)

Similarly, the Heaviside function H(C − 1) for the dosage effectiveness factor
in (11a) can be replaced by the sigmoid function in Mulyukov et al. (2018); the
dimensionless form is

C

1 + C
. (21)

Again, we are trading analytical tractability for smoothness.
In Fig. 8, we show plots of the acuity using (21). Initially, the qualitative behavior

is the same as when using the Heaviside function. However, the graphs are smoother,
reflecting the smooth nature of the sigmoid function.

3 A discrete model

3.1 Equations and solutions

Patient data can be collected only at discrete times when they visit the provider. As
the treatment regime is designed so that these visits are evenly spaced (usually four
weeks apart) (Schmidt-Erfurth et al. 2014), it is convenient to replace the continuous
model from Sect. 2 with a discrete dynamical system.

Let Cn be the measurement of the medication at time n (and similarly for an and
Mn). The first visit is a screening visit where no medication is given. Therefore, for
consistency with the definition of time in Sect. 2, we take the screening visit to have
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n = −1. We work directly with the dimensionless versions of the continuous models;
an appropriate discrete analog of (9) is the following:

Cn+1 = κCCn + Dδn+1,d, n ≥ −1; C−1 = 0, (22a)

δn+1,d =
{
1, dose given at time n + 1 (visit n + 3)

0, else.
(22b)

Without a time scale, we must retain the rate constant for the decay of C . All such
terms are denoted κ instead of k to emphasize the structural difference between the
two models. Hence the discrete analogs of (10) and (11a) are given by

Tn+1 = κTCn + κ∞Tn, T−1 = 0, (23)

an+1 = κin[1 + M∞(1 − Tn)
+H(Cn − 1)] + κoutan, a−1 = 1. (24)

As (22)–(24) are straightforward discrete analogs of the system in Sect. 2, we omit
an analysis of variation of solutions on parameter dependence in favor of fitting patient
data. To that end, we exploit the functional form of the maximum effectiveness factor
to introduce it as a new variable replacing T :

Mn = M∞(1 − Tn). (25)

Making this substitution into (23) and (24), we obtain

Mn+1 = M∞ − κT M∞Cn − κ∞(M∞ − Mn), M−1 = M∞, (26)

an+1 = κin[1 + M+
n H(Cn − 1)] + κoutan, a−1 = 1, M+

n = MnH(Mn). (27)

Note that the Heaviside function is now needed because it is possible for Mn < 0,
which would correspond to an unphysical effectiveness factor.

To gain insight into the system, we look at the fixed points in two cases: no dosing
and regular dosing. In the case of no dosing, (22a) becomes homogeneous and has
only the fixed point C = 0. Substituting the fixed point C = 0 into (26), we obtain a
homogeneous equation in the variable M∞−Mn , which has the fixed point M = M∞.
Lastly, substituting the given fixed points into (27), we have the equation

an+1 = κin + κoutan,

which has the single fixed point

a∗ = κin

1 − κout
. (28)

Considering the vector (Cn, Mn, an), the Jacobian for the system is given by

J =
⎛

⎝
κC 0 0

−κT M∞ κ∞ 0
κinM+δ(C − 1) κinH(M)H(C − 1) κout

⎞

⎠ , (29)
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which has eigenvalues κC , κ∞, and κout for any fixed point. Therefore, each of these
parameters must be bounded between−1 and 1 for stability. And moreover, each must
be positive for all the iterates to be positive.

Next, we look at the case of regular dosing at each interval. In that case, (22a)
becomes

Cn+1 = κCCn + D, (30)

which has the fixed point

C = D

1 − κC
. (31)

Substituting this fixed point into (26), we have

Mn+1 = M∞ − κT M∞
D

1 − κC
− κ∞(M∞ − Mn),

which has the fixed point

M = M∞
[
1 − κT D

(1 − κC )(1 − κ∞)

]
. (32)

However, since D is large, only for very small κT is M going to be positive. This
makes biological sense, since regular injections will increase the tolerance beyond the
point at which the maximum effectiveness factor goes to 0. Substituting the steady
states into (27), we obtain the following:

an+1 = κin[1 + M+H(C − 1)] + κoutan,

where C and M are given in (31) and (32). Hence we have the fixed point

a = κin[1 + M+H(C − 1)]
1 − kout

, (33)

which will often be the same as (28) because M will most probably be negative. In
any case (33) is stable under the conditions listed above.

