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Section I: Introduction and Assumptions 

Filters are commonly used, both within industry and in an average household. One 
filter of considerable importance is the oil filter of a car. This should be replaced at regular 
intervals to prevent damage to the engine from particles being carried in with the oil. 

This model will simulate the flow of a liquid through a filter, and then introduce 
particles in the liquid to determine the amount of time until the flow through a filter is 
1/e times its initial flow, at which time we conclude that the filter should be changed. 

For simplification purposes, the following assumptions have been made: 

- we consider one pleat of the filter and assume it is rectangular in shape 
- we assume no flow through the walls W1, W2, and W3 (see figure 1) 
- there is symmetry about the x-axis 
- the fluid used is incompressible 
- the filter is stationary and will not tear 
- fluid flows through the filter in the vertical direction only 
- we assume symmetric flow about y = 2 and y = -2 (see figure 1). 
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Figure 1. Nondimensional schematic of two-dimensional filter. 



Section II: Nomenclature 

Aj: integration constants (j=l, 2, 3, 4, 5, 6). 
C(x, i): concentration of particles in filter at position i; and time i. Units mol/cm. 

Cc: concentration at which filter is completely clogged, units mol/cm. 
Cf: concentration of particles in fluid entering device, units mol/ cm 2 • 

Ci: concentration of fluid entering device, units mol/cm 2 • 

D: nondimensional function used when solving equations. 
h: one-half the width of filter pleat. Units cm. 
J: indexing variable. 

k(C): proportionality function (units g/(cm 2 -sec) used in permeability law, given 
in this model by 

(2.1) 

k0 : proportionality constant [units g-mol/(cm 3 -sec)) used in permeability law 
L: length of filter. Units cm. 
n: indexing variable. 

N: discretization parameter used in numerical scheme. 
A: given pressure of fluid upon leaving filter device. Units g/(cm-sec 2 ). 

Pi(x,iJ,§): pressure of fluid after passing through filter. Units g/(cm-sec 2 ). 

P0 : given pressure of fluid upon entering filter device. Units g/(cm-sec 2 ). 

p0 (x, i), t): pressure of fluid before passing through filter. Units g/(cm-sec 2 ). 

ij(t): flow density through filter [units g/(cm-sec)) at time i, defined as 

(2.2) 

Q: total flow (units g/cm) through filter when we dispose of it, defined as 

C) = (' q(t) df. 
Jo 

'(2.3) 

t: time. Units sec. 
ic(ko, Ci): quantity defined as that time at which ij(tz) = ij(O)/e. At le, we change 

the filter since the rate through it has decayed by the 1 / e factor. Units 
sec. 

T: fictional nondirnensionalization parameter. Units sec. 
U: 11ctional nondimcnsionalization parameter. Units cm/sec. 

11;(x, y, t): velocity in i direction of fluid after passing through filter. Units cm/sec. 
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u0 (x, ii, t): velocity in x direction of fluid before passing through filter. Units cm/sec. 
V: fictional nondimensionalization parameter. Units cm/sec. 

i\(x, fl, z, t): velocity in fl direction of fluid after passing through filter. Units cm/sec. 
vo(x, fl, z, t): velocity in fl direction of fluid before passing through filter. Units cm/sec. 

v(i, fl, z): velocity vector of fluid. Units cm/sec. 
wi(x, fl, z): velocity in z direction of fluid after passing through filter. Units cm/sec. 
w0 (x, y, z): velocity in z direction of fluid before passing through filter. Units cm/sec. 

Wj: (j =l, 2, 3) inpermeable walls of filter. 
x: length in direction along filter. Units cm. 
y: length in direction across filter. Units cm. 
z: length in height of filter. Units cm. 
Z: height of filter. Units cm. 
a: nondimensional parameter used in equations: 

(2.4) 

{3: ratio of concentration of particles in pre-filtration area to the clogging 
concentration of the filter: 

/3 = C1h 
Cc. 

b..t: discretization parameter in t used for numerical scheme. 
b..x: discretization parameter in t used for numerical scheme. 

,: nondimensional parameter used in equations. 
µ: dynamic viscosity of fluid, units g/(cm·sec). 
v: kinematic viscosity of fluid, units cm2 /sec. 
p: density of fluid, value g/cm 3 . 

(: aspect ratio of three-dimensional filter device, given by ( = Z/ L. 

Nondimensionalized variables will have no tildes. 

