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Section I: Introduction and Assumptions 

Introduction 

A common problem in the oil industry is the discovery of oil or gas in tight (low 
permeability) formations. This problem is often surmounted by hydrofracturing the well. 
In this process, the borehole is perforated along a vertical segment at the same depths as the 
gas bearing strata, and a fracturing fluid is pumped down the borehole at extremely high 
pressures. This high-pressure fluid fractures the formation, usually creating a (roughly) 
straight fracture centered at the borehole. The fracture is usually held open by "packers" -
sand or gravel that flows into the fracture along with the fluid. Typically the vertical extent 
of the fracture roughly matches the top and bottom of the gas bearing strata (see figures 
la and lb), that is, the top and bottom of the permeable layer. Although these fractures 
are very thin, usually no more than a few millimeters across, the permeability within the 
fractures is radically larger than the permeability of the surrounding formation. We will 
consider how the productivity (flow rate through borehole) changes due to hydrofracturing. 

Advances in hydrofracturing techniques promise to yield wider, longer, and more 
permeable fractures. In fact, it appears possible to generate multiple fractures. So we will 
also consider how increasing the number of fractures changes the productivity of the well. 

Assumptions 

In modeling this problem, we make the following assumptions: 
• The pay zone is cylindrical. 
• The temperature within the pay zone and fracture is constant. 
• The atmospheric pressure is so small in comparison to the pressure inside the pay 

zone that we consider it to be zero. 
• The pressure on the edge of the pay zone is constant. 
• The fracture is straight and centered at the borehole. 
• The top and bottom of the pay zone are impermeable, and we will have no variation 

in the vertical direction. 
• This is a steady-state problem. 
• We consider the gas to be ideal. 
• We consider the problem to be governed by Darcy's law. 
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Figure la. Nondimensional schematic of pay zone, side view. 
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Figure lb. Nondimensional schematic of pay zone, top view. 



Section II: Nomenclature 

a: width of fracture (perturbation model), value 2 x 10- 3 m. 
aj(r): width of fracture j (variational model), units m. 

Aj: constants used in equations (j = 1, 2, 3, 4, 5). 
C0 (x), C1(x): concentration of gas at position x in the pay zone, fracture. Units mol/m 2 . 

C'6o) (x), C'6u) (x), 

C'6v\x): outer, uniform, and variational approximations to C'o(x). Units mol/m 2 . 

cf\x): jth term in the perturbation expansion for C1 (x). Units mol/m 2 • 

d: constant used in conclusion. 
D: diffusion coefficient for gas (units m2 /sec), defined as 

D _ RTk_ 
µ 

E 1 (s): the first exponential integral at values, defined by 

E1 (s) = ~ dt = _e - dt. Joo -t Joo -st 
s t 1 t 

f(r, 0): nondimensional test function (variational model). 
h: height of the pay zone. Units m. 
J: indexing variable. 

J(x): flux of gas at position x. Units mol/(m·sec). 
k: permeability constant in Darcy's law. Units mol/m 2 • 

m: constant. 
n: constant. 

N: number of fractures. 
p(~): pressure of gas at position x. Units kg/(m·sec 2 ). 

P0 : pressure of gas at r = r0 . Units kg/(m·sec 2 ). 

q: nondimensional flux constant. 
Q: flux of gas (units mol/sec) through borehole, defined as 

{2-rr 
Q = -r Jo J(x) d0. 

(2.1) 

(2.2) 

(2.3) 

Note that the radius of the circle around which you integrate this is arbi­
trary due to Gauss' law. 

r: radius from axis of pay zone. Units m. 
r 0 : radius of pay zone, value 300 m. 
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Tb: radius of borehole, value 5 x 10- 2 m. 
r r radius of fracture, value 50 m. 
R: gas law constant, value 8.314 x 103 kg-m 2 /(sec 2 -K). 
~: the real part of a complex expression. 
s: dummy variable. 
t: integration variable. 