We may solve analytically for Cn in the case of regularly spaced injections as
follows. The general solution of (30) is given by

Cn+1 = D

1 − κC
+ ακn

C , (34)

where α is an arbitrary constant. Suppose that injections are given during P injection
periods at times n ∈ [n p−, n p+] for p = 1, 2, . . . , P , and let n1− = 0. Then using
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the general solution (34) for any dosing interval [n p−, n p+], the contribution to the
total Cn from the dosing term is given by the following:

D

1 − κC
(1 − κ

n+1−n p−
C ), n ∈ [n p−, n p+]. (35)

After it ends, the contribution from that dosing interval is just continually reduced by
the factor κC :

D

1 − κC
(κ

n−n p+
C − κ

n+1−n p−
C ), n ≥ n p+. (36)

Combining these terms for all dosing intervals yields the full solution in this region:

Cn = D

1 − κC

P∑

p=1

H(n − n p−)(1 − κ
n+1−n p−
C ) − H(n − (n p+ + 1))

[
1 − κ

n+1−(n p++1)
C

]
. (37)

Equation (37) can be explained as follows. The first term represents the solution for
constant dosing, starting at n p−. To shut the dosing off, we just subtract off another
term for constant dosing, starting at n = n p+ + 1, which is the first period after the
end of the real dosing.

3.2 Data fitting

We can use the results from the discrete model to fit actual patient data. Values of D
and κ∞ are listed in the Appendix; the ti can be determined from the data. Thus the
parameters to be fit are κin, κout, κT , and M∞; such quantities should vary with each
patient (Mulyukov et al. 2018). Given the large size of D, from (10) we expect that
our parameter fit should have κT � 1 to prevent the tolerance from becoming very
large very quickly.

The data is rather noisy and in some instances there is not a monotonically positive
response to the drug. In fact, a patient may continually get worse despite receiving
regular doses. Our goal was to find optimal values for {κin, κout, κT , M∞} for each of
the 103 test patients. After the parameters were fit for each patient, we also sought
to determine if any values of κin or κout were characteristic of responsive or non-
responsive patients.

To visualize our results, we run the model using the dosage schedule of Patient
6 with a demonstrative chosen set of parameter values. The results are shown in
Fig. 9. As in the continuous model, the concentration of the drug oscillates due to the
frequency of the doses. When a dose occurs, the concentration is at a local maximum,
and then declines in the four weeks between visits. The blue line corresponds to the
threshold value C = 1; as in the continuous case, the concentration rarely dips below
the threshold while medication is being administered.

In the plot ofMn , themaximum effectiveness decreases after every dose, suggesting
that tolerance is increasing and limiting the body’s response to the drug. The acuity
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Fig. 9 Left: experimental measurements of the acuity measurement an for an individual patient. Red blocks
indicate when a dose was administered. Middle and right: trajectories of concentration Cn and maximum
effectiveness factor Mn with fixed parameters given in the Appendix (dosage schedule B) and fit parameters
as follows: acuity “inflow” rate κin = .25, acuity decay rate κout = .75, coefficient relating increased
concentration to tolerance κT = 0.0025, and largest possible maximum effectiveness factor M∞ = 1.8972
(color figure online)

Fig. 10 Optimized trajectory for (dimensional) acuity of Patients 28 (left) and 67 (right). The model does
well to fit both responsive and non-responsive patients

an increases after every dose, and then decays in the intervening weeks. In particular,
between weeks 12 and 16 (when the patient missed a dose), the acuity declines more
dramatically than usual.

UsingMatlab’s built-in lsqnonlin function, we optimized the four parameters
for every patient in the given data set. Because this solver inputs an initial parameter
set, we also implementedMatlab’s global optimization function multistartwith
100 other initial conditions to avoid local maxima in the optimization function.

We compare acuity results of the discrete model with patient data in Fig. 10, which
uses the same patients as in Fig. 6. In contrast to the relatively smooth nature of the
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Fig. 11 Box plot of a∗ values for nonresponsive (negative) and responsive (positive) patients

fits from the ODE model, the discrete model’s ability to track smaller-scale features
of the acuity depends on their amplitude. For patient 28, most of the individual data
points oscillate within a narrow band about a general trendline, and the model is able
to follow those oscillations. However, in patient 67, the oscillations are much wilder
(at least initially), and the model follows only the general trendline. These results track
those from the ODE model shown in Fig. 6.