(2.5) 



Section III: Two-Dimensional 
Governing Equations 

We begin by assuming that the filter is a two-dimensional object with length L, width 
2h, and distance 2h between filters. We also assume that the concentration of the particles 
is so low that the density in both regions is the same. We then use the two-dimensional 
Navier-Stokes equations in rectangular coordinates: 

(3.1) 

(3.2) 

(av _ av _av) ap (a2v a2v) 
P af + u ax + v 8iJ = - ay + µ ax2 + 8iJ2 • 

(3.3) 

These equations are general and hold for the fluid before and after it passes through the 
filter, though not in the filter itself. 

At the filter, the change in concentration of particles on the filter is equal to the 
concentration of particles coming in: 

(3.4) 

Next we proceed to nondimensionalize our equations. We nondimensionalize x by our 
filter length L and i) by half of our filter width, which is h. We nondimensionalize our 
velocities u and v by U and V, respectively, which are at this time unknown. In addition, 
we nondimensionalize f by T, which is as of yet unknown. We n9ndime12sionalize C by our 
clogging concentration Cc. Our pressure values vary between Pa and Pi, so we normalize 
to make them vary between 1 and 0. Summarizing, we have the following: 

X 
x= -

L' 
u 

U= U' 
V 

v=­
V' 

/, 

l. = T' 
p- pi 

p = - -
Pa - Pi 

C= C 
C' C 

(3.5) 
Once again, these nondimensionalizations apply to the fluid both before and after it passes 
through the filter. 

Using equations (3.5) in (3. 1 ), we have the following: 

u au \I UV --+-- =0. 
L o:r h D;l/ 



Group 3-2 III.2 

In order to simplify our equations, we let U / L = V / h to yield 

(3.6) 

Using equations (3.5) in (3.4), we have 

and substituting Uh/ L for V yields 

ac c1uhr _ 
8t = LCc v0 (x, 1 ). (3.7) 

Since we want 0(1) changes in our concentration, we let 

(3.8) 

Then equation (3.7) becomes 

(3.9) 

Now nondimensionalizing equation (3.2), we have 

Using U / L = V / h, we may express everything in terms of U: 

Now we want to set the coefficient of the pressure equal to unity so that we may examine 
the relative contributions from the other terms. Doing so, we have the following: 

Since we will eventually wish to examine oil and other viscous f-luids, we want the viscous 
diffusive terms to be dominant. Hence, we set the coefficient of the diffusive terms equal 
to unity to yield 

(3.10) 
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(3.11) 

Now, since h « L, we see that both the first diffusive term and a are negligible, so equation 
(3.11) reduces to 

ap a2u 
ax ay2 . 

(3.12) 

Now using equations (3.5) in equation (3.3), we have the following: 

( C1UVh av UV av V 2 av) - - Po - A ap (~ o2v ~ o2v) 
p LCc at + L u ox + h Vay - h ay + JL L 2 ox2 + h 2 oy2 . 

Using our relation between U and V, we have the following: 

Using equation (3.10), we have 

ah 2 ( av av av) ap h2 ( h2 o2v a2v) 
£ 2 /3 at + U OX + Vay = - Oy + £ 2 £ 2 ax2 + ay2 . 

Now, since h « L, we see that we may neglect all terms but the pressure term and our 
equation becomes the following: 

ap = 0 oy . (3.13) 

Our system of equations (3.6), (3.12), and (3.13) are called the lubrication equations. Note 
that our time dependence has scaled out of all but equation (3.9). 

Now we wish to postulate some boundary conditions. As shown in figure 1, we place 
our axes such that the problem becomes symmetric. We then only need consider the region 
0 < x < I, 0 < y < 2. Since our filter is along y = 1, we split the problem into two regions. 
We begin with the region before the fluid reaches the filter (0 < x < 1, 0 < y < 1-), which 
we call region o. In this region, we have a pressure condition at the inflow which has scaled 
to become 

Po(O, y, t) = 1. (3.14) 

We assume that the boundary at x = 1 is a wall through which no fluid can pass, so 

u 0 (J, y, f,) = 0. 

Since y = 0 is a line of symmetry, we have 

v0 (:z:, 0, I) = 0 

Du0 

-,i-(.T, 0, I) = ()_ 
U'./j 

(3.15) 

(3.1Ga) 

(:~_ 1Gb) 
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We assume that the filter is porous only in the vertical direction, hence 

u0 (x, 1, t) = 0. (3.17a) 

Also, by doing a simple concentration balance, we see that 

We nondimensionalize our concentrations by Cz. Nondimensionalizing the rest of the equa­
tion, we have 

(3.17b) 

We assume that initially our concentration in the filter is 0, so 

C(x,O) = 0. (3.18) 

, We now proceed to solve our equations in region o. From (3.13) we see immediately 
that p0 is a function of x and t only. Solving equation (3.12) subject to our boundary 
conditions (3.16b) and (3.17a), we have 

y 2 - l 8p0 

Uo(x, y, t) = 2 Bx . (3.19) 

