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Section 1: Introduction
Certain ceramic products are formed through extrusion processes, where a slurry is

forced through small openings to form such products as filters. A typical device is shown
in Figure 1.1. At the top is a large tank. The slurry is forced through the tank into an
extrusion chamber, and then out through slots to form the finished product.
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Figure 1.1. Schematic of extrusion device. The flow cell of interest is magnified in Figure
1.2.

The slurry may be thought of as a mixture of clay (or other polymers), water, and
other binders. There are many ways to model this mixture, some of which will be discussed
in this report. For instance, the slurry can be modeled as a non-Newtonian fluid (see section
3), a two-phase flow with liquid and solids, or a viscoelastic fluid. One can also model the
mixture as an elongated particle suspension in water, where changes in the orientation of
the particles could affect the flow.

After the extrusion process is complete, one finds that ‘dead zones’ of dry paste
accumulate in two areas. Most prominently, they occur at the lower corners of the tank
(see Figures 1.1 and 1.2). They also occur on the floor of the extrusion chamber near the
slots, both near and away from the walls. Since we will consider wall effects in the tank,
for the extrusion chamber we consider only flow cells sufficiently far away from the walls.
Then we may exploit the periodic nature of the device and consider only a single flow cell,
as illustrated in Figure 1.3.

The aim of this project is to determine the formation mechanisms of these dead zones,
and see how they affect the overall flow.
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Figure 1.2. Schematic of half of the tank.
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Figure 1.3. Flow cell in extrusion chamber.
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Section 2: Mathematical Model

x̃

ỹ

∂ũy/∂x̃ = 0

ỹ = h̃d(x̃)

ũx = 0ũx = 0

ũx = 0, ũy = 0

ũx = 0, ũy = −uc

Li

Lo

H

Figure 2.1. Geometry under consideration.

We denote the flow velocity as (ũx, ũy). We see from the similarities between Figure
1.2 and Figure 1.3 that we may use the same geometry for both regions; only the boundary
condition on ũy at the left boundary will change. We assume a two-dimensional geometry,
with the origin in (x̃, ỹ) space at the intersection of the left boundary and the floor (see
Figure 2.1). The region has width Li (where the subscript “i” refers to “input”) and the
part of the passage to the next region has width Lo (where the subscript “o” refers to
“output”). The region has height H above the floor. The dead zone is described as the
region under the curve ỹ = h̃d(x̃).

Because of the symmetries, we obtain

ũx(0, ỹ) = ũx(Li, ỹ) = ũy(0, ỹ) = 0,
∂ũy
∂x̃

(Li, ỹ) = 0. (2.1)

In addition, because of the floor and channel conditions, we have the following:

ũx(x̃, 0) = ũy(x̃, 0) = 0; ũx(Li − Lo, ỹ) = ũy(Li − Lo, ỹ) = 0, ỹ < 0. (2.2)
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At the top of the cell, a constant vertical flow −uc is imposed, so we have that

ũx(x̃, H) = 0, ũy(x̃, H) = −uc. (2.3)

In this geometry, conservation of mass becomes

∂ũx
∂x̃

+
∂ũy
∂ỹ

= 0. (2.4)

At first glance, we may wish to exploit the fact that Li � H to create a lubrication-type
problem. However, in the flow cell, x̃ = 0 and x̃ = L are lines of symmetry, so the solution
in the region away from ỹ = 0 is just plug flow with ũx = 0, ũy = −uc. Similarly, it will
be shown that in the tank, the flow far from ỹ = 0 will also be plug flow.

Therefore, instead we scale both x̃ and ỹ with Li:

x =
x̃

Li
, y =

ỹ

Li
, ux(x, y) =

ũx(x̃, ỹ)
uc

, uy(x, y) =
ũy(x̃, ỹ)
uc

. (2.5)

Substituting these results into (2.1)–(2.3), we obtain the following conditions on ux:

ux(0, y) = ux(1, y) = ux(x, 0) = u(x,∞) = 0, ux(1− `, y) = 0, y < 0; ` =
Lo

Li
,

(2.6)
where we have exploited the fact that H � Li to model the top of the chamber as y →∞.
In other words, we are considering y to be an “inner variable.”

In addition, we obtain the following conditions on uy:

uy(x,∞) = −1,
∂uy
∂x

(1, y) = uy(x, 0) = 0; uy(1− `, y) = 0, y < 0, (2.7a)

uy(0, y) = 0. (2.7b)

Lastly, conservation of mass remains balanced:

∂ux
∂x

+
∂uy
∂y

= 0. (2.8)

With these scalings, the Reynolds number is defined by

Re =
ρucLi

ηc
, (2.9)

where ηc is a characteristic viscosity of the fluid and ρ is the density. Since the Reynolds
number is small (see Appendix), we may neglect the inertial terms in the Navier-Stokes
equations. Since we may wish to treat the fluid as non-Newtonian, we write conservation
of linear momentum in terms of the stress tensor T̃ , which has elements τ̃ :