Obviously, it is desirable for the model to fit the individual oscillations. However,
the important clinical variable is much cruder: whether or not a particular patient
responds to treatment. To interpret our results quantitatively, we define patients who
are unresponsive to treatment to have aN < 1. (In other words, even after treatment,
the final acuity measurement was less than the initial value.) Similarly, we define
responsive patients as those who have aN > 1. Once we had optimized the parameters
for each patient in the given data set, we calculated their respective values of a∗ as
defined in (28). Recall that this is the fraction of acuity the patient would expect to
retain in the absence of any treatment.

Our results are shown in a box plot in Fig. 11. At left, the unresponsive patients are
clustered at values that are much smaller than 1 (statistically less than 1 with > 99%
confidence). Biologically, their response in the absence of medication would be so
poor that the treatment regime does not help enough to drive aN > 1. In contrast, the
responsive patients at right are clustered near a∗ = 1. Hence the added benefit from
the medication can not only slow the patient decline, but also improve their acuity
long-term.

Figure 11 also suggests a way to evaluate the efficacy of the treatment regime
before its completion. In particular, the curve fitting needed to calculate a∗ can be
redone each time an acuity reading is taken. If several consecutive estimates provide
a value of a∗ < 3/4, it is more likely than not that the patient will fall into the
unresponsive category. The clinician can then use this information (in conjunction
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Fig. 12 Cross-section of the eye through center of sphere and injection site I , dimensionless coordinates. Rl
is the radius of the limbus, Rp the arc-length distance from the limbus to the insertion site. The dashed line
represents the path of the needle (depth Ri, aligned with the z-axis), and Rd is the distance the medication
must diffuse from the injection site to the target area. The aqueous layer and episcleral vein are jointly
modeled as a spherical shell of thickness h

with other observations and history) to determine whether the treatment regime should
be continued.

4 Diffusion

4.1 Infinite model

Spatial transport in the eye is important, as the medicine diffuses from the injection
site in the vitreous fluid to the retina.

We may use dimensional analysis to estimate the time needed for the medication to
diffuse a distance equal to the radius Re of the eye given the value D̃ of the diffusion
coefficient in the vitreous fluid:

R2
e

4D̃ = 22.3 day, (38)

where we have used the parameters in the Appendix. Given that the typical time
between injections is four weeks, we expect diffusive effects to be significant.

As a first attempt to model the diffusion, we treat the eye as embedded in a fully
infinite domain, centered at the injection site I (see Fig. 12). Though using an infinite-
extent model is clearly not a reflection of biological reality, it has the advantage that
it will produce analytical solutions for the acuity that compare favorably with patient
data (see Fig. 15).
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Without boundaries, the relevant equation can be written in symmetric spherical
coordinates as

∂C̃

∂ t̃
= −kCC̃ + D̃

r̃2
∂

∂ r̃

(
r̃2

∂C̃

∂ r̃

)
, (39a)

where r̃ is the spherical coordinate. Equation (39a) replaces (1). Note the decay of
medication is assumed uniform throughout the domain. We note that in their work,
Zhang et al. (2018) include pressure-driven convecton in the vitreous along with dif-
fusion. However, as the pressure gradients driving such flow last for only around 30
min after injection (Falkenstein et al. 2007; Zhang et al. 2018), over the four weeks
between doses, diffusion effects obviously dominate.

We begin by examining the case of a single injection at time t̃ = 0. Given the
assumed geometry, this leads to the following initial condition:

C̃(r̃ , 0) = D̃δ(r̃). (39b)

The scalings for C̃ and t̃ are given by (8), and for the radius we let

r = r̃

Re
. (40)

Making these substitutions, we obtain

∂C

∂t
= −C + D

r2
∂

∂r

(
r2

∂C

∂r

)
, D = D̃

R2
e kC

, (41a)

C(r , 0)Ddδ(r), Dd = D̃

R3
eC∗

. (41b)

The decay in (13) motivates the substitution

C(r , t) = e−t u(r , t), (42)

which reduces (41a) to the standard heat operator. Given that we have assumed an
infinite domain, the solution is given by the fundamental solution, multiplied by the
dosage strength Dd:

C(r , t) = Dd

(4πDt)3/2
exp

(
− r2

4Dt
− t

)
. (43)

The relevant concentration is at the retina, which is at a dimensional length R̃d from
the source (see Fig. 12). Hence we compute

C(Rd, t) = Dd

(4πDt)3/2
exp

(
− R2

d

4Dt
− t

)
, (44)
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(a) (b) (c)