The velocity u0 can now satisfy equation (3.15) only if 

8po ( ) Bx 1,t =0. (3.20) 

Using equation (3.19) in equation (3.6), we have the following: 

Solving the above subject to boundary condition (3.16a), we have 

(3.21) 

We now define our boundary conditions in region i, where the fluid has already passed 
through the filter. This is the region 0 < x < 1, 1 + < y < 2. In this case, the pressure 
boundary condition is specified at x = 1: 

Pi (I, y, t.) = 0. (3.22) 

Now the boundary at x = 0 is the wall, so 

'Ui(O, y, t,) = 0. (3. 23) 
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Since y = 2 is also a line of symmetry, we have 

Vi(X, 2, t) = 0 (3.24a) 

8ui 
By (x,2,t) =0. (3.24b) 

We assume that the filter is porous only in the vertical direction, hence 

Ui(X, 1, t) = 0. (3.25) 

Solving the equations in this region in a perfectly analogous manner to the way in 
which we solved the equations in region o, we have 

( 2 - y) 2 - 1 8pi 
Ui(x, y, t) = 2 Bx (3.26) 

8;:co,t) = 0 (3.27) 

v·(x y t) = [(2 - y)3 - (2 - y)] a2Pi. 
t l ' 6 2 8x2 (3.28) 

In addition, we have the following permeability law-. 

Here we postulate the form of k given in section IL This then states that regardless of 
the pressure differential, no fluid will flow through the filter when C = Cc, the clogging 
concentration. Nondimensionalizing, we have 

- 3 
_ + _ koh ( _ ) _ ko ( ) 

p0 (x, 1 , t) - Pi(X, 1 , t) - µL 2Cc [l _ C(x, t)] V 0 X, 1 , l = l _ C(x, t) Vo X, 1-, t . 

(3.29) 



Section IV: Steady Flow, No Particles 

The first model we consider is that of steady flow with no particles in the fluid. Hence 
we have Cf= 0, and equation (3.4), together with boundary condition (3.18), implies that 
C O for all t ~ 0. Thus, there is no time dependence in the problem. Then equation 
(3.17b) becomes 

(4.1) 

and equation (3.29) becomes 

Po(x, 1-) - Pi(x, 1 +) = kov(x, 1). (4.2) 

Now we continue our solution of the problem. Since there is no time dependence in 
the problem, p0 and Pi are functions of x only. Using equations (3.21) and (3.28) in (4.1), 
we have the following: 

p~(x) = -pt(x) 

Po(x) + Pi(x) = A1x + A2. 

Now using equations (3.21) and (3.28) in equation (4.2), we have 

Po(x) - Pi(x) = ~o p~(x). 

Combining equations ( 4.3) and ( 4.4) and solving for p 0 (x), we have 

( ) A1x + A2 A -,x A ,x 
Po X = 2 + 3e + 4e ' 

where , = ./6/ko. Using equation ( 4.3), we immediately see that 

Using our boundary condition (3.14) in (t1.5a), we have 

while equation (3.20) gives us 

(4.3) 

(4.4) 

(4.5a) 

(4.5b) 

("1.6) 

( ,1. 7) 
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For our Pi(x) conditions, we use (3.22): 

(4.8) 

and we use (3.27) to find 

(4.9) 

Equations ( 4.6)-( 4.9) are a system of four equations in four unknowns which we may 
solve using Maple to find 

2-y(e-Y - 1) 
A1 = - D , 

-y(e-Y - 1) 
A2 = 1 + D , 

D = 2(e-Y + 1) + ,(e-Y - 1). 

Using equations (4.10) in (4.5), we have 

1 -y(l - 2x)(e-Y - 1) e-Y(l-x) + e-Yx 
Pa(x) = 2 + 2D + D 

1 -y(l - 2x)(e-Y - 1) e-Y(l-x) + e-Yx 
Pi ( X) = 2 + 2D - D 

(4.10a) 

(4.10b) 

( 4. lla) 

(4.llb) 

Now we have our flow completely determined. Summarizing, using (4.lla) in (3.19), 
we have 

Uo(X, y) = [ 1 - e-Y + e-yx - e-y(l-x)] -y(y;; l). ( 4.12) 

Using equation ( 4.11 b) in equation (3.26), we have 

( 4.13) 

Using equation (4.lla) in equation (3.21), we have the following: 

2 

va(x, y) = - ~ [ e-y(l-x) + e-yx] ( y3 - '!!_). 
6 2 

(4.14) 

Using equation (1.llb) in equation C3.28), we have 

(4.15) 

As shown in figure 2, the lower velocity profile at the filter v0 (x, 1-) is nearly parabolic 
in shape. This contradicted our first guess at the profile, since we originally thought the 
flow should be faster at the inlet and decay monotonically as 1; rnoved toward the outlet. 
However, further examination convinced us Lha,t, our solutions were indeed correct. As will 
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be shown in section V, this implies that our filter will have a higher concentration at both 
ends, rather than a monotonic profile as we first thought. 