− ∂p̃

∂x̃
+
∂τ̃xx
∂x̃

+
∂τ̃yx
∂ỹ

= 0, (2.10a)

−∂p̃
∂ỹ

+
∂τ̃xy
∂x̃

+
∂τ̃yy
∂ỹ

= 0, (2.10b)
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where p̃ is the pressure.
If we denote the strain tensor by Ẽ, we know that for Newtonian fluids,

T̃ = ηcẼ, (2.11)

where ηc is the (constant) viscosity. (Here the strain tensor is defined without the coefficient
1/2.) This motivates the scalings

E(x, y) =
LiẼ(x̃, ỹ)

uc
, T (x, y) =

LiT̃ (x̃, ỹ)
ηcuc

, p(x, y) =
Lip̃(x̃, ỹ)
ηcuc

. (2.12)

Substituting (2.5) and (2.12) into (2.10) and (2.11), we retain the same balances:

− ∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

= 0, (2.13a)

−∂p
∂y

+
∂τxy
∂x

+
∂τyy
∂y

= 0, (2.13b)

T = E. (2.14)
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Section 3: Bingham Fluid
As a first approximation we treat the slurry as a Bingham fluid. (Unless otherwise

noted, the analysis in this section is adapted from Smyrnaios and Tsamopoulos, 2001.)
In a Bingham fluid, we replace (2.11) by

T̃ =
(
ηc +

τc

|Ẽ|

)
Ẽ, |T̃ | > τc, (3.1a)

Ẽ = O, |T̃ | < τc, (3.1b)

where τc is the yield stress and for any tensor A,

|A| =
√
A : A

2
. (3.2)

Substituting (2.12) into (3.1), we obtain

ηcLi

uc
T =

(
ηc +

τcuc

Li|E|

)
Li

uc
E,

ηcLi

uc
|T | > τc

T =
(

1 +
Bn
|E|

)
E, |T | > Bn, Bn =

τcLi

ucηc
. (3.3a)

E = O, |T | < Bn. (3.3b)

Note that in this case the boundary hd(x) of the dead zone is a free no-slip boundary:

|T |(x, hd(x)) = Bn, ux(x, hd(x)) = uy(x, hd(x)) = 0. (3.4)

For completeness, we write the modulus of the strain tensor in Cartesian coordinates:

|E| =

{
2

[(
∂ux
∂x

)2

+
(
∂uy
∂y

)2
]

+
(
∂ux
∂y

+
∂uy
∂x

)2
}1/2

. (3.5)

We note that (3.3) has a jump discontinuity in T at |E| = 0. This may be reduced to
a jump in the derivative with the following biviscosity model (Jay et al., 2002):

T̃ =
(
ηc +

τc

|Ẽ|

)
Ẽ, |Ẽ| > Ec, (3.6a)

T̃ =
(
ηc +

τc

|Ẽc|

)
Ẽ, |Ẽ| < Ec. (3.6b)

To eliminate any jumps in the form of T̃ (and hence the free-boundary problem), one may
also consider the following exponential approximation (Papanastasiou, 1987):

T̃ =

[
ηc +

|T̃ |(1− e−β|Ẽ|)
|Ẽ|

]
Ẽ, (3.7)

where β > 0 is a given constant.
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Section 4: The Tank
The situation in the tank as been modelled and simulated numerically using the bivis-

cosity model by Jay et al., 2002, and using the exponential model by Adbali et al. (1992).
In this section we attempt to describe their results numerically and analytically, as well as
to extend them in special cases.

P1

P2

Figure 4.1. Schematic of separating streamline and recirculating Moffatt eddy for Bn = 0.

We begin by examining the limit where Bn→ 0, where the Bingham flow reduces to
a perturbation of a Newtonian one. Since the Reynolds number is small, we have Stokes
flow.

To visualize this flow, we performed a numerical simulation using a Fortran finite
element code. It used continuous piecewise P1 elements for the velocity and discountinous
piecewise P0 elements for the pressure (with spurous modes filtered) with a Union-Jack
grid (see Figure 4.2). We then constructed the velocity profiles (see Figures 4.2–4.4).

We note from the graphs that the velocity is quite small in the corners. For Stokes
flow into a corner, we see that while the bulk of the flow squeezes through the nozzle, there
will be a recirculation region near the corner. These Moffatt eddies (Moffatt, 1964) will
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Figure 4.2. Left: grid used for simulation. Right: Velocity profile.
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Figure 4.3. 2-D graph of velocity component in y-direction.

surround stationary points. However they can be quite small, which is why they may not
have shown up in the simulation.

The proof of the eddy existence is as follows. Since we are now considering Stokes
flow, we may use a stream function ψ to construct the flow. We expand around the corner
using polar coordinates with θ = 0 taken at the centerline of the corner (see Figure 4.4).
Note then that the problem is symmetric about θ = 0 and the wall corresponds to θ = π/4.
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Figure 4.4. 3-D graph of velocity component in y-direction.

line of 
symmetry
θ = 0

α

Figure 4.4. Tank flow for low Bingham number (magnified view near corner). The shaded
regions are where the fluid is plastic, but moving. The dead zones are in black.