T: temperature of gas, units K. 
u(x, (): difference of nondimensional concentration in inner boundary layer from 

minimum value. 
v(>.., (): Fourier cosine transform of u, given by the transform pair 

A /2 r= A 

v(>.., () = V; lo u(x, () cos(>..x) di (2.4a) 

A /2 r= A 

u(x, () = V; lo v(>.., () cos(>..x) d>... (2.4b) 

x: distance along fracture axis from axis of pay wne. Units m. 
y: distance (in fracture) from fracture axis. Units m. 
z: distance along axis of pay zone. Units m. 
a: ratio of radius of pay zone to radius of fracture, defined by a= fo/f 1. 
(3: nondimensional parameter, defined by f3 = 1/co. 
,: Euler's constant, value 0.577. 

co: perturbation expansion parameter, defined by 

co aDJ = 3 x 10- 2 • (2.5) 
2foDo 

c r perturbation expansion parameter, defined by 

- a -6 
c1=-=3xl0 . 

2fo 

rJ: small nondimensional parameter used in equations. 
>..: Fourier transform variable. 
µ: dynamic viscosity of gas, units kg/(m·sec). 

T(r): function (units m) used in variational method, defined by 

N 

T(r) L 2(3j(r). 
j=l 

0: angle measured from fracture axis. 
T: function to be minimized in variational method. 
(: nondimensionalized distance (in pay zone) from fracture axis. 
n: the cylindrical pay zone region. 

(2.6) 

(2.7) 

Nondimensionalized variables will have no tildes. The subscript 0 refers to the rock 
region, while the subscript f refers to the fracture. Parenthesized superscripts indicate 
terms in the perturbation expansion. Hats refer to inner expansion variables. 



Section III: Governing Equations 

We begin by writing the form of Darcy's law which we wish to use: 

- k 
J = --Vjj. 

µ 

In addition, we will use Fick's diffusion law: 

and the ideal gas law: 

ac -
-- = -V-J at ' 

p= CRT, 

(3.1) 

(3.2) 

(3.3) 

where we assume T to be constant in our region. Combining equations (3.1)-(3.3), we have 
the following expression for C: 

~~ = - V · ( - ~ Vjj) 

= kV 2 (CRT) 
µ 

= DV 2C. 

Note that equation (3.4) holds in either the fracture or the pay zone. 

(3.4) 

We now assume that the only quantity which fundamentally changes from the pay 
zone to the fracture is k, and hence D. We assume the pay zone to be a cylinder with 
height h, inner radius Tb (the radius of the bore hole), and outer radius fo. We assume 
that the pressure on the outer radius of the cylinder is constant, i.e., 

fJo(io, 0, z) = Po. (3.5) 

The pressure at the bore hole is atmospheric pressure, which is so much smaller thq.n Po 
that we assume it to be 0. Hence, we have 

fJo(ib, 0, z) = o. (3.6) 

We assume as well that the top and bottom ends of our tube are impermeable. Then, since 
neither equation (3.5) nor (3.6) depend on z, and since no flow can come in from above or 
below our tube, we conclude that our entire solution is independent of z and reduce our 
problem to a two-dimensional system. We also are looking for steady-state solutions, so 
we set our time derivatives equal to 0. 
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Writing equation (3.4) in polar coordinates in the pay zone, we have 

(3.7) 

We assume the fracture to be so thin that we may assume it to be in rectangular coordi­
nates, so we rewrite equation (3.4) in that region: 

(3.8) 

Now we nondimensionalize our equations. We nondimensionalize f, i, and all our 
associated constant radii by fo, our pay zone radius. We normalize our concentrations 
by the maximal concentration at the boundary, which is given by (3.3) and (3.5) to be 
Po/ RT. We nondimensionalize y by a/2, half the width of our fracture. Summarizing, we 
have the following: 

T 
T = -=--, 

To 

X 
x=­ - ' To 

G _ CoRT 
0 - Po ' 

Using equations (3.9) in (3.7), we have 

ff 
TJ=-:-, 

To 

2'[) 
y=-. 

a 

PoDo (82Co + _! 8Co + _!_ 82Co) = 0 
RTf5 8T2 T 8T T 2 802 

82 Co + _! 8Co + __!_ 82 Co = 0 
8T2 T 8T T2 802 . 

Using equations (3.9) in (3.8), we have 

2 32c1 32c1 
E f 8x2 + 8y2 = 0. 

(3.9a) 

(3.9b) 

(3.10) 

(3.11) 

Now we need to complete our boundary conditions for our system of equations (3.10) 
and (3.11). In the rest of this report, if no range is listed for an independent variable, it 
is assumed to be the entire range. We have let y = 0 be the centerline of our fracture, so 
since the problem is symmetric, we have 

8C1 
-8 (x,0) = 0, 

y 
(3.12) 
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and we only need to solve in the region O :S y :S 1. In addition, since the fracture splits 
in two directions, we know that the concentration in the pay zone must be symmetric in 
each of the four quadrants; hence we only need to solve in the region O :S 0 :S 1r /2 and we 
have 

3Co (T ~) = 0 
30 '2 

3Co 
30 ( T, 0) = 0, T J :S T :S 1. 