Now we wish to plot streamlines. In region o, the equations for the streamlines are 
given by 

dy V0 

dx U 0 

a differential equation which can be separated to yield 

( y3 
) (op0 ) log 3 - y = - log ox + As, 

where As is a constant of integration. Then using equation ( 4.1 la) our solution is the 
following: 

y3 eAs D [ ]-1 3 - y = -,- e'Yx - e-Y{l-x) + 1 - e'Y (4.16) 

In region i, the equations for the streamlines are given by 

dy Vi 

dx Ui 

1 [(2 - y)3 _ ( 2 _ )] (OPi)-l o2pi 
(2 - y) 2 - 1 3 · y ox ox 2 ' 

a differential equation which can be separated to yield 

where A6 is a constant of integration. Then using equation ( 4.11 b) our solution is the 
following: 

(2 ~ y)3 - (2 - y) = eA~ D [e-y{l-x) - e-yx + 1 - e'Y ]-1 (4.17) 

These streamlines are graphed in figure 3. 
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Section V: 2-Dimensional 
Flow with Particles 

The next model we consider is that of flow with particles in the fluid. Hence we no 
longer have our simplification that Cf = 0, and the problem is time-dependent. However, 
we may simplify our equations. Using equation (3.21) in equation (3.9), we have the 
following at y = I: 

8C 1 [J2po 
---

8t 3 8x 2 · 
(5.1) 

Using equations (3.21) and (3.28) in equation (3.17b), we have 

(5.2) 

Using equation (3.21) in equation (3.29), we have the following: 

ko 82po 
Po(x, t) - Pi(X, t) = 3[1 - C(x, t)] 8x2 . (5.3) 

Our boundary conditions are given by equations (3.14), (3.18), (3.20), (3.22), and (3.27), 
which we rewrite for easy reference: 

Po(0, t) = I. (5.4) 

8po ( ) Bx 1,t =0. (5.5) 

Pi(l, t) = 0. (5.6) 

Bpi (0, t) = 0 ox (5.7) 

C(x, 0) = 0. (5.8) 

We wish to solve the system of equations numerically; hence we also need initial 
conditions for p0 and Pi· We assume that the filter has no particles in it at time t = 0, so 
we use our results from section IV: 

1 1 (1-2x)(e 1 -I) e 1 (l-x)+e 1 x 
Po(x,0) = 2 + 2D + I) (5.9) 

] 1 (1 - 2:r)(c' - 1) c,(l-x) + erX 
JJi(:r,0) = - + ')!) - ----- where 

2 ~. D ' 
(5.10) 
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D = 2(e-Y + 1) + ,(e-Y - 1). (5.11) 

We discretize our x direction by !::1x = 1/N, and our t direction by !::1t (!::1x)2 . 

We choose this !::1t so that our scheme, which is first-order in t and second-order in x 
' has the same size error in both directions. We then introduce a discretization notation by 

f(n, j) = f(n!::1x,j!::1t), where J is Po, Pi, or C. Four our unknowns, we let n = 1, ... , N for 
Po [since we know Pa(0, t)], n = 0, ... , N -1 for Pi [since we know Pi(I, t)] and n = I, ... , N 
for C (for reasons which will be discussed later). 

We break our scheme into two parts. First, we discretize equation (5.1) and perform 
an explicit Euler step in time to solve for the concentration at the next time step: 

!::1t 
C(n,j) = C(n,j - 1) + 3(/::1x)2 lPa(n - l,j - 1) - 2p0 (n,j - 1) + p0 (n + l,j - l)], 

1 :S n :SN. (5.12) 

Note that for n = N we use the Neumann condition; that is, approximating (5.5) with 
respect to x by a central difference scheme, we see that 

Po(N + 1,j) = Po(N - l,j). (5.13) 

We use equation (5.13) in (5.12) when n = N and throughout the rest of the scheme. We 
also use its counterpart for Pi, namely 

Pi(-1,j) = Pi(I,j). (5.14) 

Next we solve for our new pressures implicitly by discretizing equations (5.2) and (5.3) 
and solving them together. At interior grid points, we approximate second derivatives using 
the standard second-order central difference scheme, so that (5.2) becomes 