Fig. 13 Plots of a the medication concentration C , b the body’s tolerance T , and c the acuity measurement
a for varying dosage Dd: 487 (blue), 732 (red), 1461 (green). Here, D = 1.44, Rd = 1.39 (color figure
online)

where the dimensionless Rd is defined similarly to (40).
To introduce the effects of multiple injections, we note that since the problem is

linear, we may just shift time from t to t− ti , and the solution remains the same. Hence
in the full case we obtain

C(Rd, t) = Dd

(4πD)3/2

N∑

i=0

H(t − ti )

(t − ti )3/2
exp

(
− R2

d

4D(t − ti )
− (t − ti )

)
, (45)

which replaces (13) in computations of T and a.
To complete the solution, we must compute the distance Rd to be traversed. Per

Frenkel et al. (2010), the insertion site is taken to be an arc-length distance Rp (the
subscript “p” is for “position”) from the edge of the limbus, which is a structure
near the iris with cross-sectional radius Rl (the subscript “l” stands for “limbus”; see
Fig. 12). The needle is injected a distance Ri (the subscript “i” is for “injection”) into
the eye and the medicine is released. In Fig. 12, we show the needle directed toward
the center of the eye. It is also possible that the needle is directed more towards the
retina (Frenkel et al. 2010), which would shorten the path. However, as we are looking
to quantify the maximum effect of diffusion, we consider the route with the longest
path.

The computation is a tedious exercise in trigonometry and the Law of Cosines; the
final result is

R2
d = 1 + (1 − Ri)

2 − 2Ri cos θ∗, (46a)

cos θ∗ = Rl sin Rp −
√
1 − R2

l cos Rp. (46b)

A graph of (45) for the parameters in the Appendix is shown in Fig. 13, which is
analogous to Fig. 2, though with some differences. The peak concentration is an order
of magnitude smaller, since the medication must spread throughout the eye. This then
forces the tolerance to be very small, but with oscillations due to the spikes in the
concentration. Given that the variation in the tolerance is so small, the acuity follows
the smooth exponential profile consistent with the lowest dosage in Fig. 2.

Figure 14 is analogous to Fig. 7. The behavior of the acuity as the parameters change
remains the same, but with the smaller peak concentration, there are no discernible
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Plots from the PDE model of the acuity measurement a using (45) and varying a dosage Dd [487
(blue), 732 (red), 1461 (green)]; b the rate of “inflow” of acuity kin [0.1 (blue), 0.3 (red), 0.4 (green)]; c the
decay rate of acuity kout: [0.5 (blue), 0.7 (red), 0.9 (green)]; d the largest possible maximum effectiveness
factor M∞ of the drug [0.1 (blue), 1 (red), 7 (green)]; e kT (coefficient relating increased concentration
to tolerance) [0.001 (blue), 0.01 (red), 0.1 (green)]; and f k∞ (decay rate of tolerance) [0.01 (blue), 0.643
(red), 0.9 (green)]. Parameter values for b–f are the same as in the corresponding Figs. 2, 3, 4 and 5. Here,
D = 1.44, Rd = 1.39 (color figure online)

(a) (b)

Fig. 15 Curves: optimized trajectory of PDE model for (dimensional) acuity of Patients 28 (left) and
67 (right). The blue triangles indicate when patient measurements were taken. Here, D = 1.44, Rd =
1.39, Dd = 487, k∞ = 0.643 (color figure online)

oscillations. The only exceptional profile is the case of highest kT in subfigure (e). In
this case, the tolerance does grow large even in the presence of the smaller peak in C ,
driving down the acuity even during dosage administration.

In order to qualify our model, we compare acuity results from the PDE model with
patient data in Fig. 15, which uses the same patients as in Fig. 6. We fit for the same
parameters: {kin, kout, kT , M∞}. Using the same error definition as in (19), we have
an error of 1.78 × 10−3 for the figure on the left, and 8.19 × 10−3 for the figure on
the right. We have again used the Mathematica package to produce the plots. Note
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from Fig. 6 that the PDE model does just as well as the ODE model for the responsive
patient 28, and is superior for the non-responsive patient 67.

4.2 Finite model

While the infinite-extent model is simple and analytically tractable, it is obviously not
reflective of the biological reality. In particular:

1. As shown in Fig. 12, the eyeball clearly is a finite domain, and there is a loss of
spherical symmetry since the injection site I is not in the center.

2. The medication does not decay uniformly throughout the eye, as modeled in (41a).
Though there may be a small amount of degradation within the vitreous itself (del
Amo et al. 2017), most of the medication loss is through transport through the
surface of the vitreous to other portions of the eye (Zhang et al. 2018).