(3.13a) 

(3.13b) 

Along the boundary between the fracture and the rock we want the concentration to 
be continuous. We approximate the top of the fracture in the pay zone coordinates by 
(T, tan- 1(0'.c:1)) for Tb :ST :S TJ· However, since c:1 is small, tan- 1(0'.c:1) ';:::j O'.EJ and we 
have 

Co(T,O'.EJ) = C1(x, 1), Tb :ST :S TJ· 

Similarly, along the end of the fracture we have 

(3.14a) 

(3.14b) 

In addition, we want the normal flux to be continuous there. First we note that 
j = -DVC. Therefore, to balance along the top of the fracture we have to set the angular 
flux into the fracture equal to the flux in they direction inside the fracture, which we write 
as 

Do 3Co _ 861 (- a) ----(T O'.EJ) = -D1-- x - 'rb <_ r <_ 'rf 
f 80 ' 8fj '2 ' 

Do Po~ 3Co ( ) _ 2D1 Po 8C1 ( ) 
foRT T 80 T, O'.EJ - aRT 8y x, 1 ' Tb :ST :S TJ 

/3c:} 3Co 3C J 
-;:- 30 (T,O'.EJ) = ay (x, 1), Tb :ST :S TJ- (3.15a) 

To balance along the end of the fracture we have to set the radial flux into the fracture 
equal to the flux in the x direction inside the fracture, which we write as 

(3,15b) 

We end this section by nondimensionalizing equations (3.5) and (3.6) and converting 
them to concentration values: 

Co(l, 0) = 1 

Co(Tb, 0) = 0. 

Since the fracture also abuts the bore hole, we have 

(3.16) 

(3.17) 

(3.18) 



Section IV: No Fracture 

The first model we consider is that of gas flow with no fracture in the pay zone. Hence 
we only have region Oto consider, and there is no fracture to break radial symmetry. Hence 
equation (3.10) with its remaining relevant boundary conditions (3.16) and (3.17) become 

d2 Co 1 dCo 
--+--=0 
dr 2 r dr 

Co(l) = 1 

Co(rb) = 0. 

( 4.1) 

(4.2) 

(4.3) 

The solution of equation (4.1) is Co(r) = A1 + A2 logr, where the Aj are constants. 
Solving for them, we have 

Co(r) = log(r /rb). 
log(l/rb) 

(4.4) 

Now we wish to know the flux through the borehole. The flux is only in the radial direction, 
so we have - r27r ac 

Q = h Jo Do a/(rb)d0. 

Nondimensionalizing, we have the following: 

QRT 127r 8Co -- Q=rb -(rb)d0 
DoPo O 8r 

27f 

log(rb) · 
(4.5) 



Section V: Fracture Included 

Now we wish to examine the more difficult case of the full set of equations derived in 
section III. Since cf « I and cf only appears in conjunction with Cf terms, we postulate 
the following perturbation expansion inc 1: 

00 

C1 = I:ctcf), (5.1) 
j=O 

where n is as yet undetermined. Substituting equation (5.1) into the equations with cJ 
explicitly in them, namely (3.11), (3.15a), and (3.15b), we have the following: 

(5.2) 

(5.3) 

(5.4) 

We see that equation (5.4) provides the strongest criterion for n, namely that n = 1. 
For the remaining equations in our system, we simply match term-by-term. We now begin 
our consideration of our system of equations in the fracture. From equations (5.3) and 
(5.4) we see that to obtain boundary conditions for C0 , we have to solve our equations up 
to order c:}. 

Order O in Fracture 
Using the fact that n = 1 and taking the zeroth order terms from (5.2), (3.12), (5.3), 

and (3.18), we have 
a2c(o) 
__ f_=O 

[)y2 

ac<0) 

0~ (x,O) = 0 

ac<0) 

-/-(x, 1) = 0 
y 

(5.5) 

(5.6) 

(5.7) 
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(5.8) 

The solution of equations (5.5)-(5.8) is c}°\x, y) = c}0\x). Note that there is now no 
variance in the y direction, and hence no variance across O ::; 0 ::; aE J · Since cf « 1, 
we then approximate our boundary conditions there by 0 = 0 and allow (5.4) to become 
a point boundary condition. This causes the rest of the zeroth-order equations [namely 
(3.14a), (3.14b), and (5.4)] to become 

c]°> (x) = Co(r, 0), Tb ::; r ::; r J 

CJ0\r1) = Co(r1,0) 

c]°>1(r1) = 0. 