(1-C f) lPa(n - 1,j) - 2p0 (n,j) + Po(n + l ,j)] +pi(n- 1,j) - 2pi(n,j) +Pi(n+ 1,j) = 0, 

n = 1, ... ,N - 1. (5.15) 

In equation (5.15), note that for n = 1 we use equation (5.4) so that the right-hand side 
to our equation is nonzero. We use equation (5.6) for n = N - 1, but the right-hand side 
remains the same. Discretizing (5.3), we have the following: 

-( .) ( .) ko [p0 (n - 1,j - 1) - 2po(n,j - 1) + Po(n + 1,j - 1)] _ 0 
p, n,J - Po n,J + 3(!::1x)2[1 - C(n,j)] - ' 

n = 1, ... , N. (5.16) 

In equation (5. lG), we again use (5.4) for n = I, and for n = N we use (5.6) and equation 
(5.13). 

We now have 2N - I equations in 2N unknowns. To obtain the final equatio11, we 
construct the second-order forward-difference second-derivative scheme, since we do not 
know p0 (-I,j). Hence, we have the following expression: 

(I - C1) [2po(O.j) - 5pn(1,j) + 4pa(2,j) - Po(:3.j)] + Pi(-I,j) - 2pi(O,j) + Pi(l,j) = 0. 
(5.17) 



Group 3-2 V.3 

For equation (5.17), we use equation (5.14) and (5.4). 
Examining equations (5.15)-(5.17), it becomes apparent why we did not calculate 

C(O, t). Since C(O, t) never appears in our expressions, it wouldn't be used to calculate 
new pressure conditions from which it in turn would be calculated at the next time step. 
Hence, if we tried to calculate it, we would get spurious results. However, since the 
concentration profile is nearly symmetric, we can make a reasonable approximation to 
C(O, t) by examining C(l, t). 

Now that we have expressions for our pressure, we need to check our flow rate. Nondi­
mensionalizing equation (2.2), we have 

ij(t) = pLV 11 
v(x, 1, t) dx. 

Using equations (3.10) and (3.21) 

Integrating and using equation (5.5), we have 

3q(t)µL 8p 
--- q(t) = -- 0 (0,t). 
ph3 (?0 - A) 8x 

(5.18) 

Since we are taking ratios, we see that tc is that time at which q(tc)/q(O) = e- 1 . 

We also nondimensionalize equation (2.3) to yield 

3QµL _ LCc tc d 
ph3 (F0 - f\) - C1U h Jo q(t) l 

3QC llc 
_Cf = Q = q(l) di. 
pL c 0 

(5.19) 

Using our code, we performed several tests, the results of which are graphed on the 
following pages. The first test we performed was to test the sensitivity of le and C to 
changes in C 1 as we varied it from Oto 0.05. Figure 4 shows that we saw very little change 
in le as Cf varies. Note that we arc varying Cf over a small range, so we would expect a 
small variance. As far as le is concerned, the graph shows us that for varying vah.1cs of 
Cf the number of nondimensional Lime units is not changing considerably. However, since 
our scaling in equation (5.8) depends expliciLly on Cf, the dimensional fc docs vary with 
respect to Cf. 

Figure 5 shows the change in concentration at the outlet of the 11ltering device as a 
function of l for varying k0 . Note that as ko increases, the concentration approaches its 
final value more slowly, and that, tl1<:; 1111al value is smaller. This can also be seen in figure 
6, which shows C(.T, l,c) as a function of 1; for varying ko. Note tJ1at, as discussed briefly 
in sect.ion IV, due Lo tl1c sh;1pc of our vclocit_y profile, the rnaxi11111111 values of C :1.rc at 
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the ends of the filter. As indicated in figure 5, as ko increases, the maximum value of our 
profile decreases. In addition, our profile begins to flatten. This is reasonable, since as 
ko - oo, equation (3.29) indicates that there would be no flow of particles and hence we 
would have a fiat profile of C = 0. Figure 7 shows the maximum concentration at tc vs. 
ko. Note that as you increase ko, the filter must be thrown away at smaller concentrations. 

Figure 8 shows the outer and inner pressures p0 and Pi at tc as a function of x for 
various values of k0 . Note that for smaller k0 , a lower pressure gradient is needed to make 
the fluid flow through, as indicated by equation (3.29). As expected, the pressures are 
larger near the inlet than at the outlet. 