To address some of these shortcomings, we replace the dimensionless transport
equation (41a) with

∂C

∂t
= D∇2C, 0 ≤ |r| ≤ 1, (47a)

which introduces a spherical boundary for the eye centered about the origin. It also
removes the decay from within the eye itself; instead, we introduce medicine leakage
into the aqueous layer and episcleral vein by adding a thin spherical shell of width h
to the exterior of the sphere:

∂Cs

∂t
= Ds∇2Cs, 1 ≤ |r| ≤ 1 + h; Ds < D, (47b)

where the subscript “s” refers to “shell”. This shell will serve the same function as the
Robin boundary condition in Zhang et al. (2018) to remove concentration from the
vitreous layer. The fact that Ds < D indicates that leakage from the vitreous to the
other layers is slow.

We then require that

Cs(r = 1 + h) = 0, (48)

which ensures that there is no medication outside of the shell. Requiring continuity of
concentration and flux at the interface r = 1 yields a full set of boundary conditions.
By taking the injection axis as the z-axis as in Fig. 12, the initial condition (41b) is
replaced by

C(r , θ, 0) = 2

r2 sin θ
Ddδ(r − (1 − Ri), θ), (49)

where we use the convention that θ is the polar angle. (The factor of 2 is needed since
the injection is at one of the boundaries in the azimuthal angle.) Note from the form
of (49) that the full problem is symmetric in the azimuthal angle.
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Using separation of variables, we obtain the following solution modes for C and
Cs:

C = exp
(
−Dλ2t

)
fl(r)Pl(cos θ), 0 ≤ r ≤ 1, (50a)

Cs = exp
(
−Dsμ

2t
)
fl(r)Pl(cos θ), 1 ≤ r ≤ 1 + h, (50b)

fl(r) =
{
f<(r) = jl(λr), 0 ≤ r ≤ 1,

f>(r) = α jl(μr) + β yl(μr), 1 ≤ r ≤ 1 + h.
(50c)

where Pl is the lth Legendre polynomial, and jl and yl are the spherical Bessel func-
tions. For thesemodes to solve the full system, their time-varying behavior must match
across r = 1; hence

Dλ2 = Dsμ
2. (51)

The continuity and boundary conditions apply only to fl ; they may be written as a
homogeneous system as follows:

Ml

⎛

⎝
α

β

1

⎞

⎠ = 0, Ml =
⎛

⎝
− jl(μ) −yl(μ) jl(λ)

−Dsμ j ′l (μ) −Dsμy′
l (μ) Dλ j ′l (λ)

jl(μ(1 + h)) yl(μ(1 + h)) 0

⎞

⎠ . (52)

Equation (52) has a nontrivial solution only for those values of (λl,i , μl,i ) satisfying
(51) and det Ml = 0, and those values are the eigenvalues of the system. These
eigenvalues will then determine a set of eigenfunctions fl,i (r).

Performing direct computation using the parameters in the Appendix, we find that
the two lowest eigenvalues are given by

λ0,1 = 0.141, λ1,1 = 0.659. (53)

Note that the second mode decays much more quickly than the first. A plot of f0,1(r)
is shown in Fig. 16. Note that due to the large discrepancy between D and Ds, the
leading-order eigenfunction approximates a no-flux condition at r = 1.

From standard Sturm-Liouville theory, the full solution may be written as

C(r , θ, t) =
∞∑

l=0

∞∑

i=1

γl,i exp
(
−Dλ2l,i t

)
Pl(cos θ) fl,i (r), (54a)

where fl,i (r) is given by (50c) with (λ, μ) replaced by (λl,i , μl,i ), and the γl,i are
determined by the initial condition. As this is a δ-function, the computation is straight-
forward, yielding

γl,i = Dd jl(λl,i (1 − Ri))

||Pl(cos θ)||2|| fl,i (r)||2 . (54b)
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Fig. 16 Plot of first
eigenfunction f0,1(r) versus r .
Note that it is almost identically
constant throughout the eyeball

where we have used (50c). The θ normalization factor is easily found to be (Bell 1968)

||Pl(cos θ)||2 = 2

2l + 1
. (55)

To calculate the r normalization factor, we begin by noting that any solution y of
the spherical Bessel operator with parameters (l, λ) satisfies

dQ

dr
= 2λ2r2y2, (56a)

Q(r , y, λ) = r
(
r y′ + y

2

)2 + λ2r3y2 −
(
l + 1

2

)2

r2y2. (56b)

The normalization factor we want is given by

|| fl,i (r)||2 =
∫ 1

0
r2 f<(r)2 dr +

∫ 1+h

1
r2 f>(r)2 dr

= 1

2λ2
[
Q(r , f<, λl,i )

]1
0 + 1

2μ2

[
Q(r , f>,μl,i )

]1+h
1 , (57)

where we have used the fact that f> satisfies the spherical Bessel operator with param-
eterμ. Note that the integral must be broken up into two pieces due to the discontinuity
in the diffusion coefficient.