From Leal (1992), equations (4-94) and (4-124), we have

∇4ψ = 0, ur =
1
r

∂ψ

∂θ
, uθ = −∂ψ

∂r
, (4.1)

and upon rearrangement of equation (4-119) it can be shown that a typical eigenfunction
for the problem is given by

ψ = rλ [Ac cosλθ +As sinλθ +Bc cos(λ− 2)θ +Bs sin(λ− 2)θ] , λ > 1, λ 6= 2. (4.2)
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To obtain the leading-order behavior as r → 0, we wish to consider the smallest possible
λ.

From our geometry, we have that the problem is symmetric about θ = 0 with

ur(r, θ) = −ur(r,−θ)
∂ψ

∂θ
(r,−θ) = −∂ψ

∂θ
(r,−θ), (4.3)

which forces As = Bs = 0. Note that since the biharmonic equation is fourth order, we
cannot use just the more standard boundary condition

ur(r, 0) = 0,

since imposing this would result in an equation for As in terms of Bs. Due to this symmetry
we may restrict our attention to the wedge 0 ≤ θ ≤ π/4.

From our geometry we also have that

∂ψ

∂r
(r, π/4) =

∂ψ

∂θ
(r, π/4) = 0. (4.4)

For reasons that will become clear later, we set θ = α at the wall, then substitute our
exact value α = π/4 at the end. Hence we have

∂ψ

∂r
(r, α) = λrλ−1 [Ac cos (λα) +Bc cos ((λ− 2)α)] = 0

∂ψ

∂θ
(r, α) = rλ [−Acλ sin (λα)−Bc(λ− 2) sin ((λ− 2)α)] = 0

cos ((λ− 2)α)λ sin (λα) [cos (λα)]−1 − (λ− 2) sin ((λ− 2)α) = 0,

where we have set the bracketed quantities in the first two equations equal to zero and set
Bc = 1 without loss of generality. Continuing to simplify, we obtain

(λ− 1) cos ((λ− 2)α) sin (λα)− (λ− 1) sin ((λ− 2)α) cos (λα)
= − cos ((λ− 2)α) sin (λα)− sin ((λ− 2)α) cos (λα)

(λ− 1) sin(2α) = − sin(2(λ− 1)α), (4.5a)

sin
(
π(λ− 1)

2

)
= 1− λ. (4.5b)

Clearly there is no real solution of (4.5b) for λ > 2. For 1 < λ < 2, we see that the
left-hand side is positive while the right-hand side is negative. Hence there are no real
solutions at all. Complex solutions lead to an infinite sequence of closed streamline eddies
that accumulate at the corner (Leal, 1992, p. 158).
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Near the eddy, we expect the flow to be in nearly solid body rotation, so we would
have

uθ = 2Ar ψ = −Ar2 ur = 0, (4.6)

where we have used the fact that we do not expect ur to depend on θ. To examine the
form of the stresses, we note from Bird et al. (1960), p. 89, that the components of the
normalized Newtonian stress tensor in cylindrical coordinates are the following:

τrr = 2
∂ur
∂r

= 2
∂

∂r

(
1
r

∂ψ

∂θ

)
, (4.7a)

τθθ =
2
r

(
∂uθ
∂θ

+ ur

)
=

2
r

(
− ∂2ψ

∂r∂θ
+

1
r

∂ψ

∂θ

)
, (4.7b)

τrθ = r
∂

∂r

(uθ
r

)
+

1
r

∂ur
∂θ

= r
∂

∂r

(
−1
r

∂ψ

∂r

)
+

1
r2
∂2ψ

∂θ2
, (4.7c)

where we have flipped the sign convention for agreement. All of these terms vanish when
the velocities are described by (4.6). Hence, we see that there is no stress in this region,
and once we take Bn 6= 0, this is a place where a dead zone can form.

We attempted to see how the size of the dead zone varied for small Bn near these
stationary points. Unfortunately, the analysis is difficult because the entire solid-rotation
zone would become solid for any Bn due to its lack of strain. Of course, the flow lines
near the stationary point are not truly circular. By considering the problem of a rotating
perturbed cylinder of radius R(θ) = 1+ε sin θ, ε� 1, we may be able to obtain a perturbed
strain field that would show the dependence of the growth rate on Bn. We were unable to
complete the analysis before the end of the workshop.

In this flow, there are actually an infinite number of eddies which approach the corner
as an accumulation point (Leal, 1992, p. 158). Therefore, the corner will be stress-free as
well and a dead zone may form there.

separating 
streamline

P1

θ0 y

Figure 4.5. Flow near P1. The figure for P2 is the mirror image, with x replacing y.