Figure 9 is a graph of q(t) vs. t for varying ko. Note that as ko increases, the flow 
starts off at a slower rate [as indicated by (3.29)], but takes longer to decay to 1/e times 
its initial value. This variance of tc with k0 is indicated explicitly in figure 10. Note that 
it is nearly linear for large values of ko. However, figure 11 shows that even though the 
time that you use the filter is longer for larger values of ko, the fiow you force through the 
filter ( which is indicated by Q) is smaller. 

Hence, which value of k0 one should use for an efficient filter depends on your definition 
of the word "efficient." In the case of an oil filter, where a longer life might be more 
important than a high flow rate, a large ko would be indicated. However, in industrial 
filter applications, such as the filtering of yeast from beer, where large flow rates are 
economically desirable, a smaller ko would be indicated if the machinery could be designed 
so that the filter, which would have to be changed more often, is readily accessible. 



3.5 

3 ~ 

2.5 ~ 

2 ~ 

1.5 ~ 

1 ~ 

Figuce 4. 

Critical time t and C(l,t) vs. Cf 
C C 

T I I 

t 
C 

---------------------------------------------------------------------------------- C(l,tc) 

0. 5 I I 

0 0.01 0.02 

I l 

0.03 0. 0 4 

cf 
I 

0.05 

-

-

-

-

""' 

0. 0 6 



C(Lt) 1 

0. 9 

0 . 8 

0. 7 

0. 6 

0. 5 

0.4 

0.3 

0.2 

0. 1 

0 
0 

C(l,t) vs. 
Figure,5. 

t for Various Values of k0 

,, .. ,, .. ,,,. ,,,. 
,,,. .. 

,,,,,.,,,.,,,,,.,,,.,,,. .. 
,,,,,,,," ,,,," 

,, ,, ,, ,, ,, ,, 
I ,, ,, 

//,I , , , •• •···· 
, •' 

,,," , ,,' ,,••········ 
.1"/ , , ••••• -······ 

,, ,•· , .. 
/// , , .. -······ 

I ,,•' 
II , , , .••••• 

I , ,•• , •' I , ,. 
I I •• • 

I , ,' , ,• 
I , ,.• 

I , ,' , ,• 
I , •• • 

,' , , , .... ··· 
I , ,• 

I , •• •• 
I , ,•• 

I ~ , •' 
1' , , ••• •· 

I , ,,•' 
I , ,,• 

I ,' 
I ,,•' 

I / 
I ,•' 

I •• • 
I / 

I ,• 
I / 

I ,•' 
I ,,' 

I , ,•· 
I ' ,• ' ,• ,' '' .. ··· 

I ' ,• , .. 
I,,• ,, .. · ,.,· 

0. 5 · 1 1. 5 2 2.5 

k0=0. 7 __ . -­_ .. .. -.... ,, .. 

. . 

3 

k =l.3-····· 
0 .•· ... 

3.5 4 

············· 

k0=1.9 

t 

4. 5 



0 
~ 

4--l 
0 

Cl) 
(1) 
::l 

rl 
t1l 
> 
Cl) 

::l 
• 0 

I.O •.-i 

(1) µ 
1-.J t1l 
::l > 
01 µ 

•.-i 0 
ex. 4--l 

X 

u 
_µ 

X 

u 

rl 

u 
.w 

>< 
u 

rl 

0 
II 
0 
~ 

Lf) 

m 

0 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' \ 
\ 

\ 
\ 

' \ 
' \ 

\ 
\ 

\ 

' ' \ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

'' 

\ 
\ 
\ 

' 
' ' 

' 

\ 

I 
I 

I 

\ 
I 
I 
I 
\ 
I 
I 
I 
I 
I 
I 
I 
\ 
I , , 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
/ 

/ 

0 / 
II 1 
0 / 

~/ 

/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

m 

0 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

rl 
II 
0 

,Y'. 

Lf) 

CD 

C) 

' 
' 

' 
' 

, , 

, , 

CT, 

rl 
II 
0 

,Y'. 

CD 

C) 

Lf) 

r----

C) 

(X) 

0 

0 

0 

N 

0 

0 



Figui::-e 7. 
C ( 1, t c) Vs. k 0 

C(l,tc) 1 

0.95 

0. 9 

0.85 

0. 8 

0.75 
k 

0 0. 5 1 1.5 2 2.5 3 3.5 



Figur:-e 8. 
po(x,tc) and pi(x,tc) vs. x for Various Values of·k 0 

po(x,tc) 1 
~.,.,., k al.9 

' - - '' C'c:':!tC ::::::~:_ :·:~,:~·: :~::::·:::~:~::·~::~~~:~::~~~~:: ~~ ~~:~::: ·:: :·:: :: ::: : :·:: . : : : :: ::: : . : : :::: ::::?::: : '. : : : : : '.: 
kr 

