
Hybrid Programmatic TV Markets

Problem Presenter

Marco Montes de Oca, Clypd

Report Editor

David A. Edwards, University of Delaware

Thirty-Second Annual Workshop on Mathematical Problems in Industry
June 13–17, 2016
Duke University

Table of Contents
Preface ii

Model Formulation; Asymptotics 1
D. A. Edwards

No-Replacement Algorithms and Other Stuff 29
B. Emerick, E. Goldwyn

Algorithm Engineering 36
E. Palmer, M. Vazquez

Algorithm Flow Chart 45
M. Sirlanci

Winner Determination Problem – Mathematical Programming Approach 46
P. Narayanan

Qualitative Properties of the Value Matrix 51
M. Chugunova

Replacements 54
I. de Teresa, M. Vazquez

i

Preface
At the 32nd Annual Workshop on Mathematical Problems in Industry (MPI), Marco

Montes de Oca of Clypd presented a problem concerning the optimization of auctions of
television advertising slots.

This manuscript is really a collection of reports from teams in the group working on
several aspects of the problem. Here is a brief summary of each:

1. Edwards wrote up the main results that the bulk of the group generated during the
week. His chapter contains an outline of the general problem, and presents results
from some simple optimization algorithms.

2. Emerick and Goldwyn analyze the “max-sum” and “sum-max” no-replacement algo-
rithms and discuss the effect of increasing pod size on total number of placements.

3. Vazquez and Palmer discuss other ways to weight the value matrix, other ways to
provide counteroffers and discounts, and how to give preference to certain buyers.

4. Sirlanci provides a flow chart outlining the entire algorithm.
5. Narayanan outlines an award algorithm based upon satisfying as many complete bids

as possible.
6. Chugunova illustrates a paradox regarding the value matrix whereby a bidder can

increase his chances of winning a bid by reducing the number of slots in the bid.
7. Teresa and Vazquez discuss various ways to provide replacement bids to losing bidders.

In addition to the authors of these reports, the following people participated in the
group discussions:

Joseph Fehribach, Worcester Polytechnic Institute
Azmat Hussain, North Carolina State University
Tuan Le, George Mason University
Qingxia Lia, Fisk University
Christopher Raymond, University of Delaware

Special recognition is due to Marylin Vazquez, Erik Palmer, and Melike Sirlanci for
making the group’s oral presentations throughout the week.

ii

Model Formulation; Simple Algorithms

David A. Edwards, University of Delaware

NOTE: Though Edwards wrote up this chapter, it is a summary of the week’s work of
the entire group (enumerated in the preface).

Model Formulation; Simple Algorithms 1

Section 1: Introduction
Advertising agencies want to place television advertisements for their clients which

will expose their products to a particular target audience. The target may consist of
characteristics such as age, gender, income level, etc. Typically an advertiser would like
a certain amount of impressions (i.e., views) for each advertising campaign, either for the
target audience or the total audience. These impressions are further categorized as total
impressions (number of times the ad was seen) and unique impressions (i.e., the number
of different people who saw the ad).

Agencies (buyers) place orders with the networks (sellers) for desired commercial slots.
A slot is a designated time on a particular network (e.g., CNN on September 1, 2016, from
10:12–10:14 am) which can run one or more commercials in pods. (For instance, the slot
described above could contain four 30-second pods.) The orders come in two types:

constrained orders, where the order specifies a certain number of impressions for a
particular target audience. It is then the responsibility of the seller to assign the
commercials to specific slots which historical data indicate will provide the target
audience. (Consideration of this facet of the problem is presented in [1].)
bid orders, where the buyers (having presumably done their own market research) list
specific slots (time, date, and network).

Typically bid orders will pay a premium for their slots due to their selectivity. The remain-
ing slots are then assigned to the constrained orders while matching the target audience
characteristics.

Often, more than one bid order will come in for the same slot. In that case, the
sellers cannot completely fill every order. Rather, they must make a counteroffer for an
incomplete order. The counteroffer can consist of one or more of the following:

an offer to run a subset of the slots requested, at a reduced rate. Not only is the rate
reduced by the number of slots not filled, but an additional discount is often taken
since buyers are typically willing to pay a premium for a specific series of slots.
replacement of the unfulfilled slots with other slots, which the seller can hopefully
justify as having the same sort of target audience as the unfulfilled slots.

The default option is at the least to provide replacements, with or without discount. In
addition, typically the largest advertisers are given priority on receiving complete bids.

The above discussion refers to a synchronous auction, where all bids come in at the
same time, and are settled at the same time. Often advertising auctions are asynchronous,
and bids come in at various times. As a simple example, consider a week-long auction
where bids are due each day at noon. Each evening, the sellers provide feedback to the
buyers (information about counteroffers, etc.) given all bids submitted to date. This
process is repeated for a week, and then final counteroffers are submitted and trades are
settled.

Fortunately, given that settlement issues do not figure heavily in the subsequent anal-

2 D. A. Edwards

ysis, we choose to treat a week-long asynchronous auction as a series of seven synchronous
ones.

In this manuscript, we study several such auction scenarios so that the sellers may
maximize their revenue.

Model Formulation; Simple Algorithms 3

Section 2: The Bid-Order Auction
We begin by considering the case of bid orders only, especially since the work in [1]

gives a way to convert constrained orders into bid orders.
Let jmax be the number of slots available. (In a typical real-world scenario, jmax

can be O(105); for the test data we used at the workshop, we had jmax =14,861, which
corresponds to around a week’s worth of slots.) For each slot, we had viewership data (since
the test data was historical). In particular, we knew how many impressions (viewers) each
slot had, by gender and by age bracket. This data can be expressed as a 3-tensor V , the
viewership tensor, where

vjag = impressions for age bracket a and gender indicator variable g for spot j. (2.1)

The interpretations of a and g are given in Table 2.1. Note that there are 30 different
demographic categories for each slot.

a Age Range a Age Range g Gender
1 2–5 9 30–34 1 Female
2 6–8 10 35–39 2 Male
3 9–11 11 40–44
4 12–14 12 45–49
5 15–17 13 50–54
6 18–20 14 55–64
7 21–24 15 65+
8 25–29

Table 2.1. Interpretation of a and g.
Let imax be the number of bid orders submitted, which is typically on the order of

hundreds. Typically each advertiser submits only one bid. The bid consists of two parts:

1. a list of slots the advertiser wants. The information from all the orders can be compiled
into a bid matrix B, where

bij =

{
1, if order i requests slot j,
0, else.