We next consider the flow near the stagnation points P1 and P2 where the separating
streamlines connect to the wall (see Figure 4.5). From Batchelor (1967), p. 226,

ψ = Ar3 sin2 θ sin(θ0 − θ), (4.8)

where θ0 is the angle at which the streamline hits the wall. (It can be shown that (4.8) is a
special case of (4.2) with λ = 3.) Since ψ = O(r3), the velocities are O(r2) and T = O(r)
as r → 0. Therefore, this is also a region which should become plastic when Bn 6= 0. In
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particular, the Bingham term (3.3a) will come into play when |T | > Bn, so the radius of
the dead zone must grow like Bn.

Thus we expect that as Bn → 0, but Bn 6= 0, there will be small plastic zones about
the stagnation points and the eddy centers. They are different in that we expect the plastic
zones about the stagnation points to be dead zones where the plastic is stationary, while
the zones about the eddy centers may revolve in solid body rotation. As Bn increases, the
sizes of the dead zones increases, and the speed of the rotation of the eddy zones slows.
Eventually they will merge in a quick transition, and the entire region under the separating
streamline becomes a dead zone. This reasoning is consistent with the simulations in Jay
et al., 2002.

dead zone

line of 
symmetry

α
α

θ = 0

y

Figure 4.6. Stream function localization near dead zone.

We next wish to examine the angle of intersection of the dead zone with the wall. The
dead zone forms a new rigid surface that behaves like another wall, so we may use our
corner analysis of before, as shown in Figure 4.6. In particular, from (4.2) and (4.7) we
see that the stresses are O(rλ−2). Therefore, if λ > 2, there would be no strain, and hence
from the Bingham law we would expect the dead zone to continue to grow. Therefore, at
steady state we expect λ ≤ 2.

Rewriting (4.5a), we obtain

sin(2α)
2α

= − sin(2(λ− 1)α)
2(λ− 1)α

. (4.9)

Therefore, to obtain λ for any α, we simply compute A = sin(2α)/2α for that value of α,
and then find the value of α∗ = (λ − 1)α for which the right-hand side equals −A. This
process is illustrated in Figure 4.7, where we see that for α = 1.43, A = 0.1. Then for the
same function to equal −0.1, α∗ = 1.75 > α, so λ > 2. However, we see from the graph
that α∗ > α for all α < π/2.

But we know that there is a finite strain against a flat wall, which corresponds to
λ = 2. This can be verified by taking the limit that λ→ 2 in (4.2), which results in

ψ = r2(Ac cos 2θ +Bs), (4.10)

where we have used our symmetry condition. Since this is a regular limit, we may take
the same limit in (4.5a), which yields

sin(2α) = − sin(2α),
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α

Figure 4.7. Plot of (sin 2α)/2α vs. α (general solution procedure). Solid line corresponds
to angles of interest.

which implies that α = π/2, the expression for a flat wall. Hence we see that the dead
zone must approach the wall quadratically in x. Since Figure 4.6 may also be flipped
horizontally, we see that we arrive at the same conclusion for the behavior of the dead
zone near the floor.

α

eddies

solutions with λ > 2

Figure 4.8. Plot of (sin 2α)/2α vs. α (limiting value). Solid line corresponds to angles of
interest.

This analysis also indicates how we may eliminate dead zones. The dead zones form
because of eddies in the Stokes flow. These eddies occur when (4.9) does not have a real
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solution, which as shown in Figure 4.8, occurs when α is less than a minimum value, which
can be computed as (Acheson, 1990, p. 232)

2α∗ ≈ 146.3◦.

Therefore, creating a tank with a sloped edge with α greater than that value should
eliminate eddies and perhaps dead zones.

Figure 4.7. Tank flow for high Bingham number. The shaded regions are where the fluid
is plastic, but moving. The dead zone is in black.

Though the analysis above shows how dead zones form, in our system the Bingham
number is quite large (see Appendix). In this case, we see from (3.3) that unless the stress
is extremely high, the strain rate will be zero and the fluid will behave as a plastic. Thus
upstream there will be a small liquefied region near the walls where the stress is high, and
the rest of the flow will be plastic plug flow (see Figure 4.7).

This liquefied region will widen as you move toward the wall (though not to the extent
shown in Figure 4.7, which is not shown to scale). In the Lagrangian frame, fluid near
the centerline moves in plastic flow until it experiences enough stress that it liquefies, and
then continues to flow downward. The presence of the corners cause enough stress for the
entire fluid to liquefy near y = 0, but then as the flow moves down the extrusion channel,
the stress decreases and the flow becomes plastic again.
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Figure 4.8. Strain for Stokes flow through a constriction.

Note that in contrast to the dead zones, the plastic regions in the core would not be
seen after the extrusion process had ended, since that fluid would have been extruded.

The diagram in Figure 4.7 is consistent with the simulated strain diagram for Stokes
flow, which is shown in Figure 4.8. Note the black contours surrounding areas of low strain,
which would then correspond to the plastic plugs and dead zones.
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Section 5: A Model Free-Boundary Problem

r = 1

r = R

uθ = 1

r = rp

Figure 5.1. Couette flow of a Bingham fluid. The shaded regions are where the fluid is
plastic, but moving.