Order 1 in Fracture 

(5.9) 

(5.10) 

(5.11) 

Now taking the first order terms of our fracture equations (5.2), (3.12), and (5.3), we 
have 

a2c<1> 
f -0 -8y~2--

ac<l) 
a~ (x,0) = 0 

ac<1> 
a~ (x, 1) = 0. 

(5.12) 

(5.13) 

(5.14) 

The solution of equations (5.12)-(5.14) is c;1\x, y) = c;1\x). However, since equation 

(3.14a) becomes c;1\x, 1) = 0, we have c;1\x, y) 0. Hence the first-order term of 
equation (5.4), which is the real equation of interest for this order, becomes 

(5.15) 

Order 2 in Fracture 
Now taking the second order terms of our fracture equations (5.2), (3.12), and (3.14a), 

we have 
820 c2> 

f (0) 11 _ 

-ay-2-+ c1 -o 

acc2> 
a~ (x, 0) = 0 

c/> (x, 1) = 0. 

(5.16) 

(5.17) 

(5.18) 



The solution of equations (5.16)-(5.18) is 

C (2)( ) - C(O)"( ) 1- y2 
f x,y - f X 2 . 

Also, equations (3.18), (3.14b), (5.3), and (5.4) become 

C;2\rb,Y) = 0 

c?\r1,Y) = 0 

/3 aco ac;2) 
--;: ae (r,0) = 3y(x, 1), rb :Sr :S r1 

ac<2) a: (r1' y) = 0. 
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(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

Note that equation (5.23) is a third boundary condition for a two-point boundary value 
problem; hence it becomes a consistency condition. Using equation (5.19) in equations 
(5.20)-(5.23), we have the following system: 

/3 8Co (0) 11 

-;: 80 ( r, 0) = -Cf ( x), r b :S r :S r f (5.24) 

(5.25) 

However, since r = x on 0 = 0, (5.24) is also a boundary condition for equation (3.10). 
Hence, we now have a solvable system of equations for Co: 

8 2 Co 1 8Co 1 8 2 Co 
--+--+---=0 
8r 2 r ar r 2 802 

Co(l,0) = 1 

Co(rb, 0) = 0 

8Co (r ~) = 0 
80 '2 

/3 8Co 82 Co 
--;: 80 (r, 0) = - 8r2 (r, 0), n :Sr :S r f 

8Co 
80 (r, 0) = 0, r J Sr :S 1 

8Co 
8r (r f' 0) = 0. 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 



Section VI: Singular 
Perturbation Solution 

Outer Solution 

Now we wish to solve our system of equations (5.26)-(5.32) using a singular pertur­
bation approach. We begin by assuming the following perturbation expansion of Co in 

Co = C6°) + o(l), (6.1) 

where the superscript (o) indicates that this is the outer solution. Using equation (6.1) in 
equation (5.30), we have the following: 

(6.2) 

(Since c / << co, our assumption that we may approximate the boundary condition by 
0 = 0 still holds true.) Now letting co - 0 and combining (6.2) with (5.31), we have a 

new system for C6°): 
a2c<0 ) 1 ac<o) 1 a2c<0 ) 
--'-o-+ ___ o_+- o =0 

8r 2 r 8r r 2 802 

C6°\1, 0) = 1 

C6°) (rb, 0) = 0 

8C6°) ( ~) _ 
80 r, 2 - O 

ac(o) 
a~ (r,0)=0 

ac(o) 

--fr-(r1,0) = 0. 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

. (6.7) 

(6.8) 

However, we now note that there is no longer any 0 dependence in the problem and 
our solution immediately reduces to ( 4.4): 

C(o) (r O) = log(r /rb) 
0 ' log(l/r1,) · 

(6.9) 



Group 4-2 VI.2 

To check our assumption, we plug in our solution (6.9) into (6.2): 

O = Eo 
T log(l/Tb) 

(6.10) 

Unfortunately, Tb = 1.67 x 10- 4 = O(.s5). Hence the right-hand side is no longer negligible 
in a region near the bore hole. Thus, we must try a singular perturbation approach by 
introducing an inner expansion variable scaling where the two terms in equation (6.2) are 
of the same order. Our outer expansion still holds true for the outer region, so we lose one 
boundary condition and our outer solution becomes the following: 

C6°) (T, 0) = 1 + As log T, (6.11) 

where As is yet to be determined. 