(2.2)

Bids typically request only a few percent of the slots available, so B will be sparse.
Nevertheless, there are 2jmax different possible combinations for the orders (with re-
placements), so treating the problem as some sort of integer programming problem
can quickly become unwieldy.

2. a bid price ui the advertiser is willing to pay for the entire order submitted.

We did not have access to actual bid data. Instead, we simulated the bids as follows:

1. We created a series of impression requirements modeling reasonable desires of adver-
tisers.

4 D. A. Edwards

2. We then used the historical test data (where V is known) to generate bids that would
satisfy those constraints.

These then became the bids for our optimization procedure.
Each slot j has a reserve price rj , which reflects the lowest price for which a seller is

willing to sell a slot. This then establishes a lower bound for the bids:∑
j

bijrj ≤ ui. (2.3)

Hence any bid for which (2.3) is not satisfied should be rejected. However, we will see in
the next section that there are ways to salvage such bids and give the buyer some subset of
what (s)he wants. Also, in some cases (say, when a slot will air before the next auction),
the seller may be willing to sell the spot for less than rj rather than for it to remain unsold.

The seller’s objective is to maximize the revenue received. If there were no overlap
between the bids, the seller would automatically accept any bid for which (2.3) is satisfied,
since no other seller would want the same slots. Similarly, if there were perfect overlap
between the bids, for each group of slots the seller would accept the largest bid that satisfied
(2.3).

Unfortunately, there is often much (but not perfect) overlap between the bids. Hence
a counteroffer must be proffered. The seller’s counteroffer consists of

1. an assignment matrix C, where

cij =

{
1, if order i is given slot j,
0, else.

(2.4)

Note that the number of ones in column j is at most the number of pods in slot j,
which we shall denote by πj . Hence∑

i

cij ≤ πj , j = 1, . . . , jmax, (2.5)

and C will be even more sparse than B.
2. a counteroffer price xi the seller is willing to accept for the slot assignment.

At this stage, the seller then wants to maximize the sellers’ revenue f :

f =
∑
i

xi. (2.6)

But how to formulate the counteroffer? The problem becomes more tractable if instead
of the total bid price ui, the sellers know the value that order i places on slot j. This
information can be represented as the value matrix P , where

pij = value to order i of slot j, (2.7)

Model Formulation; Simple Algorithms 5

in which case
xi =

∑
j

cijh(pij),

where h is some function of the pij , to be modeled in later sections. With this formulation
of the objective function, the sellers’ revenue can be maximized using various techniques,
as discussed in later sections.

Of course, the bidders do not disclose information regarding P to the seller. Therefore,
our analysis will depend largely on the assumption that the matrix P can be somehow
inferred from the bid data using facts about the viewership tensor V . Various techniques
for modeling P will be discussed in the next section.

6 D. A. Edwards

Section 3: Modeling the Value Matrix
The first step in solving our optimization problem is creating an algorithm that will

infer the value matrix P given the bid prices and the viewership tensor. In the test case,
we know V since data is historical. In the real-world scenario, V for future slots can be
estimated from historical viewing patterns. (For instance, slots at the same time each week
would have similar viewing patterns.)

Impressions-Based Approaches

We first use several kinds of impressions-based approaches. In these methods, we infer
the value matrix by using demographic data.

Total Impressions. The simplest way to model P is to base it on the total number of
impressions for each desired slot:

pij = (total bid i)(impressions for slot j)

(
value to i

desired impression

)
= ui

(∑
a,g

vjag

)
wi,

(3.1a)
where wi, the weighted value per impression, is defined by

wi =

∑
j,a,g

bijvjag

−1

. (3.1b)

Note that wi contains impressions only for the desired slots, since those are the only ones
that are valued in the bid ui. Moreover, if we define

p∗ij = bijpij , (3.2a)

then p∗ij = 0 if the buyer didn’t want slot j. Working with p∗ij instead of pij will ensure
that a buyer will never be awarded a slot (s)he didn’t request. With this definition, we
have the following constraints:∑

j

p∗ij = ui, i = 1, . . . , imax, (3.2b)

which reflects the fact that the sum of the inferred values of the bid items must equal the
bid price.

For an illustration, see Table 3.1. Here the buyer wants to buy slots A and B for $272.
The total number of impressions for those two slots is 16(= 7 + 9), so wi = 1/16. Hence
the buyer values impressions at $17(= $272wi) each. Hence slot A has an intrinsic value of

Model Formulation; Simple Algorithms 7

Total Demographic
Slot (1,1) (1,2) (2,1) (2,2) Total Model (1,1) (1,2) (2,1) (2,2) Model
A 1 2 1 3 7 119 0.04 0.15 0.04 0.22 124
B 2 3 2 2 9 153 0.09 0.22 0.09 0.15 148
C 3 3 1 1 8 136 0.13 0.22 0.04 0.07 128
Desired 3 5 3 5 16 Sum of Squares: 68

Demographic
Impressions

Demographic
Values

Table 3.1. Inferring P values from a total bid ui = 272. Here there are just
four different demographics, rather than 30. Italicized entries: slots desired by bidder.

$119(= 17 · 7), B has an intrinsic value of $153, and slot C has an intrinsic value of $136,
as shown in the “total model” column.

We note that if pij < rj , it may be desirable to set this bid equal to zero so there
is never a chance the slot will be assigned to buyer i. This will be useful when we start
trying to assign slots individually, rather than as part of a bid. In that case, we declare
any bid where pij < rj to be infeasible, and we define a new feasible value matrix Q given
by

qij = pijH(pij − rj), (3.3)

where H(·) is the Heaviside step function. For our data, this case actually happened quite
often:

85% of the pij came in under the reserve price.
If we restricted our analysis to p∗ij , the rate dropped to 46%.
Though 61 out of 300 complete bids would be rejected because they did not satisfy
(2.3), no bidder had all values of pij < rj . Hence a buyer whose complete bid would
be summarily rejected may still be able to compete for certain slots within that bid.

One key test is whether these estimates are stable to perturbations. Therefore, we
took the test data, ran the algorithm, and found the P matrix. Then we perturbed the
bid amounts for the test data as follows:

ui 7→ ui(1 +X), X ∼ N (0, (0.05ui)
2). (3.4)

In other words, we added a normally distributed variable with standard deviation equal to
5% of the original value. When we did this, the maximum relative error in pij was 15.1%.
This is to be expected, since from (3.1a) we have that pij is linear in ui, so the sensitivity

∂pij
∂ui

is simply a constant depending on the entries in B and V .