In order to better understand what happens when the rotating plastic region nears
the dead zone or wall, we wish to examine a simpler model problem. Consider normalized
Couette flow of a Bingham fluid in the region 1 ≤ r ≤ R between two cylinders, as shown in
Figure 5.1. Here the outer cylinder is held fixed. In particular, we have that the boundary
conditions are

ur(1, θ) = ur(R, θ) = uθ(R, θ) = 0, uθ(1, θ) = 1. (5.1)

Hence we note that ur = 0 and uθ will be a decreasing function of r only. Hence from
(4.7) the only stress term that survives is the shear stress

r
d

dr

(uθ
r

)
. (5.2)

But in this unidirectional shear flow, we see from the polar analog of (3.5) that

|E| =
∣∣∣∣r ddr (uθr )

∣∣∣∣ = ±E, (5.3)

depending on the sign of E. To determine the sign, we solve the problem with Bn = 0.
Motivated by equation (7-15) in Leal (1992), we note that the variance of the pressure in
the θ-direction is small, so we have, using Bird et al. (1960), p. 85 to get the momentum
balance in the liquefied region:

1
r2

d

dr

(
r2τrθ

)
= 0



Abbott et al. 18

τrθ(r) = −2A
r2
, (5.4a)

d

dr

(uθ
r

)
= −2A

r3

uθ
r

=
A

r2
+B

uθ(r) =
A

r
+Br. (5.4b)

Substituting (5.4b) into the boundary conditions in (5.1), we obtain the following:

uθ(1) = A+B = 1

uθ(R) =
A

R
+BR = 0

=⇒ A =
R2

R2 − 1
> 0,

which ensures that τrθ < 0 from (5.4a).
Therefore, |E| = −E in the Bingham case and (3.3) becomes

τrθ = r
d

dr

(uθ
r

)
− Bn, τrθ < −Bn, (5.5a)

d

dr

(uθ
r

)
= 0, τrθ > −Bn. (5.5b)

Hence we have to substitute (5.5a) into (5.4a) in the liquefied region:

d

dr

(uθ
r

)
− Bn

r
= −2A

r3

uθ
r
− Bn log r =

A

r2
+B

uθ(r) =
A

r
+Br + Bnr log r. (5.6)

From (5.4a) we see that |E| decreases as r increases. Hence the dead zone forms
against the outer wall, which is the opposite of the physical situation in the previous
section. This is because here an imposed force is causing the rigid body rotation in the
center, while in the previous section the eddy is being rotated by the fluid which surrounds
it, which may be slowing with increasing Bn. The participants are not aware of similar
modeling of this example with which to check the results.

Therefore, (5.6) must hold for 1 ≤ r ≤ rp, where the subscript “p” stands for “plastic”.
At r = rp, the following conditions hold:

uθ(rp, θ) = 0, τrθ(rp, θ) = −Bn. (5.7)

Substituting (5.6) and (5.4a) into (5.7) and the condition at r = 1, we have

τrθ(rp) = −2A
r2p

= −Bn
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uθ(1) = A+B = 1

uθ(r) =
Bnr2p

2

(
1
r
− r
)

+ r + Bnr log r. (5.8)

uθ(rp) =
Bnr2p

2

(
1
rp
− rp

)
+ rp + Bnrp log rp = 0

Bnrp(1− r2p + 2 log rp) = −2rp

Bn =
2

r2p − 1− log r2p
. (5.9)

A typical velocity profile is sketched in Figure 5.2. Note that the velocity is exactly zero
for r > rp.

uθ

r

Figure 5.2. uθ vs. r for Bn = 3 (rp = 1.62) and R = 3.

Equation (5.9), which is graphed in Figure 5.3, defines rp implicitly in terms of Bn.
Note that rp = R for some finite value of Bn, since as Bn→ 0,

Bn ∼ 2
r2p

rp ∼
√

2
Bn
→∞. (5.10)

In other words, since there is always some finite shear stress at the outer wall, the effect of
the Bingham flow will not be felt until Bn reaches some finite threshold. Also, as Bn→∞,
we let r2p = 1 + r1, r1 � 1, to obtain

Bn =
2

r1 − log(1 + r1)
∼ 2
r1 − (r1 − r21/2)

=
4
r21

=
4

(r2p − 1)2
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rp

Bn

Figure 5.3. rp vs. Bn.

r2p − 1 ∼ 2√
Bn

rp ∼

√
1 +

2√
Bn
∼ 1 +

1√
Bn

. (5.11)
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Section 6: The Flow Cell
We next consider the flow cell, where the wall on the left is replaced by a line of

symmetry. This is the only change, so the equations in section 2 hold with (2.7b) replaced
by

∂uy
∂x

(0, y) = 0. (6.1)

With this replacement, we no longer see eddies near the corner. In particular, since
ux(x, 0) = ux(0, y) = 0, we must have that

ux(x, y) ∼ Axy, (x, y)→ (0, 0), (6.2a)

for some constant A. Therefore, by (2.8) we must have that

uy(x, y) ∼ −Ay
2

2
, (x, y)→ (0, 0), (6.2b)

which satisfies (6.1). Due to the quadratic nature of these terms, we see that T = O(x) =
O(y) as these variables go to zero. Therefore, this is a region which should become plastic
when Bn 6= 0. In particular, the Bingham term (3.3a) will come into play when |T | > Bn,
so x, y, and hence the radius of the dead zone must grow like Bn.