Inner Solution 

We expect ct) to be 0(1) in the region, so we introduce the following scalings in the 
independent variables only: 

A T 
T=­ m' co 

A 0 
0=- n' co 

A A A (o) 
Co(r, 0) = C0 (T, 0), m ~ 0, n ~ 0. (6.12) 

Then, for the proper choices of m and n, these variables will have the unique quality that 

)im Co(f, 0) = lim C6°\r, 0). (6.13) 
r---+cx:> r---+rb 

We also approximate our small radius Tb, which is O(c5), by the origin. Using that fact 
and equations (6.12) in (6.3), we have the following: 

(6.14) 

Note that if n > 0, then the leading order in equation (6.14) implies that Co is a linear 

function of 0, which we cannot match to our outer expansion ct). Hence we find that 
n = 0, and we will drop the hat on 0 in the rest of the section. 

Next we introduce our scalings into equation (6.2): 

A 2 A 

8Co ( A ) A 1-m a Co ( A 0) 
80 r,O = -TEo 8f2 r, ' 0 :Sf< (X). (6.15) 

This implies that m = 1. Now, in order to make the problem easier to solve, we convert 
from (f, 0) to (x, (), where the standard transformations are used: 

(6.16) 
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Doing so, equation (6.14) becomes the following: 

0 :S i: < oo, 0 < ( < oo. (6.17) 

Here the ( has a strict inequality since we have the differential equation (6.15) for a 
boundary condition there. Since we are approximating Tb by the origin, equation (6.5) 
becomes 

C(O, 0) = 0. (6.18) 

Continuing with our boundary conditions, we have from equation (6.6) that 

ac A ax co,() = o, c > o. (6.19a) 

Note that equation (6.19a) has a strict inequality. This is because at the fracture (which 
we have now taken to be the line ( = 0), the flux is not 0. In fact, taking the derivative of 
equation (3.14a) with respect to f on the left-hand side and with respect to x on the right­
hand side (since r = x on the line 0 = 0, which is our approximate fracture boundary), we 
have 

acl (o o) = a6o (o o) ax ' ar ' · 
Then nondimensionalizing and solving together, we have 

aio (0, 0) = aa°: (0, 0) 

_.!_ a~o (0, 0) = acf (0, 0) 
co 8r ax 

(6.19b) 

In our solution, we solve as if q = 0(1), since we now expect a large flux at the borehole. 
Continuing with our boundary conditions, from equation (6.15) we have 

8~ (x, o) = - 8
8

2
A~ (x, o). 

8( X 

Our matching condition (6.13) gives us the following: 

A A (o) 
C( oo, () = C0 (rb) 

A A (o) 
C(x, oo) = C0 (rb)-

(6.20) 

(6.21a) 

(6.21b) 
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We wish to solve equations (6.17)-(6.21) using a Fourier cosine transform method. To 
use that method, however, our boundary conditions at x and ( equal to oo must be 0. 
Hence we introduce the following transformation: 

C(x, () = ca0 ) (rb) [ 1 - u(x, ()] . (6.22) 

Using equation (6.22) in equations (6.17), we have the following: 

0 ~ x ~ oo, 0 < ( < oo. (6.23) 

Equation (6.21a) becomes 
u(oo, () = 0, (6.24) 

while equation (6.19a) becomes 

au A ax (o, () = o, ( > o. (6.25) 

Continuing to rewrite our boundary conditions, equation (6.20) becomes 

au ( A ) 82u ( A ) -A x,0 +aA2 x,0 =0, 
8( X 

(6.26) 

equation ( 6.19b) becomes 

(6.27) 

and equation (6.21b) becomes 
u(x, oo) = o. (6.28) 

Lastly, we may rewrite our boundary condition at the origin given by (6.18) as 

u(O, 0) = 1. (6.29) 

Applying the Fourier cosine transform to equation (6.23) subject to (6.24) and (6.25), 
we have the following, where we assume,,\ to be a constant: 

-.-\ 2v + v"(() = 0. (6.30) 

Applying the Fourier cosine transform to equation equation (6.26) subject to (6.24) and 
( 6. 27), we have 

( ; (2 - .-\2v(0) + v'(O) = 0. 
C0° (rb) V; (6.31) 

Equation (6.28) now becomes 
v(oo) = 0, (6.32) 
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and equation (6.29) is not used. Solving (6.30) subject to (6.31) and (6.32), we have 

from which we have 

A A 2q 100 e-,\( cos(>-.x) 
u(x, () = (o) >-.(>-. l) d>-.. 