' 
0. 8 -----------------

k0=0.7 

0.6 

0. 4 

k0=0.l 

pi(x,tc) 

o . 2 k _ l<e,:=9-= .?_ __ _ 
k =l. . ............ -~~-----------------

0 .............. . • . . . . • • -----····· k~~i: 9······ ··· ·· : :.:.:.:.:.:.:.:.:.:.:.:.:.:. :.: .... ~~ ~~-~-~-~_:_: :---__________ _ 
........ :.:.;_~-~~~-~-~--------

.... ...: ... :.:.~.;--:~~-:.:'::/~~:::.,:--. -

••'\"l)t~" 

0 
0 0.2 0. 4 0. 6 0. 8 1 



0 

0 

(Jl 

(Jl 

N 

N 

(Jl 

w 

w 

(Jl 

(Jl 

0 

0 
(Jl 

r, 

0 

J 
I 

' ' ,; 
,· 
,· 
,· 

0 

I 
, I 

, I 
, / 

,' I 
• ,1 
; / 
; I 
: /, 
: /, 
:/, 
1 • ,. ' 

; . 
. , .. .. 

1,, 

I 
I 

0 

N 

X' 
0 

I 
I 

I 

I 

II 
I-' 

~ 

I 
/ 

I 

I 
/ 

/ 

0 

N 
(Jl 

I 
I 

I 

I 
I 

I 

I 
I 

I 

I 

I 
I 

0 

w 

:;;,<;' 
0 
• II 

I-' 

w 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

0 

w 
(Jl 

I 
I 

I 
I 

I 
I 

I 
I 

X' 
0 

I II 
0 I 

I 
I 

I 
I 

I 
I 

0 
0 0 

(Jl 

X' 
0 

II 
0 

0 

(Jl 

(Jl 

.D 
r, 

< 
(/) 

r, 

Hi 
0 ., '"IJ 

I-'· 
<ill 
p; C ., ., 
I-'· (D 
0 
C ~ 
(/) 

< p; 
I-' 
C 
(D 
(/) 

0 
rt\ 

X' 
0 



tc 6 

5 . 5 

5 

4. 5 

4 

3.5 

3 

2.5 

2 
0 0.5 1 1.5 

Figure 10. 
tc vs. k0 

2 

k 

2.5 3 3.5 



Figure 11. 

Q vs: k0 
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Section VI: The Three-Dimensional Problem 
for Steady Flow and No Particles 

Next we consider a filter which cannot be reduced to a two-dimensional problem. 
Here the fluid enters through the top, flows through the filter and leaves through the left 
side. The perimeter is represented in the figure below by a bold line. The closed walls in 
the filter unit are represented by brick walls in the figure. As before, this figure actually 
only shows one portion of a large filter, and the front and back of the figure are planes of 
symmetry. 

Flow 

p_= 0 
I 

z 

Filter 

\ 

~ 

h'=------~ 
L 

Figure 12. Schematic for three-dimensional problem. 

1 

z 

For this problem, we use the three-dimensional Navier-Stokes equations in rectangular 
coordinates for steady flow. These arc 

V-v = O (G. la) 



( - n)- 1n- n2-V · V V=--vp+vv V 
p ' 

Group 3-2 VI.2 

(6.lb) 

where v = (u, v, w) and w is the velocity in the z direction. As in the two-dimensional 
problem, these equations hold for the fluid flow before and after passing through the filter. 

Our nondimensionalization process is identical to that of the two-dimensional problem 
with the addition of 

z 
Z=-

£ 
and 

w 
w= u· (6.2) 

We nondimensionalize z by L since we assume L and Z to be of the same order. Similarly, 
we expect w to be of the same order as u. As before, the nondimensionalization and 
simplification of equations (6.1) using (6.2) and our other quantities from previous sections 
lead to the following three-dimensional system of lubrication equations: 

We consider the region 

au+ av+ aw= O 
ax ay az 

ap a2u 
ax ay 2 

8p =0 
ay 

ap 
az 

(0, 1] x [0, 2) X [0, (] , 

(6.3a) 

(6.3b) 

(6.3c) 

(6.3d) 

where ( is defined in section IL Our problem is again divided into two regions determined 
by the plane y = 1. In region a, 

[0, 1] X [0, 1-1 X [0, (] ' 

we have the following boundary conditions: 

Po(x, Y, () = 1; 

u 0 (0,y,z)=0; 

u 0 (l, y, z) = 0 

w0 (x, y, 0) = 0 

vo(x, 0, z) = 0; 
auo oy (x,0,z) = 0; 

8wo 
ay ( X, 0, Z) = 0 . 