We next wish to examine the angle of intersection of the dead zone with the boundaries.
Near the floor, the geometry is exactly the same as in the tank case, so we expect the dead
zone to attach tangent to the floor. However, near the line of symmetry, the analysis is
different.

dead zone
α

θ = 0 (line of symmetry) y

Figure 6.1. Stream function localization near dead zone.

We again try a solution of the form (4.2), but with the geometry as shown in Figure
6.1. Note that due to the symmetry of the problem, we may measure α in the clockwise
direction without affecting our solution. Note also that this makes the region of interest
α ∈ [π/2, π).

Hence we replace (4.4) with

∂ψ

∂r
(r, α) =

∂ψ

∂θ
(r, α) = 0. (6.3)
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Moreover, the problem is symmetric about θ = 0 with

ur(r, θ) = ur(r,−θ)
∂ψ

∂θ
(r, θ) =

∂ψ

∂θ
(r,−θ), (6.4)

which forces Ac = Bc = 0. Note that since the biharmonic equation is fourth order, we
cannot use just the more standard boundary condition

∂ur
∂θ

(r, 0) = 0,

since imposing this would result in an equation for Ac in terms of Bc.
We now wish to satisfy the conditions (6.3) at θ = α. Hence we have

∂ψ

∂r
(r, α) = λrλ−1 [As sin (λα) +Bs sin ((λ− 2)α)] = 0

∂ψ

∂θ
(r, α) = rλ [Asλ cos (λα) +Bs(λ− 2) cos ((λ− 2)α)] = 0

− sin ((λ− 2)α)λ cos (λα) [sin (λα)]−1 + (λ− 2) cos ((λ− 2)α) = 0,

where we have set the bracketed quantities in the first two equations equal to zero and set
Bs = 1 without loss of generality. Continuing to simplify, we obtain

−(λ− 1) sin ((λ− 2)α) cos (λα) + (λ− 1) cos ((λ− 2)α) sin (λα)
= sin ((λ− 2)α) cos (λα) + cos ((λ− 2)α) sin (λα)

(λ− 1) sin(2α) = sin(2(λ− 1)α)
sin(2α)

2α
=

sin(2(λ− 1)α)
2(λ− 1)α

. (6.5)

Note that (6.5) is of the form of (4.9), with the exception of a change of sign.

α

Figure 6.2. Plot of (sin 2α)/2α vs. α. Solid line corresponds to angles of interest.
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Hence there is a change of procedure in finding λ in the region of interest. To obtain
λ for any α, we simply compute A = sin(2α)/2α for that value of α, and then find the
adjacent value of α (call it α∗) for which the function also equals A. This process is
illustrated in Figure 6.2, where we see that for α = 1.75, A = −0.1. The adjacent crossing
is α∗ = 2.8 > α, so λ > 2, which corresponds to zero stress at the origin. However, if we
instead had started with α = 2.8, then α∗ = 1.75 < α, so λ < 2, which corresponds to
infinite stress at the origin.

As shown from the graph, the transition between these two cases occurs at the first
minimum of the function, which corresponds to α = 3π/4. Therefore, we expect this
angle to correspond to finite strain, especially since it matches experimental observations
of peaks in the dead zones near the cell floor.

However, this is not so easy to establish theoretically, for several reasons:

1. Since α = 3π/4 corresponds to the minimum of the function plotted in Figure 6.2, we
see that there does not exist an α∗ which will have the same value.

2. λ = 2 is a singular limit of (6.5), since this equation has a solution for all α with
λ = 2.

3. λ = 2 is a singular limit of (4.2).

Referencing Leal (1992), equation (4-118), we see that the appropriate eigenfunction
for λ = 2 subject to (6.4) is

ψ = r2(As sin 2θ +Bsθ). (6.6)

(Note there is a typographical error in Leal (1992), equation (4-119).)
We now wish to satisfy the conditions at θ = α. Hence we have

∂ψ

∂r
(r, α) = 2r [As sin (2α) +Bsα] = 0

∂ψ

∂θ
(r, α) = r2 [2As cos (2α) +Bs] = 0

sin (2α)− 2α cos (2α) = 0,

where we have set the bracketed quantities in the first two equations equal to zero and set
As = 1 without loss of generality. Continuing to simplify, we obtain

tan 2α = 2α. (6.7)

The first root of this equation is at α = 2.25. But this value is less than 3π/4, and hence
is in the region where the first λ from (4.2) is greater than 2. Therefore, it might be this
value at which the dead zone forms.