1rC0 (rb) o + 
(6.33) 

We note that the integral diverges. We move into the complex plane and treat the 
lower limit formally. 

A A - 2q [ . loo e-,\(+i,\x 1(X) e-,\(+i,\x l 
u(x, () - ( ) ~ hm , d).. - , d).. 

1rC/ (rb) 11-+0 17 " o /\ + 1 

__ 2_q_~ [nm loo e-t dt - i-ix j(X) e-t((-ix) dt] . 
1rCt\rb) 17-+0 17((-i:i:) t 1 t 

Using equations (2.2), which define the exponential integral, we have the following: 

(6.34) 

At this juncture it is appropriate to write down asymptotic expansions for E 1 (s): 

E1(s) ~ -'Y - logs, s-+ O; 

Rewriting u in terms of Co(f, 0), we have 

e-s 
E1(s) ~ -, s-+ oo. 

s 

Again we note that our first integral, now represented by 

(6.35) 

(6.36) 

is divergent. For our problem this is not physically reasonable. Since we wished to use a 
cosine transform, we extended the x and ( to a semi-infinite range. However, x and ( are 
only O(c:01) at our boundary r = 1. A more correct but more complicated method would 
involve a discrete eigenfunction expansion. In this case, the difference between subsequent 
eigenvalues would be O(c:0 ) because our region is O(c:01 ). Since the problem is not isotropic 
in the x direction, the first eigenvalue )q would be greater than zero. This would indicate 
that our limit rJ (which corresponds to >-1) remains small, but never reaches 0. 
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Using (6.35), we know that 

lim E 1 (-TJifei 0 ) = - log f - 1 - log 77. 
'1]--,0 

We use the above in equation (6.36) to obtain a new representation for our inner solution: 

(6.37) 

Boundary and Matching Conditions 

We now need to solve our matching conditions while satisfying the boundary condition 
C0 = 0 at the borehole. We begin with the condition at the borehole. Using (6.35) again, 
we see that equation ( 6.37) becomes 

A 2q 
Co(f, 0) = -(A4 - ,). 

7f 
(6.38) 

Setting the above equal to 0, we have A4 = 1 . Using that fact and equation (6.35) in 
equation ( 6.37), we see that 

C0 (f, 0) ~ 2q (logf + ,) as f---+ oo 
7f 

Writing the outer sol utio11 ( 6.11) in terms of the inner variable f, we have 

C6°\f, 0) = 1 + As logcof 

(6.39a) 

(6.39b) 

Matching the inner solution (6.39a) and the outer solution (6.39b) as f---+ oo yields 

As= 2q, 
7f 

2q, 
- = 1 + As log co 

7f 

Solving the two parts of (6.40) together, we have 

7f 
q= 

2(, - log co)' 

1 
As=----

1-logco 

(6.40) 

(6.41) 

Using equations (6.41) in equations (6.37) and (6.39b), we now have our inner and 
outer solutions: 

Co (f, 0) = 1 { log f +, + ~ [exp( -ifei 8)E 1 (-ifei 0 )]} 
1 - logc:o 

(6.42a) 
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C6o\r, 0) = I+ logr . 
, - logc:o 

(6.42b) 

However, note that using equation (6.35) as r -- oo, the inner solution reduces to the 
outer solution. Hence, (6.42a) is the uniformly valid solution. We rewrite it in terms of 
the outer variables and denote it by the subscript (u) for uniform. 

c(u) ( B) _ log(r /c:oe- 1 ) 1 R [ ( irei 0 ) E ( irei 8) l 
0 r, - log(l/c:oe-,) + log(l/c: 0e-,) exp -~ 1 -~ · 

(6.43) 

Verification of Uniform Solution 

Now, since we have performed several steps in our analysis without rigorous mathe­
matical justification, we check that equation (6.43) satisfies our system of equations (5.26)­
(5.32) to O(c:o). To show that it satisfies Laplace's equation, we note that if we move into. 
the complex plane, the logarithm is an analytic function everywhere except at the origin. 
However, equation (6.38) shows us that the singularity in the logarithm is exactly canceled 
by the singularity for the E1 term, and the function is analytic there as well. So (5.26) is 
satisfied. 