By the definition of Q in (56b) we have that Q(0, f<, λ) = 0, and by satisfying
(48) we see that only the derivative terms will remain in Q(1+h, f>,μl,i ). The terms
at r = 1 may be simplified somewhat by using the required matching and continuity
conditions, as well as (51). After working through much tedious algebra, the final
expression is

|| fl,i (r)||2 = 1

2μ2
l,i

{[(Ds

D − 1

)
( f ′

>)2 −
( D
Ds

− 1

)
l(l + 1) f 2l

]

r=1
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Fig. 17 Plot of C(r , θ, t)/Dd in cross section through origin and z-axis with repeated doses given at
ti /τ = 8i, τ = 1/D

+(1 + h)3[ f ′
l (1 + h)]2

}
. (58)

Note that if D were equal to Ds, then the first bracketed term would vanish and we
would obtain only boundary terms, which is more standard for a Sturm-Liouville
problem.

With the geometry in Fig. 12, the target area has (r , θ) = (1, θ∗). Therefore, upon
substituting (55) into (54) at those coordinates, we obtain

C(1, θ∗, t) =
∞∑

l=0

∞∑

i=1

(2l + 1)Dd jl(λl,i (1 − Ri)) jl(λl,i ) exp(−Dλ2l,i t)Pl(cos θ∗)
2|| fl,i (r)||2 .

(59)

For multiple injections we can use linearity and the Markovian property to find the
solution:

C(1, θ∗, t) =
N∑

i=0

H(t − ti )C(1, θ∗, t − ti ), (60)

where C on the right-hand side is given by (59). Equation (60) is analogous to (45).
We present computational results in Fig. 17 using the parameters in the Appendix

andwith injections given at every 8 units of time τ = 1/D. The results contain l-modes
up to 100 and eigenvalues up to λ = 21. (Note from (59) that the contribution from
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Fig. 18 Plot of C(r , θ, t)/Dd at t/τ = 0.001, 0.01, 0.1, 1.0, τ = 1/D in cross section through origin and
z-axis. (The dosage Dd is delivered at t = 0 at a point with r = (1 − Ri ), Ri = 0.9, θ = 0)

these modes will be incredibly tiny.) We plot consecutive snapshots of the solution for
times t < 22τ . Since there is no polar angle dependence, we plot C in a cross section
of a plane through the origin and the z-axis; the domain is thus a circle x2 + y2 < 1.
Injections are delivered as described in (49).

We cannot accurately plot the solution right after the injection as it has a sharp peak
and,with finite number ofmodes included, oscillates a lot; however it can be accurately
plotted after some delay after the injection, as high modes become exponentially
suppressed. Such near-injection plots are shown in Fig. 18.

The volume-averaged concentration of the lowest mode of the solution right after a
unit dose injection is 0.2058. This is roughly the concentration which survives a few
units of time after the injection, as this mode decays slowly while other modes are
exponentially suppressed after that amount of time. If another injection is delivered
before the lowest mode leaks, it will roughly double the concentration surviving after
higher modes become suppressed.

As discussed above, when t is near ti , one must compute many modes of (59) to
accurately represent the solution (which will have a sharp peak at the injection site).

123



Mathematical models for the effect of anti-vascular… 1423

However when t − ti is not small, the contribution from modes with large eigenvalues
is strongly suppressed.