Demographic-Based Approach. A more complicated (and realistic) impressions-based
approach is given by valuing impressions from different demographics differently. In that
case, we have

pij = (total bid i)
∑
a,g

[
impressions for slot j and

demographic (a, g)

] [
value to i

desired impression in (a, g)

]
= ui

∑
a,g

vjagwiag, (3.5a)

8 D. A. Edwards

where wiag is the weighted value per demographic. Here this is defined by noting that if a
demographic has a higher number of impressions, it is assumed more valuable. We assume
a linear relationship; hence

wiag ∝
∑
j

bijvjag,

where the right-hand side is just the total number of impressions in demographic (a, g) in
the bid. The normalization factor αi is found by solving (3.2):

ui =
∑
j

bijpij = uiαi

∑
j

bij

∑
a,g

vjag

∑
j

bijvjag

1

αi
=
∑
a,g

∑
j

bijvjag

2

wiag =
∑
j

bijvjag

∑
a,g

∑
j

bijvjag

2

−1

. (3.5b)

Upon combining (3.5), we see that the value of a demographic varies quadratically with
the number of impressions, reflecting the weighting factor.

For an illustration, see Table 3.1. In this case, most of the impressions are from people
in demographics (1,2) and (2,2). Therefore, these impressions are assumed more desirable,
and hence receive a higher weighting. In particular, we have

wi11 = wi21 =
3

68
, wi21 = wi22 =

5

68
.

The values associated with each slot are listed in the far right column. Note that the values
for slots A and B sum to $272, as they should.

In this case, our results showed similar behavior under the noise in (3.4). In particular,
the maximum relative error in pij was 16.9%. Again, this is to be expected, since from
(3.5a) pij remains linear in ui.

In addition, the value matrix compared this way:

88% of the pij came in under the reserve price.
If we restricted our analysis to p∗ij , the rate dropped to 45%.
None of the 61 complete bids that would be rejected would be rejected piecemeal, just
as in the previous case.

There are several drawbacks to our demographic-based approach. First, it implicitly
assumes that value is given solely by demographics. However, slot value may also arise
from other issues (time of campaign start, clustering of spots, etc.). Thus our estimated
pij may be quite different from the buyers’ values of pij . This may lead to counteroffers

Model Formulation; Simple Algorithms 9

Buyer A B Total A B Total
1 1500 500 2000 2250 750 3000
2 1000 750 1750

Original Revised
SlotSlot

Table 3.2. Unusual behavior needed to guarantee slot.

that have inferior subsets of slots, or prices not as heavily discounted as would lead to
successful settlement.

In addition, the combination of this valuation approach with our assignment algorithm
may lead to perverse results. Consider the situation outlined in Table 3.2. With the original
bids, buyer 1 will receive slot A only because his bid for B fell $250 short. The sellers could
respond that the buyer needs to up his bid a certain amount to be competitive for slot B.
(This kind of communication can occur in asynchronous auctions.)

But note that given the value system, A is three times more valuable to the buyer
than B. Hence the bid would have to be increased by $1,000 (four times the differential)
in order for the bid on B to be competitive, which implies an overbid of $750 in the value
of slot A.

Market-Based Approach
A different algorithm is given under a market-based approach. In this approach, we

try to deduce pij from the bids alone. For instance, as a first model we could assume that
buyer i assigns an intrinsic value pij to each slot, if it were bought alone. However, the
value of subsequent slots is reduced by a time discount factor δij . Hence the equation of
each bid is given by ∑

j

δijpij = ui, i = 1, 2, . . . , imax, (3.6)

which replaces (3.2b) in our analysis. The δij are assumed known, and can take two forms:

Since each additional viewing usually produces fewer unique impressions, we say that
δij decreases with each additional showing:

δij = (δi)
kj , kj =

j−1∑
m=1

bim. (3.7a)

In other words, kj is the number of showings before slot j.
Bidders may wish to cluster their commercials together. In that case, δij decreases
with the time from first showing:

δij = (δi)
tj−tj∗ , j∗ = min

j
{bij = 1}. (3.7b)

where tj is the time of slot j. Here j∗ is just the index of the first slot bid. IMPOR-
TANT: The test data is not currently ordered chronologically; it would have to be
sorted first if this algorithm to be tested.

10 D. A. Edwards

Section 4: Maximizing Slot Values
Without Replacements

We begin by considering the case of counteroffers without replacements; that is, if a
buyer loses out on a particular slot to another buyer, the buyer receives fewer slots, rather
than the same number of slots with different assignments. Since we’re not going to make
replacements, we don’t want a bidder to be awarded a slot that (s)he did not initially want.
Therefore, we work with only the starred quantities.

Feasible Values

We begin by considering the case of feasible values. Hence

xi =
∑
j

q∗ijcij , (4.1a)

where q∗ij is defined similarly to p∗ij . If πj = 1, we may maximize f by assigning slot j to
the person who bid the most for it, and not to anyone else:

cij =

{
1, i = arg max

i
q∗ij ,

0, else.
(4.1b)

These counteroffer results were stable under noise. In the case where (3.1) was used
to calculate pij :

The relative change in the number of assignments was 1.4%.
The relative change in f was 2.6%.
However, the fraction of assignments that changed was 43.9%.

So the relatively small change in the counteroffer total was caused by switching a large
number of assignments. This is consistent with the top two values of pij being close
together for a certain j. Hence assignments were switched between bidders even as the pij
changed by small amounts.

Similar results held when we used (3.5) to calculate pij :

The relative change in the number of assignments was 1.2%.
The relative change in the sum of the counteroffers was 1.2%.
The fraction of assignments that changed was 50%.

The final revenue results using (3.5) are as robust to noise as those using (3.1). Since (3.5)
provides a finer-grained approach to estimating P , ALL FURTHER RESULTS WILL
BE CALCULATED USING (3.5).