As r -- 1, the second term in equation (6.43) decays algebraically while the first term 

goes to 1, so we have C6u) (I, 0) = I + O(c:o). As r -- Tb, which we have assumed to be 
small, our asymptotics in equation (6.38) show that we yield the correct solution to O(c:o). 
For equations (5.29)-(5.32), we calculate the necessary derivatives using equation (6.42a): 

ac~u) 113 [ . i0 ( •A i0)E ( •A i0)] Bf = :1t -ie exp -ire 1 -ire 

A O A 2i0 • A i0 • A i0 ie a2c(u) [ · i0] 
r ar2 = -rR e exp(-ire )E 1 (-ire ) - T . 

Using equation (6.44) at 0 = 1r /2 to satisfy (5.29), we have 

R [if exp(r)E1 (r) - i] = 0, 

(6.44) 

(6.45) 

(6.46) 

which is trivially satisfied. Using equation (6.15) with m = 1 instead of (5.30), and then 
using equations (6.44) and (6.46) at 0 = 0, we have 

R[rexp(-ii)E 1 (-if)] = flR [exp(-ir)E1(-if) -f], 
which is again trivially satisfied. We use equation (6.44) at 0 = 0 for equation (5.31): 

?R[fexp(-if)E1(-if)] = 0. 
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Asymptotically expanding the above for large f using equation (6.35), we have 

R [-i + O(Eo)] = 0. 

For equation (5.32), we use (6.45) evaluated at 0 = 0: 

R[-iexp(-if)E 1(-if)] = 0. 

Once again asymptotically expanding for large f using equation (6.35), we have 

O(Eo) = 0. 

Hence we have satisfied our entire system of equations, and (6.42) is the solution of our 
problem to O(Eo). 

Flux Calculation 

As a first guess, we surmise that all the flux is coming from the fracture, so we integrate 
our flux there over the width of both fractures, yielding 

- 861 
Q = 2aD1 ax (0, 0) 

2aPoDJq 

RTroEo 

Q = - a1r 
roEJlog(l/coe-~) 

27r 

To actually calculate the flux, we integrate around r = 1: 

Q = r (27f 1 dBi 
} 0 r log(l/coe-~) r=l 

21r 

(6.47) 

(6.48) 

Since the two equations agree, we see that our intuition was correct and that to leading 
order all the flux comes from the fracture. 



Section VII: Variational 
Principle Solution 

For this section, each fracture only extends in one radial direction; hence, in the 
notation of this section, the perturbation computations were for two fractures. 

From the perturbation analysis we determined that the zeroth order approximation 
Co is the solution to the problem: 

Co(l,0) = 1, Co(rb, 0) = 0, 

with the additional boundary condition that 

!_ [/3-(r) 8Col + .!_ 8Co = 0 
8r 3 8r r 80 

along the jth fracture at 0 = 0j and 

/3·( ) = DJaj(r) 
3 r 2D - ' oro 

(7.1) 

(7.2) 

(7.3) 

where aj(r) is the width of the jth fracture as a function of rand is set equal to zero from 
the end of the fracture up to r = 1. We shall now construct a variational formulation of 
the same problem. We define the functional Y by 

(7.4) 

where N is the number of fractures. We were able to prove that our initial problem is 
equivalent to the following variational formulation: 

min Y(C) = Q. 
C(rb,0)=O,C(l,0)=1 

(7.5) 

The proof is easily obtained by differentiating Y( Co + fJ J) with respect to fJ at fJ = 0, 
where f(r, 0) is an arbitrary perturbation of the minimizing function Co which satisfies 
f = 0 at r = Tb and r = 1. The derivative has to be equal to zero for all f, i.e., 
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Integrating by parts, we obtain 

Since (7. 7) has to be equal to zero for arbitrary P, Co must be the solution to 

V 2Co = 0 inn 

with the boundary conditions 

Co(rb, 0) = 0, Co(l, 0) = 1 

and 
I 8Co 8 ( 8Co) 
;: 80 + 8r /3j 8r = O, 0 = 8i· 

We note here that the value of Y at its actual minimum Y(C 0 ) is 

Y(Co) = {21r 8Co(I,0) d0 = Q. 
Jo 8r 

(7.7) 