In particular, without subsequent injections the solution approaches C = 0 (as
imposed by the outer Dirichlet condition) at an exponential rate, with the slowest
decaying mode corresponding to the lowest eigenvalue. The discrepancy in the sizes
of the eigenvalues in (53) indicates that the mode with l = 0, i = 1 dominates.
Recalling that

j0(r) = sin r

r
, y0(r) = −cos r

r
,

we may rewrite f0 as

f0(r) =
{

sin(λr)
λr , 0 ≤ r ≤ 1,

− sin λ
sin(μh)

sin(μ(r−(1+h)))
λr , 1 ≤ r ≤ 1 + h,

(61)

where

D(λ cot λ − 1) = −Ds(μ cotμh + 1). (62)

Equation (62) is the analog of taking det M0 = 0 in (52).
Substituting (61) into the leading-order term (l = 0, i = 1) of (59) and (58), we

have

C(1, θ∗, t) ∼ Dd sin λ0,1(1 − Ri)) sin(λ0,1) exp(−Dλ20,1t)

2λ20,1(1 − Ri)|| f0,1(r)||2
, (63a)

|| f0,1(r)||2 = sin2 λ0,1

2μ2
0,1λ

2
0,1

{(Ds

D − 1

)
[μ0,1 cot(μ0,1h) + 1]2 + (1 + h)μ2

0,1

sin2(μ0,1h)

}
.

(63b)

However, we reiterate that this expression is valid only for times sufficiently removed
from times of injections.

5 Conclusions and further research

5.1 Discussion

Anti-VEGF treatments have shown great promise for treatment and symptom relief for
patients with nAMD; however not all patients respond uniformly. Understanding the
body’s response, based on well-established clinical measures (e.g., BCVA and CSFT)
early in the course of treatment, would allow practitioners to optimize and adjust
the treatment regimen. The goal of this manuscript was to test various mathematical
approaches in modeling the evolution of these clinical measurements with medication
delivered at regular intervals and to seek explicit analytical solutions of those models.
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Because of this goal, various assumptions and simplifications were made. We worked
with a continuous ODE model that is similar in nature to the model provided in the
literature by Mulyukov et al. (2018); however, it is simplistic enough to obtain an
explicit solution. We also considered a simplified discrete analog of the ODE model
that focuses more on the discrete nature of the treatment regime, and thus is more
applicable to specific patient data. Lastly, we considered a spatial component to the
model which effectively models the diffusion of the medication within the eye. We
discuss the effectiveness of each model below.

Using the ODE model presented by Mulyukov et al. (2018) as a starting point,
we sought to develop a model for which a tractable analytical solution is possible,
while also taking into account the patient-specific treatment regime. We successfully
derived a model with analytical solutions using identical dynamics for the acuity level
over time; however, we took a different approach in modeling the concentration and
effectiveness of the drug. Concentration of the drug ismodeled as an exponential decay
with monthly increases based on the treatment schedule, thus resulting in a series of
Heaviside functions. We simplify our model greatly by using Heaviside functions
for tolerance and maximum effectiveness, which allows us to derive an analytical
solution for BCVA over time. The periodic nature of the treatment regime dictates a
series solution and allows us to personalize the model to patient data.

Using our explicit solution, we can analyze the parameter dependence more easily
and perform a sensitivity analysis on important model parameters. We performed a
preliminary study on the output of the model as key parameters were varied. The
maximum effectiveness parameter (M∞) controls the rate of improvement due to the
initial treatment. The dosage parameter (D) controls the levels of drug concentration,
which usually remain well above the threshold for maximum effectiveness, which is
characteristic of themodel inMulyukov et al. (2018). In short, our results show that the
model acts as it should, under the fundamental assumption that acuity increases with
treatment of anti-VEGF. Furthermore, our model can be viewed as a simplified base
model.We sacrifice smoothness for simplicity, but different functions for the tolerance
and maximum effectiveness can be exchanged to test the efficiency and accuracy of
differentmodels. Nevertheless, wewere able to predict the outcome of theBCVA score
for patients over time. In Sect. 2.3, we replace the concentration function with first-
order elimination pharmacokinetics to simulate the results of Mulyukov et al. (2018).
Overall, our model can be a manipulated to test acuity output based on different
reaction kinetics, but analytical solutions will be sacrificed.

We adapted the ODEmodel into a discrete system so that we may better predict the
outcome of the BCVA score for patients’ monthly visits. Because the data is in time
series form without information between visits, a discrete model may better describe
the acuity at these distinct time points. A full solution to themodel is possible assuming
regular dosing. Our main goal for this model was to fit the parameters κin and κout to
the patient data since these two parameters dictate the acuity at the end of the treatment
regime. We successfully accomplished this task using a global optimization technique
in Matlab.

The model effectively captures the general trend of acuity for both responsive and
non-responsive patients. Moreover, by examining the single parameter a∗ (which is a
combination of the fit parameters κin and κout), we were able to establish predictions
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for when the treatment regime would be successful. Although the model is simple
and does well to describe the progression of acuity with time, a better definition of
responsiveness or a more robust optimization technique may be needed to gain further
insight into how these parameters describe patients’ overall responsiveness to the
treatment.