Model Formulation; Simple Algorithms 11

This procedure maximizes the sellers’ revenue if every counteroffer is accepted, but in
practice this does not happen. Therefore, it is useful to measure the Hamming distance di
of each bid:

di =
∑
j

|bij − cij |. (4.2a)

This measures how close the slots in the counteroffer to bidder i matches the bidder’s
original choice of slots, and is thus a rough measure of how “happy” bidder i would be.
Another useful statistic is the percentage of requested slots not filled for bidder i:

dir = di

∑
j

bij

−1

, (4.2b)

where the subscript “r” refers to “relative”. We also compute β, the total percentage of
slots filled:

β =
∑
i,j

cij

∑
j

πj

−1

. (4.3)

To measure the effectiveness of the revenue side, we calculate two statistics. The first
is the ratio of the revenue to the total reserve:

fr = f

∑
j

πjrj

−1

. (4.4a)

Note that fr need not be greater than equal to 1, since the bid structure ensures that many
orders will be unfilled, even with replacements. Therefore, to get a better handle on how
much revenue the sellers received based on the actual assignments, we calculate

fa = f

∑
i,j

cijrj

−1

, (4.4b)

where the subscript “a” refers to “assigned.” Here the denominator is the total reserve for
all assigned slots. Hence fa > 1 if only feasible bids are used.

Figure 4.1 shows a histogram of the percentage of requested slots filled for each bidder
for our test data. Note this is just 1 − dir. We see that without replacements, very few
of the bidders receive any substantial number of slots at all. However, we note from our
discussion in §2 that many of the bids are not feasible; i.e., pij is smaller than the reserve
price.

In Figure 4.2, we adjust our calculation so that we remove any infeasible bids from
our calculations. So in (4.2b) we sum over only those slots j for which qij 6= 0. As one can
see, this affects only a few bidders—those who had slots filled anyway. Those bidders saw
their percentage rise.

12 D. A. Edwards

Fraction of order filled using Q∗, πj = 1, no replacements
0 0.1 0.2 0.3 0.4 0.5 0.6

0

50

100

150

200

250

Figure 4.1. Distribution of percentage of requested slots accepted (1− dir), πj = 1.

Fraction of feasible order filled using Q∗, πj = 1, no replacements
0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

Figure 4.2. Distribution of percentage of feasible requested pods accepted, πj = 1.

Table 4.1 shows the values of fr, fa, and β for this case. The fact that so many bidders
had low fill rates is reflected in the fact that β is only 0.14, which explains the low value

Model Formulation; Simple Algorithms 13

Table 4.1. Statistics for different options of the maximum bid procedure.

fr fa β
πj = 1 πj = 4 πj = 1 πj = 4 πj = 1 πj = 4

Q∗ 0.19 0.16 2.16 2.12 0.14 0.12

P ∗ 0.31 0.26 0.89 0.89 0.30 0.25

Fraction of order filled using Q∗, πj = 4, no replacements
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

20

40

60

80

100

120

140

160

180

Fraction of feasible order filled using Q∗, πj = 4, no replacements
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

140

160

180

Figure 4.3. Distribution of requested pods accepted, πj=4.

of fr = 0.19. However, fa = 2.16, reflecting the fact that bids were accepted only if they
exceeded the reserve price, and on average the bids were over twice the reserve price.

Another case that can be simply analyzed is that of multiple pods for each slot. Rather
than assuming that only one commercial can be placed in each slot, we now assume that
πj commercials can be placed in slot j. In that case, (4.1b) is replaced with the following:

cij =

{
1, i ∈Mj ,

0, else,
Mj = {indices i of πj largest q∗ij}. (4.5)

Note that (4.5) reduces to (4.1b) if πj = 1 for all j. Note also that this formulation is
flexible enough to handle cases where the slots have differing lengths.

We expect that as πj increases, there will be fewer rejected bids, and di should de-
crease. These results are shown in Figure 4.3. Though di did increase, β decreased, as
reflected in the values in Table 4.1. This occurs since with more pods per slot, there may
no longer be enough bids to fill every pod.

It may seem somewhat counterintuitive that fr decreased as well. But remember that
fr is the revenue relative to the maximum capacity. In this case, the absolute revenue
increased nearly fourfold, but with four pods per slot, the total reserve over all pods
increased by a factor of four as well. Similarly, fa declined somewhat because the additional
assigned bids were valued less than the winning bids with πj = 1. Given these somewhat
counterintuitive results, it is useful to examine the total absolute revenue as well when
evaluating counteroffers.

In addition, there are still large numbers of bidders with very few slots awarded, which
is keeping fr < 1. This is why replacements are common practice.

14 D. A. Edwards

All Wanted Values
Given the low value of fr, we now consider retaining those values for which pij < rj .

Though the amount gained from the counteroffer on each slot may be less than the reserve
price, if the slot goes unfilled for lack of feasible bids, then the seller receives no payment
at all.

Fraction of order filled using P ∗, πj = 1, no replacements
0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

Fraction of order filled using P ∗, πj = 4, no replacements
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

Figure 4.4. Distribution of requested pods accepted.

Therefore, in the above analysis we replace q∗ij with p∗ij . The results are shown in Fig.
4.4. In this case we don’t have to do a separate computation for the feasible bids.

For both values of πj , we see improvement in the allocation of bids (the left of Fig.
4.4 should be compared with Figs. 4.1 and 4.2; the right of Fig. 4.4 should be compared
with Fig. 4.3). This makes sense, since now even infeasible bids can be allocated. This
improvement is reflected in Table 4.1, as the values for fr and β are larger than their Q∗

counterparts for both values of πj . However, the value of fa is less, reflecting the fact
that the additional bids allotted have values that are smaller than the reserve price, which
drags fa down.

Model Formulation; Simple Algorithms 15

Section 5: Other Counteroffers
Without Replacements

Using Total Bids
Another approach to maximizing the revenue is to look at the total bids for each

bidder, rather than the value of each slot. One example is the “max-sum” algorithm,
which holds only for πj = 1:

1. Set C = O.
2. Find

max
i

∑
j

bijp
∗
ij or max

i

∑
j

bijq
∗
ij .

Let I be the index of the maximum.
3. Give the winning bidder all his/her bids by letting cIj = bIj for all j.
4. For all j such that bIj 6= 0, set bij = 0, reflecting the fact that the slot has been

awarded.
5. Set bIj = 0 for all j to remove bidder I from further competition.
6. Loop through steps #2–#5 until B = O.

For similar values of πj and choice of P ∗ or Q∗, we would expect this algorithm to
lead to lower values of fr, since one doesn’t have the flexibility to pick the maximum price
for each slot. More details of this algorithm may be found in the chapter by Emerick and
Goldwyn.

Another option is to replace #2 with
2a. Find

max
i

∑
j

bijp
∗
ij

∑
j

bij

−1

or max
i

∑
j

bijq
∗
ij

∑
j

bij

−1

.

This just corresponds to looking at the largest bid amount per slot bid. This may reduce
revenue even further. To see why, consider a large bid spread over many slots. This bid
would be prioritized in the maximum bid algorithm, but with a small average, would be
rejected in this one.