On the other hand, in region i, 

[0, 1] X [1+,21 X [0,(], 

the boundary conditions are 

Wi ( X, y, () = 0 ; 

Pi(O,y,z) = 0; 

Ui ( 1, y, Z) = Q 

Wi(X, y, 0) = 0 

vi(x,2,z)=O; 
8ui -a (x, 2, z) = 0; 

y 

OWi 
-8 (x,2,z)=O. 

y 

(6.4a) 

(6.4b) 

(6.4c) 

(6.5a) 

(6.5b) 

(6.5c) 



At the filter our permeability law in its nondimensional form is 

Po(x, 1-, z) - Pi(x, 1 +, z) = kov(x, 1, z) . 

Our other boundary conditions at the filter are 

u(x, 1,z) = 0 and w(x, 1,z) = 0. 

Group 3-2 VI.3 

(6.6) 

(6.7) 

Since we are assuming a pure fluid, v must be continuous across the filter, i.e. 

Vo(X, 1 - , z, t) = Vi(x, 1-, z, t) . (6.8) 

We solve this three-dimensional system in exactly the same manner as in the two­
dimensional problem. This gives the following: 

(2 - y)2 - 1 api 
U·=-------

t 2 ax 
y2 - l ap0 

Uo = 2 ax' (6.9) 

( 2 - y) 2 - 1 api 
w·=-------

i 2 az 
y2 - I ap0 

Wo = 2 az' (6.10) 

Vo=-~ (y3 -y) (8 2Po + 82po) 
2 3 8x 2 8z 2 (6.lla) 

Vi = ~ [(2 - y)3 - (2 - y)] (a2Pi + a2Pi) 
2 3 ax 2 az 2 

(6.llb) 

Using the continuity of v at the filter and the permeability law we arrive at the 
following equations: 

a2pi + 82pi = _ (8 2Po + 82po) 
8x 2 8z 2 8x 2 8z 2 

(6.12) 

ko (8 2Po 82po) Po - Pi = kovo = 3 ax 2 + az 2 (6.13) 

These equations hold in the rectangle O < x < 1 and O < z < (. The boundary conditions 
are now 

8po ) 8pi ( ) ox ( 1, z = ax I, z = 0 

3po ( ) op; ( ) ~ x,0 = -0 :1:,0 = 0 
uz z 
3po ox (0, z) = Pi(O, z) = 0 

OPi 
p0 (x, () = 1 and oz (x, () = 0 -

(6.14a) 

(6.'14b) 

(6.14c) 

(6.14d) 

Two attempts were made Lo solve this system analytically. Neither was successful, a~ 
one led to coupled equations and the other to coupled boundary conditions. The most 
promising method for obtaining a solution seems Lo be numericaJ. 



Section VII: Future Research 

The work presented in this paper may be extended in several directions: 

1. A rectangular shape was assumed for the pleats throughout this work. However, the 
pleat shape is most often not rectangular, but is the result of a folding and crimping 
process that gives the pleat a characteristic shape and strength, which then determines 
the behavior. The analysis performed for the rectangular pleat, which assumed a high 
aspect ratio and slow flow, could be modified to describe the flow in more realistically 
shaped pleats, such as wedges. 

2. The solution obtained for the steady flow in a pleat may be used to calculate the 
stresses in the filter material. With this information, we may determine deformation 
in the filter material and whether the yield stress of the material has been exceeded. If 
the filter undergoes excessive deformation, its performance may be deteriorated, and 
exceeding the yield stress almost certainly leads to catastrophic failure. These issues 
are important aspects of filter design. 

3. The numerical solution presented in Section V was obtained using LU decomposition 
techniques. The matrix structure, however, is diagonally sparse, and for sufficiently 
high resolution, iterative techniques will give superior machine performance. In ad­
dition, an explicit Eulerian time integration is used. To avoid excessively small time 
steps to preserve numerical stability, implicit schemes should be considered. 

4. The work presented here assumes the particles are trapped within the filter material. 
There are applications in which the particles do not penetrate the filter material 
resulting in the accumulation of particulate matter on the filter. This effectively 
reduces the permeability of the filter and narrows the pleat width available for fluid 
flow. A more realistic model would combine a nonrectangular pleat configuration 
as described in number l above and incorporate the effects of a growing layer of 
particulate matter. 

5. Finally, the three-dimensional analysis presented in Section VI is woefully incomplete. 
Further analytical analysis of the steady, no particle flow may give insight about the 
qualitative behavior of flow in three-dimensional. pleated filter packs. However, for the 
transient three-dimensional problc1n, nrnnerical techniques similar t.o those discussed 
in Section V and noted in number ~1 above would be used. 