Finally, we study a continuum PDE model, which takes into account that the con-
centration of medicine in the vitreous humor is not uniform; medication is delivered
to a small volume around the injection site and has to spread to the boundary of the
vitreous humor and to the other compartments. An approach that considers the spatial
aspects of the biology clearly offers advantages over compartmental models. It has
to be noted that the PDE model uses an idealized geometry: the vitreous humor is
taken to be spherical, with other compartments modeled by an outer layer with lower
diffusion coefficient, followed by a sink further out. In addition, we treat diffusion as
the only transport mechanism.

Nevertheless, this setting allows for an analytic solution, whichmeans, in particular,
that computational complexity is not dramatically increased compared to ODE multi-
chambermodels.Moreover,we do not require sophisticatedPDE solvers, as are needed
for the more complicatedmodels in Zhang et al. (2018), which use additional transport
mechanisms and clearance parameters. Another advantage of an analytic solution is
that it provides a clear explanation for the exponential decay observed in Gadkar et al.
(2015) and Hutton-Smith et al. (2017) corresponding to the lowest eigenvalue of a
Laplace operator.

Our solutions provide a basic framework in which the effects of anti-VEGF therapy
can be understood in terms of biological quantities and parameters. However, these
models can be extended and further studied in several ways, as outlined below.

5.2 Future work

There are many ways in which our work can be extended. First, we note that one could
replace T with M as the evolving variable in the ODE and PDE models, just as it was
in the discrete model.

Though the infinite-extent diffusion problem had a simple solution, the more realis-
tic finite-extent problem had a very complicated separation-of-variables solution that
did not converge well near the injection times. However, the main effect of including
the diffusion was to reduce the dosage and delay its maximum (compare the small-
time behaviors of Figs. 3 and 13). But these effects can also be more simply modeled
by adding decay and delay terms to the concentration. As this just adds a shift to the
forcing in the equation for a, such terms should be easy to handle mathematically.

In the paper by Mulyukov et al. (2018), the authors say that their parameters could
depend on the initial condition a0 to some power. This argues for using some sort of
nonlinear model for a.

If further work with patient data demonstrates deficiencies with the model, it can
be modified to introduce additional degrees of freedom. For instance, a second slope
parameter (to be fit) could be added to (25).
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Asmentioned in the introduction, anotherway todiagnose the progressionof nAMD
is to measure the CSFT s. As a first step, one could postulate a linear or logistic growth
model for s which is then inhibited by C through the effectiveness factor E . This
equation would then replace (2), but the other equations for M and C would remain
unaffected.
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Appendix

Parameter values from the literature are listed in Table 2, along with dimensionless
parameters computed from our definitions. Here the subscripts “A” and “B” refer to
two different medications with different dosage recommendations.

The value of kC was calculated using the quoted value of a half-life of 9 days in
Mulyukov et al. (2018). The values of κ were calculated using a time of 28 days
between visits. The value of Rl was calculated as a rough average of the measured

Table 2 Parameter values

Dimensional parameters Dimensionless parameters
Parameter Value References Parameter Value

C∗ (mg/mL) 2.1 × 10−3 Mulyukov et al. (2018) Dd 487

D̃A (mg) 3 or 6 DA 357 or 714

D̃B (mg) 2 DB 238

D̃ (mm2/s) 2 × 10−4 Rattanakijsuntorn et al. (2018) D 1.44

Ds 1.44 × 10−3

kC (day−1) 7.70 × 10−2 Mulyukov et al. (2018) h 0.15

k̃∞ (day−1) 4.95 × 10−2 Mulyukov et al. (2018) k∞ 6.43 × 10−1

Re (mm) 12.5 Bekerman et al. (2014) Rd 1.39

R̃i (mm) 4–6 Frenkel et al. (2010) Ri 0.32

R̃l (mm) 6 Bekerman et al. (2014) Rl 0.48

R̃p (mm) 3.0–3.5 Frenkel et al. (2010) Rp 0.24

V (mL) 4 Mulyukov et al. (2018) κC 1.16 × 10−1

κ∞ 0.25

cos θ∗ −0.738
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values in Bergmanson and Martinez (2017). The values of Ri and Ri were chosen to
maximize Rd. The value of Dd was calculating using the treatment B dosage. The
value of V is that for the vitreous fluid, not the entire eyeball.
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