Now consider the case of high Bn. Because of this replacement, the slurry flows in
plastic plug flow for large y, and there is no liquid shear layer near x = 0. As the fluid
flows toward the floor, normal stresses begin to liquefy the fluid. In the region away from
x = 0, the behavior near the outlet is similar for both the tank and cell flows.
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Figure 6.3. Cell flow for high Bingham number. The shaded regions are where the fluid is
plastic, but moving. The dead zone is in black.
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Section 7: Fluids with a Yield Stress
in a Thin Geometry

In this section we explore flow in a thin geometry either with a free surface, or in a
channel or pipe with slowly varying walls. The original intent was that perhaps the thin
geometry could be used to get a simpler problem to see a dead zone near a contraction;
we shall see that this will not happen with any of the approaches for thin flows that we
located.

The challenge of using a Bingham or Hershel-Bulkley fluid in a thin geometry is that
one can obtain a contradiction in trying to solve for the moving plug where the stresses
are low. One would like to get a plug that is unyielded (as is required by the models), but
unless one does the expansions for lubrication theory carefully, one will get a plug that is
non-uniform due to extensional flow. The secret seems to be to keep the variations mild
enough to be able to correct them at the next order so that the plug can be made uniform.

The consistent lubrication theory was first developed by Balmforth and Craster (1999)
and was used to model lava flow down an inclined plane. (See also Griffiths (2000),
Balmforth et al. (2002), e.g., and the confined channel flow of Wei and Yuhi (2001).)
In Balmforth and Craster (1999), they develop a consistent perturbation approach to get
a uniform plug flow with a two-layer film consisting of a plug overlying a Poiseiulle flow
above a flat plate; the flow is driven down the inclined plane due to the pressure gradient
caused by gravity. The analysis allows one to do a consistent procedure without resorting
to a biviscous model.

Closer to the problem of interest in the workshop is the paper by Frigaard and Ryan
(2004) which studies the flow in a thin channel with slowly varying walls that are symmetric
about the mid-plane and that has the flow driven by a pressure gradient. We now describe
some of the salient aspects of that work.

line of symmetry
x̃

ỹ

L

D = O(δL)

d = O(δ2L)

ỹ = h̃p(x)

ỹ = ỹw(x)

Figure 7.1. Schematic of flow in Frigaard and Ryan (2004).

The flow in Frigaard and Ryan (2004) is bounded by walls with the periodic function
ỹ = ±ỹw(x); we will concentrate on the upper side with the plus sign (see Figure 7.1).
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Here x is the streamwise coordinate and y is the cross-stream coordinate. The average
half width is D, and the period of ỹw is L; the ratio δ = D/L� 1 is the small parameter.
The specific function used in Frigaard and Ryan (2004) was ỹw = D + d cos(2πx), with
h = O(δD); this small size of the oscillation in the wall, that is, d = O(δ2L), is crucial for
the consistent perturbation method to work. A major objective is to solve for the location
of the plug boundary; to leading order, a plug in the interval |y| ≤ hp(x) is found but has
a speed that depends on x, and so it will be called a pseudoplug in this case.

Now scaling in a way similar to the standard lubrication approach (i.e., as was done
in Frigaard and Ryan (2004), then one can solve the leading order problem for the axial
(streamwise) velocity ux:

ux(x, y) =
B

2hp
(yw − hp)2

[
1− (y − hp)2

(yw − hp)2

]
, y ∈ [hp, yw], (7.1a)

ux(x, y) =
B

2hp
(yw − hp)2, y ∈ [0, hp]. (7.1b)

Equation (7.1a) describes the Poiseiulle flow near the wall, while (7.1b) describes the
pseudoplug flow in the interior. It is called a pseudo-plug flow because the plug still has x
dependence because of extensional flow. There is no shear on the plug but even though it
is supposed to be unyielded and moving with constant speed, it is in fact deforming.

If d = O(δD) in ỹw, then one can show that the leading order expression simplifies to

ux ≈
Bhp

2

(
1
hp
− 1
)2

+O(δ).

This expression implies that the x-dependence from the wall is postponed to higher order,
and the leading order location for the boundary of the pseudoplug hp may now be made
constant. These two combine to give us a consistent leading order plug flow behavior,
but the spatial variation from extensional flow has simply been pushed off to the next
order. The consistent perturbation approach can determine, using matching or patching,
corrections to u(x) that eliminate the x-dependence for sufficiently mild wall variation
which maintaining unyielded plug flow and it generates corrections to the location of the
boundary of the plug. The corrected plug boundary is referred to as the true yield surface
yT(x).