Using the Hamming Distance
Another way to perform the optimization on f is to take the Hamming distance into

account.
For instance, we could maximize f given the constraint that all orders must be filled

in toto, so

di = 0 (order filled) or di =
∑
j

bij (order rejected).

16 D. A. Edwards

In practice, this means very few orders would be filled (in our test case, only two of 300
orders were filled with πj = 1, and nine of 300 orders were filled with πj = 4).

However, this algorithm could be used as a preprocessing step. In particular, once the
complete orders are filled, zero out the corresponding rows i and columns j in P and Q.
Then use the standard algorithm as described in §4 to fill the remaining orders as best as
possible. This may not yield a particularly optimal f in the case of no replacements, since
if there is substantial overlap, there may be few slots left which the remaining bidders
desire.

More details about using the Hamming distance in this way can be found in the
chapter by Narayanan.

Alternatively, we could use the Hamming distance in conjunction with the maximum
bid algorithm from §4 by replacing #2 with
2b. Run the maximum bid algorithm to get a provisional assignment matrix. Find the

bid with
min
i
di.

This just corresponds to selecting the bidder that the seller can make happiest at each
iteration. This gives an fr value roughly the same as for #2a.

Other possibilities include:

We might want to minimize the number of changes made to bids:

min
∑
i

di. (5.1)

If we have a hierarchy of “best” customers, we could introduce weights to the sum in
(5.1) to ensure that the best customers get their orders satisfied.
We also might want to separate the orders into sets. If di is close to 0 for some buyers,
we may wish to reduce di for those buyers further at the expense of other buyers for
whom di is already large. In essence, given that a buyer is not going to get much
of what she bid for and will be unhappy anyway, why not take some additional slots
from her to make another reasonably happy buyer even happier?

Model Formulation; Simple Algorithms 17

Section 6: Simple Counteroffers
With Replacements

We now consider the case where replacements are made. In that case, we would work
with the full matrices P and Q, since we need to know the inferred values for the slots
the buyer didn’t bid on. So (4.1a) would hold with the starred variables replaced with the
unstarred ones.

We begin with a simple optimization procedure:

1. Set C = O.
2. Find

max
i,j

pij .

Let I and J be the indices of the maximum.
3. Assign slot J to the winning bidder by setting cIJ = 1.
4. Update xI → xI + pIJ , reflecting the fact that the bid has been awarded and must be

paid for.
5. Set piJ = 0 for all i to reflect the fact that the slot has been assigned.
6. If pIj + xI > uI , set pIj = 0 for all j to reflect the fact that adding this slot to bid
I would cause the counteroffer to exceed the original bid. (This is equivalent to the
constraint that

xi ≤ ui (6.1)

for all i.)
7. (Optional) If ∑

j

cIj =
∑
j

bIj , (6.2)

set pIj = 0 for all j to keep the number of slots assigned to bidder I less than or
equal to the number of slots bid. If we include this step, we call the replacements
constrained.

8. Loop through steps #2–#7 until P = O.

Note that if we didn’t impose the constraint in (6.1), the algorithm would assign any
slot for which pij > 0 for some i, thereby potentially exceeding the budget ui. How-
ever, step #7 need not be implemented, since one could imagine giving an advertiser two
“cheaper” slots in place of one expensive slot that was given to another bidder. How-
ever, if this process is repeated many times, the commercial could saturate, which may be
unwanted. Hence we will perform the algorithm both with and without this constraint.

In the case of replacements, di measures both unfulfilled slots and replaced slots. In
addition, dir is no longer bounded above by 1. In particular, if the number of counteroffer
slots equals the number of bid slots, but every slot has been replaced by another, dir = 2.

18 D. A. Edwards

Therefore, we define the following more useful statistic:

γi =

∑
j

bijcij

∑
j

bij + cij − bijcij

−1

. (6.3)

Here the numerator is the number of slots the bidder bid on and received. The denominator
is the number of slots the bidder bid plus the number received, minus the number bid on
and received. Hence the denominator is the number of slots the bidder bid on or received.
Note that γi runs from 0 (bid and received totally distinct) to 1 (bid and received the
same).

γ using P , πj = 1, unconstrained replacements
0 0.05 0.1 0.15 0.2 0.25

0

50

100

150

200

250

300

γ using P , πj = 1, constrained replacements
0 0.05 0.1 0.15 0.2 0.25

0

50

100

150

200

250

300

Figure 6.1. γ for πj = 1 using P . Left: unconstrained. Right: constrained.

Figure 6.1 shows the results for γi for πj = 1 using P for both the constrained and
unconstrained case. Note that most of the γi are near 0, which reflects that we are using
P (all possible bids), rather than the sparser matrix Q (all feasible bids). Also note that
the γi distribution is more skewed to the left in the unconstrained case. This suggests that
more unwanted slots can be given to each bidder and still remain under his budget. With
more unwanted slots, the denominator of (6.3) increases, driving γi down.

Table 6.1. Statistics for different replacement options.

fr fa β
πj = 1 πj = 4 πj = 1 πj = 4 πj = 1 πj = 4

P (unconstrained) 0.47 0.43 0.47 0.43 1.00 1.00
P (constrained) 0.46 0.41 0.46 0.41 1.00 1.00

Q (unconstrained) 0.26 0.22 2.14 2.10 0.24 0.22
Q (constrained) 0.26 0.22 2.14 2.11 0.23 0.21

These results are quantified in Table 6.1. First, note that to two decimal places, all
the slots are filled (β = 1). This is because we are using P , so all slots are available for
placement, and we can do replacements. We note this is true for both the constrained and

Model Formulation; Simple Algorithms 19

unconstrained cases. This reflects the fact that∑
i,j

bij > jmax. (6.4a)

(For our data, the left-hand side of (6.4a) is 69,292.) Hence even if the algorithm constrains
the number of slots each bidder receives, one can still assign all the slots.

These additional assignments do drive up revenue, even if the slots are given away
for less than the reserve price; note that the values of fr are roughly 50% higher than
their counterparts in Table 4.1. Also, since almost all the slots were assigned a bidder,
the denominators in (4.4) are nearly identical. Hence fr and fa have the same values. We
note little change between the constrained and unconstrained case. This is due to the fact
that if all the slots are assigned in the constrained case, lifting the constraint isn’t going
to change the overall assignments (and hence the revenue) by very much.