The proof is a straightforward, but messy, calculation. In order to obtain an approximate 
value for T( Co), we restrict the class of functions over which we are minimizing to functions 
which depend on r only. When we introduce C(r) = Co(r) + bf(r) into the variational 
problem, we obtain the following ordinary differential equation : 

Co(rb) = 0, Co(l) = 1, 

where 
N 

T(r) = L 2{3j(r). (7.8) 
j=l 

The solution is easily obtained and is found to be 

1r dt 
Co(r) = As rb 21rt + T(t)' (7.9a) 

where 

(7.9b) 
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Let us now compute the total flux Q. Since T(l) = 0, 

f 2,r dC (27r As d0 
Q = Jo dr (I, e) de= } 0 21r + T(l) = As. (7.10) 

Thus, 

Q _ [11 dt ]-
1 

rb 27ff + T(f) 
(7.11) 

We now consider the particular case when all cracks have the same length r f, and the 
same constant value /3. Thus, 

and Q is given by 

rn 

T(r) = L2/3j(r) = 2m/3, 
j=l 

Q = 2rr [iog ( c2/r;;!~r,) ]-, 

(7.12) 

(7.13) 

We then normalize Q bythe flow rate with no fracture, which is given by (4.5). In figure 
7a, we plot the normalized flow rate with respect to T(r). In this special case, T(r) = 2m/3. 
In figure 7b, we plot the normalized flow rate, which is proportional to the grosse revenue, 
versus the number of fractures for a constant value of /3 = 1/30. From these graphs we 
conclude that it is highly profitable to hydrofracture the porous medium with up to four 
cracks. 

i 
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Fig 7a: Hydrofracture flow rate 
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Section VIII: Conclusions and Future Research 

Conclusions 

In this report, we have studied a steady-state model for gas flow in a hydrofractured 
oil field. Without the fracture, equation ( 4.4) becomes 

Co(r) = log(r/rb) 
log(l/rb)' 

(8.1) 

so the effective radius of the borehole is Tb= 1.7 x 10- 4 . However, when we introduce our 
fracture, the new flow for moderate r is given by equation (6.43), and is 

(8.2) 

Note that here our effective radius is Eoe--r = 1. 7 x 10- 2 , an increase of two orders of 
magnitude. Hence, it is easy to see the usefulness of producing hydrofractures. 

Note from equation We employed a perturbation analysis to find out the flow rate 
through the borehole with two fractures: 

Q = 21r 
--y - logEo' 

where Euler's constant --y = 0.5771. 
The above result shows how the amount of gas flowing out of the borehole depends 

on the width and permeability of the fracture. 
Using a variational principle, we obtained an approximation to the flow rate with 

multiple fractures. In the case of two fractures and taking the radius of the borehole to be 
approximately zero, the variational method gives us the flow rate 

Q = 27r 
d - logc:o' 

where d = log(1r /2) + log(l + 2c:0 /1rr f ). The second term in d would be generated by 
calculating the perturbation result to higher order. Discarding the second term in d, we 
get d = --y - 0.125, so the two results agree very well, seldom differing by more than 
6%. Thus, we conclude that the variational method has given us a surprisingly good 
approximation considering the crudeness of our trial functions. 

Considering the case of multiple fractures, especially the case of an odd number of 
fractures, we would encounter great difficulties using a perturbation method since we 
would not be able to use the symmetry property to solve the Laplacian problem in our 
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perturbation analysis. Therefore, the variational method is superior in solving multi­
fracture problems where asymptotic solutions cannot be obtained. We also believe the 
variational method will render a better approximation when the number of fractures is 
increased. 

Future Research 

In the future, it will be important to extend our steady-state model to a transient 
one. In the transient model, the pressure will change with time, from which we can extract 
the relation between the flow rate of gas in the borehole and the pressure in the fractured 
field. This will then allow one to determine the actual fracture widths and permeabilities 
from the measured flow rate vs. pressure curve. 

Another important area to work on is the extraction rate in fields with many inter­
acting oil and gas wells. The work will be to model several hydrofractured wells with 
interactions between each other (see figure 8a) . 

• 

• • • 

• 

Figure 8a. Pay zone with multiple fractures, top view. 