The paper Frigaard and Ryan (2004) can also estimate when the plug will break as
the variation in the wall variation amplitude h increases. The critical amplitude dc is
still proportional to δ2L based on estimating the average stress across the plug, and using
the consistent theory as a basis for the estimate. Thus, this theory suggests that mild
contractions in the channel width cause a plug to break (as seen in numerical simulations
in the literature), but it will not be able to capture dead zones near a wall with the slowly
varying limitation.

This consistent procedure avoids the use of biviscous models for the fluid that have
been developed by Wilson (cf. Wilson, 1999). In Balmforth and Craster (1999) and
Frigaard and Ryan (2004), there is some concern about the limit taken when using the
biviscous model. We also note that the developing flow in a channel was also treated by
Wilson and coworkers (Wilson and Taylor, 1996; Khatib and Wilson, 2001).
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Section 8: Conclusions and Further Research
A key fact that the previous analysis missed is that the dead zone is not only stationary

—it is also dry. In much the same way that a sponge under pressure will extrude water,
the high pressure near the wall is extruding water from the slurry in that region. The
slurry is really a mix of solid and liquid. Near the wall, the water can move much more
easily than the solid, so it does, drying out the dead zone.

An accurate treatment of this phenomena would involve modeling the slurry as a
two-phase flow. Hence the equations of section 3 would have to be coupled to transport
equations in the solid.
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Appendix

For the individual flow cell, the parameters are as follows:

Li = 3 mm, Lo = 0.3 mm. (A.1)

These values were taken from a typical extrusion product brought to the workshop. The
exact depth of the extrusion chamber was unknown, but it seems to be on the order of an
inch or so. Therefore, to keep the ratio of 10:1 from (A.1), we chose

H = 3 cm. (A.2)

The product is extruded at a rate of roughly 1 inch/s, which we adapt to 3 cm/s. Assuming
the velocity is constant across input and output and keeping the flow rate constant, we
have

uc =
Lo

Li

(
3

cm
s

)
= 3

mm
s
. (A.3)

We did not discuss any particular parameters for the tank, except for the fact that it
has a contraction ratio of about 1:2 and H can still be taken large enough such that the
flow is well-developed in the region of interest.

For the material properties, we use the following:

τc = 2× 105 Pa, ηc = 250 Pa · s =⇒ Bn =
(2× 105 Pa)(3 mm)
(3 mm/s)(250 Pa · s)

= 800.

where the yield stress was given by the presenter and the viscosity value (chosen to get an
order-of-magnitude estimate) is for peanut butter from Wikipedia (2009).

For the density ρ, we use the following value for wet lump clay from SIMetric (2009):

ρ = 1602
kg
m3

, (A.4)

which makes the Reynolds number in the flow cell

Re =
(

1602
kg
m3

)
3 mm

250 kg/m · s

(
3

mm
s

)
= (9× 10−6m2)

(
6.4
m2

)
= 5.77× 10−5. (A.5)
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Nomenclature

Units are listed in terms of length (L), mass (M), or time (T ). If the same letter
appears both with and without tildes, the letter with a tilde has dimensions, while the
letter without a tilde is dimensionless. The equation number where a particular quantity
first appears is listed, if appropriate.

A: arbitrary constant, variously defined.
B: arbitrary constant, variously defined.

Bn: Bingham number (3.3a).
d: oscillation amplitude in Frigaard-Ryan model, L.
D: height parameter in Frigaard-Ryan model, L.

Ẽ(x̃, ỹ): strain tensor, T−1 (2.11).
H: height of tank, L.

h̃(x̃): free boundary, L.
L: length scale in x̃-direction, L.
`: dimensionless ratio Lo/Li (2.6).
P : point where separating streamline attaches to wall.

p̃(x̃, ỹ): pressure, M/LT 2 (2.10a).
T̃ (x̃, ỹ): stress tensor, M/LT 2.

R: outer radius in Couette flow problem (5.1).
r: local polar coordinate (4.1).

Re: Reynolds number (2.9).
ũ(x̃, ỹ): velocity, L/T .

x̃: distance along tank floor, L.
ỹ: height above tank floor, L.
α: wall angle.
β: parameter in exponential model (3.7), T .
δ: small parameter.
η: viscosity, M/LT (2.9).
θ: local angular coordinate (4.1).
λ: exponent in stream function (4.2).
ρ: density, M/L3 (2.9).

τ̃(x̃, ỹ): component of the stress tensor T̃ , M/LT 2 (2.10a).
ψ: stream function (4.1).

Other Notation

c: as a subscript, used to indicate a characteristic value (2.3) or cosine (4.2).
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d: as a subscript, used to indicate the dead zone.
i: as a subscript, used to indicate input.
o: as a subscript, used to indicate output.
p: as a subscript, used to indicate the Bingham free boundary (5.7).
r: as a subscript, used to indicate the radial direction (4.1).
s: as a subscript, used to indicate sine (4.2).

w: as a subscript, used to indicate the wall.
x: as a subscript, used to indicate the x-direction.
y: as a subscript, used to indicate the y-direction.
θ: as a subscript, used to indicate the angular direction (4.1).
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