We may also relax the (implicit) assumption in the above that πj = 1. We may do
this by replacing #5 with
5a. If ∑

i

ciJ = πJ ,

set piJ = 0 for all i to reflect the fact that all pods for the slot have been assigned.
Note this reduces to #5 in the case of πj = 1.

γ using P , πj = 4, unconstrained replacements
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

50

100

150

200

250

γ using P , πj = 4, constrained replacements
0 0.1 0.2 0.3 0.4

0

50

100

150

200

250

Figure 6.2. γ for πj = 4 using P . Left: unconstrained. Right: constrained.

The results are shown in 6.2. As expected, the distributions for γi shift to the right,
reflecting the increased flexibility available in assigning slots. β still remains near 1, which
is indicative of the following inequality replacing (6.4a):∑

i,j

bij >
∑
j

πj , (6.4b)

which is also satisfied by our test data. In other words, there are so many bid slots that
even with four times as many pods, we can still fill them all. Hence fr and fa are the same.

20 D. A. Edwards

γ using Q, πj = 1, unconstrained replacements
0 0.05 0.1 0.15 0.2 0.25

0

50

100

150

200

250

300

γ using Q, πj = 1, constrained replacements
0 0.05 0.1 0.15 0.2 0.25

0

50

100

150

200

250

300

Figure 6.3. γ for πj = 1 using Q. Left: not using step #7 (unconstrained).
Right: using step #7 (constrained).

γ using Q, πj = 4, unconstrained replacements
0 0.05 0.1 0.15 0.2 0.25 0.3

0

50

100

150

200

250

300

γ using Q, πj = 4, constrained replacements
0 0.05 0.1 0.15 0.2 0.25 0.3

0

50

100

150

200

250

Figure 6.4. γ for πj = 4 using Q. Left: not using step #7 (unconstrained).
Right: using step #7 (constrained).

Again, the maximum revenue goes up by a factor of 4, but the sellers are adding 4 times
as many slots at less than the reserve price, so fr declines slightly. Again, the values are
roughly 50% higher than their counterparts in Table 4.1.

We may also replace P by Q in our algorithm; these results are shown in Figs. 6.3
and 6.4. (Note we use all bids—not just feasible ones—for our calculation of γi, since the
buyers don’t know which bids are feasible.) The results for γi are not appreciably different
from those for P .

As expected, the values for β are much less (since the population of feasible bids is very
small). However, they remain about twice as large as their counterparts in Table 4.1. The
figures for fr remain about 50% larger than the case without replacements. However, the
values of fa are roughly similar. Given the feasibility constraint, the sellers are guaranteed
to replace slots with others with similar value. Hence the ratio fa of assigned revenue
should remain roughly the same.

Model Formulation; Simple Algorithms 21

Section 7: Counteroffer Complications
We now wish to discuss the following issues, any one of which would cause the op-

timization problem to become nontrivial, necessitating greedy algorithms or other ap-
proaches.

Discounts
In general, a complete bid should command a premium compared to getting individual

slots. Hence the definition of xi in (4.1a) is too simplistic. A more realistic definition is

xi =
∑
j

pijcij(1− ρij), (7.1)

where ρij is the discount factor. (Here pij can be replaced with qij or starred, depending
on the algorithm.)

There are several different types of discounts:

a fixed discount ρij = ρ sgn(di) for any customer whose order was not completely
fulfilled.
a discount that varies by customer, but just reflects complete fulfillment: ρij =
ρi sgn(di). (This reflects the fact that better customers might get larger discounts.)
a discount factor that increases with di, so (in the simplest linear case) ρij = ρdi
(fixed discount) or ρij = ρidi (preferred customer discount).
a discount factor that depends on the individual replacements made. For instance, a
higher discount could be offered

— if the first requested slot is replaced (it may be important to launch a project on
a certain day or time),

— if two slots requested to be closely placed are replaced with ones spaced further
apart (it may be important to reinforce an impression over a short period of time),

— other discounts based upon δij from §3,
— etc., etc.

In this case the counteroffer matrix C is given by

cij =

{
1, j = arg max

i
pij(1− ρij),

0, else,
(7.2)

or an equivalent form based on (4.5). These problems are much more difficult to solve. In
particular, this cannot be handled by straightforward optimization, and will require greedy
algorithms or other techniques to manage the tradeoffs when assigning a slot to one order
over another.

22 D. A. Edwards

Buyer A B C 2 1
1 30 10 1 27 40
2 1 11 10 21 9

Values Counteroffer
Slot B Awarded toSlot

Table 7.1. Tradeoffs with 10% discount. Italicized entries are desired slots.

This problem is illustrated in Table 7.1. Buyer 1 wants slots A and B, and buyer 2
wants slots B and C. A 10% discount is given if a buyer doesn’t receive her request. If we
follow the algorithm described by (4.1b), the payoffs are as described in the “2” column,
with a total counteroffer of $48. But if instead we give slot B to buyer 1, the loss in revenue
from slot B is more than made up for by the reduced amount of the discount given to buyer
2, and the total counteroffer is more: $49.

Settlement Price
When considering the actual counteroffer value xi to make, the seller must act strate-

gically. If one sets xi too close to ui for an inferior assignment, the buyer may balk, in
which case the seller receives 0. Set xi too low, and the buyer will accept, but the seller
may not be maximizing revenue. In between, there may be some negotiation where the
settlement price si is less than xi, but more than the seller would receive at either extreme.

A graph of possible relationships is shown in Figure 7.1. The dotted line si = xi
indicates that the counteroffer was accepted. The thin line indicates a buyer who negotiates
aggressively whenever xi > 1 and walks away for xi > 2. The thick line indicates a buyer
who negotiates a little at first, then more aggressively as xi grows, finally walking away
for xi > 3.

Obviously we want to keep xi as close to the peak as possible. Tuning this would
require knowing something about bidder i (and his/her negotiating history). One way this
could be incorporated into the above model is using it to determine ρij for a particular
buyer.

Model Formulation; Simple Algorithms 23

si

xi

Figure 7.1. Settlement price si vs. counteroffer price xi.
Dotted line: counteroffer is accepted.

24 D. A. Edwards

Section 8: Conclusions and Further Research
In order to maximize the revenue generated by commercial slots during television

programs, sellers run auctions where buyers can bid on particular slots. Since these bids
may overlap on many slots, an algorithm must be designed to award winning bids and
generate counteroffers to losing bids. In this manuscript, we analyzed several ways of
running such auctions, and listed many other possibilities which can be explored in later
work.

Unfortunately, the buyers bid on a combination of slots, rather than each slot individ-
ually. This makes it difficult for sellers to construct an effective counteroffer on a subset
of the desired slots. Therefore, it is useful to infer the value each bidder places on each
slot. Typically, buyers want to reach the largest number of viewers in some target audience
based upon demographic and income data.

This motivated several ways to determine the value matrix P . The first is simply
to use total impressions per slot (determined from historical data), and weight each slot
accordingly, as in (3.1). The second is to look for common demographic characteristics
among the requested slots, and assume that they are desired. Then one can weight each
slot by the desired demographics, yielding the finer-grained approach (3.5) we used in
most of the manuscript. Since both approaches are linear in the bid price ui, the values
are insensitive to noise in the bids.

Once the value matrix is determined, the slots can be assigned to the bidders. In the
simplest case, there are no replacement slots awarded. Hence the counteroffers will largely
be for partial bids. The simplest approach is merely to award each slot individually to the
highest bidder. Depending upon financial considerations, it may be useful to restrict bids
to only those which exceed the reserve price for a slot; this necessitates using the matrix
Q defined in (3.3) instead of P .

We analyzed this algorithm using P and Q for various (constant) values of the number
πj of pods per slot, though our model can handle values of πj which vary with j. We
evaluated our results based upon the histogram of slots awarded per bidder, as well as the
statistics β (slots filled), fr (revenue as a fraction of reserve), and fa (revenue as a fraction
of assigned reserve).

In general, we found that for fixed pod number, β and fr are maximized using P .
This makes sense, since using P means the seller considers all bids, no matter how small.
However, to maximize fa, the seller should use Q, since in that case any assigned slot will
be filled for more than the reserve price.

There are other counteroffer strategies that do not use replacements. One can assign
slots based on the maximum total bid, rather than the total for each slot. This is discussed
further in the chapter by Emerick and Goldwyn. One can also assign slots by maximizing
the number of complete bids awarded; this is discussed further in the chapter by Narayanan.

Since the bid overlap is so great, typically sellers offer replacement slots to bidders
so that the counteroffer is not just a few slots. We analyzed in detail one replacement
algorithm, again based upon awarding slots to the maximum bidder. Since replacements

Model Formulation; Simple Algorithms 25

have associated costs, the algorithm ensures that bidders do not pay more than their
original bids for the counteroffer with replacements. An additional optional constraint was
implemented that ensures that the number of slots run doesn’t exceed the original number
bid.

When running the algorithm with all bids using P , the revised bids filled all the slots,
no matter how many pods we had. This is consistent with the demand exceeding the
supply. The revenue measurements were higher than in the case without replacements,
and similar values occurred whether the sellers constrain the optimization using (6.2) or
not. When running the replacement algorithm with Q, much fewer slots were filled, since
the sellers accept only feasible bids. From the revenue side, whether it is better to use P
or Q depends on whether one measures revenue using fr or fa.

Given the short time frame of the workshop, we have analyzed only the simplest
cases. However, these results should illuminate the advantages and drawbacks of the
few algorithms analyzed, and the techniques used can guide study of more complicated
algorithms, as discussed below.

Further Research
There are other ways to deduce the value matrix other than the demographic-based

approaches discussed above. In particular, one can determine the value matrix using data
about the sequencing of the bid slots. There are also other ways to optimize the revenue
besides just maximizing f . In particular, one may wish to maximize fr or fa instead.
These changes would yield different algorithms.

In this manuscript, we assumed there was a “black box” algorithm that would trans-
form the constraint bidders’ wishes into bid orders, which would be incorporated with the
other bid orders at the same time. However, it may be more advantageous to consider
the types of orders sequentially. Once all of the bid orders have been assigned using the
algorithms discussed here, then the constraint bids could then be accommodated with the
“leftovers.”

As discussed in §7, the seller may wish to award a discount to an unsuccessful bidder,
beyond that which would accrue by not receiving the full complement of slots in the bid.
These discounts can be implemented in many ways, and would complicate the optimiza-
tion procedure for the revenue. In addition, the seller must also strategically price his
counteroffer so as not to drive a bidder away for that auction.

In our work, we assumed that all bidders were rational, in that they were able to
determine the value of slots themselves and bid appropriately. This assumption underlies
the work we did in determining P . However, bidders may not be rational in this sense.
In that case, the counteroffer prices we give may have little relationship to the value the
bidder places on the subset of slots counteroffered.

On the other extreme, given any auction, there are ways for sophisticated bidders to
game the system (for example, see the settlement price discussion in §7). Hence sellers
would have to take that into account when choosing an algorithm.

26 D. A. Edwards

Nomenclature

If a letter appears in upper and lower case, the upper case letter is a matrix or tensor,
and the lower case letters are its entries. Equation numbers where a variable is first defined
is listed, if appropriate.

a: indexing variable for age distributions (2.1).
B: bid matrix (2.2).
C: counteroffer assignment matrix (2.4).
di: Hamming distance for bid i (4.2a).
f : revenue (2.6).
g: indexing variable for gender (2.1).

h(pij): function relating xi to pij .
I: index of winning bidder.
i: indexing variable for orders (2.2).
J : index of assigned slot.
j: indexing variable for slots (2.1).
k: exponent in time discount factor (3.7a).

Mj : set of acceptable bids for slot j in multiple pod case (4.5).
P : matrix of (inferred) values for each slot (2.7).
Q: matrix of (inferred) feasible values for each slot (3.3).
rj : reserve price for slot j.
si: settlement price for bid i.
tj : time of slot j (3.7b).
ui: bid price for bidder i.
V : viewership tensor (2.1).
w: weighting factor, variously defined (3.1b).
X: normally distributed random variable (3.4).
xi: counteroffer price to bidder i.
αi: normalization factor.
β: percentage of slots unfilled (4.3).
γi: fill factor for replacement case (6.3).
δ: time discount factor (3.6).
πj : pods in slot j (2.5).
ρ: bid discount factor (7.1).

Other Notation

a: as a subscript on f , refers to assigments (4.4b).

Model Formulation; Simple Algorithms 27

max: as a subscript on i or j, refers to the total number.
r: as a subscript, refers to relative change (4.2b).
∗: as a subscript on j, refers to the first slot bid (3.7b); as a superscript on p or q,

refers to values for unwanted slots being zeroed out (3.2a).

28 D. A. Edwards

References

[1] M. Montes de Oca, et al., “Prediction and optimal scheduling of advertisements in linear
television,” in Proceedings of the 31st Annual Workshop on Mathematical Problems in
Industry, 2015.

No-Replacement Algorithms and Other Stuff

Brooks Emerick
Trinity College, Hartford CT 06106

Eli Goldwyn
Trinity College, Hartford CT 06106

June 24, 2016

The following is a summary of some of the things that Eli and I worked on throughout the
week. I will summarize our contribution in the sections below, but the discussion provided
here (especially nomenclature) should be combined and cross-referenced with Dr. Edwards’
writeup. The basic outline is as follows: Section 1 contains a description of the matrices P ∗

and Q∗ that are used to compute the winning bidder; Section 2 is a summary of the two
leading algorithms (that do not consider counteroffers and replacements) used to distribute
time schedules (orders) and the sensitivity of these algorithms to discounts; finally, Section
3 describes the number of time slot pods, denoted by π, and how this parameter affects the
Hamming distance among other metrics.

[Note: in the discussion below, i = 1, 2, . . . , 300 is the index ranging over the bidders;
j = 1, 2, . . . n where n is the number of time slots; and k = 1, 2, . . . , 30 is the index ranging
over the demographics.]

1 The Value Matrix

To begin, we are given a vector of bids, t = [ti], which (given the data) is a 300× 1 column
vector. Also, we are given two matrices, B = [bij] and V = [vjk], where B is a large 300× n
(n ≈ 14000) matrix of ones and zeros, where n denotes the number of available time slots,
and V is a matrix of size n×30 that contains the viewership numbers for each time slot over
30 demographic categories. The matrix B is a summary of the schedule for each bidder in
the sense that bij = 1 if bidder i requests time slot j and bij = 0 otherwise. The matrix B is
sparse as there are many time slots (∼ 14000) but most bidders only bid on 230 time slots,
on average. The matrix V is not too important but it allows us to generate the value matrix
P ∗ = [p∗ij] through Erik’s weighted average method. The construction of the matrix P ∗ is
not trivial as it took us a full day to get the code to work. The m-file in the dropbox denoted

29

30 No-Replacement Algorithms and Other Stuff

by Value_Matrix.m takes input values B, V, and t and outputs P ∗ (as P_star) along with
other important matrices and vectors. The matrix P ∗ has the same sparsity pattern as B,
but where B has a 1, P ∗ has a monetary value assigned to the time slot in column j. This
value located in the (i, j)th spot of P ∗ is a proportion of bidder i’s total bid for time slot j.
The value is calculated using the demographic data from matrix V and represents both the
monetary value of bidder i’s bid on time slot j as well as the interest bidder i has in that
specific demographic. Note that the following equation holds for all i:

ti =
n∑

j=1

p∗ij.

We also note here that P ∗ contains only the proportion of the full bid that bidder i has
placed on time slot j.

Another matrix that we computed in order to maximize revenue is the matrix Q∗ = [q∗ij].
This matrix is a “sub-matrix” of P ∗ in the sense that Q∗ is more sparse than P ∗. To
construct Q∗, we consider the 1 × n row vector, r = [rj], which contains the minimum bid
value (reserve value) of each time slot. This vector is given and is denoted by rawmin in the
data file. Essentially, for each i, we look at bidder i’s bid value for time slot j in the matrix
P ∗ and if it falls below the value rj, then we zero out that value. This creates a somewhat
more sparse matrix denoted by Q∗. That is,

q∗ij =

{
p∗ij if p∗ij ≥ rj
0 if p∗ij < rj

, for all i.

Now that we have defined these two matrices, we can move on. Please note that the notation
for these matrices may be different from Dr. Edwards’ notation. Also, we do not discuss the
less sparse matrices P and Q here as the algorithms discussed below do not reference these
matrices. We only reference P and Q if replacement bids and counteroffers are considered,
which has only been done by Dr. Edwards while using the Sum-Max method discussed below.

2 The (No-Replacement) Algorithms

Throughout the week, we have worked to formulate an algorithm that generates a method for
distributing time slots to the bidders that will maximize the seller’s revenue. We will discuss
the two methods below, but be sure to note that neither of these methods are sophisticated
enough to provide a counteroffer to the bidders. The first method provides more revenue
but sacrifices filling a requested time schedule completely. We will refer to this algorithm
as the Sum-Max method. The second method provides less revenue overall but fills at least
one order. This method is called the Max-Sum algorithm. Essentially, these algorithms boil
down to summing the maximum of the columns of P ∗ or maximizing the row sum of P ∗,
respectively. Although the Sum-Max seems to (and most likely always will) maximize the
revenue, we’ll discuss how the Max-Sum method may actually work better if discounts were
implemented into the system.

Brooks Emerick and Eli Goldwyn 31

The Sum-Max Method

The Sum-Max method considers the columns of the matrix P ∗ and generates an assignment
matrix, denoted by C = [cij]. Essentially, we pick the first time slot that has at least one bid
for it and find the maximum p∗ij bid value in that column and assign it to the corresponding
bidder that made that particular bid. This is a very simple algorithm posed by Dr. Edwards
that basically does the following:

[1] Construct a 300× n matrix of zeros and call it C.

[2] Choose time slot j (column j) of the matrix P ∗.

[3] Find the bidder I such that p∗Ij is a maximum, i.e., compute p∗Ij = maxi{p∗ij}.

[4] Store a value of 1 in the I th row and jth column of the matrix C.

[5] Repeat steps [2] – [4] for all j.

This method formulates an assignment matrix C, which is a sub-matrix of B. Note that C
has at most one 1 in each column and allocates each time slot to the highest bidder. To find
each bidder’s revenue and the total revenue, we compute the vector x = [xi] and the value
f , which are given by

xi =
n∑

j=1

cijp
∗
ij ⇒ f =

300∑
i=1

xi.

The Max-Sum Method

The method that we considered today was motivated by filling at least one order so that we
don’t have to discount the counter-offer (discussed below). This method looks first at the
global max bid and gives that bidder his entire schedule. Then, since we have given this
time schedule away, we no longer consider these time slots and find the next bidder whose
incomplete time schedule yields the maximum bid. All of this is computed from the matrix
P ∗ in the following manner:

[1] Find the index I such that ti is maximized. Store tI as revenue.

[2] In the matrices P ∗ and B, zero out the row corresponding to I and zero out all
columns that correspond to bidder I’s time schedule.

[3] In the updated version of P ∗, find the row I that maximizes the value
∑n

j=1 p
∗
ij.

Store this maximum value and add it to your revenue.

[4] Repeat steps [2] and [3] until the number of bidders is exhausted.

32 No-Replacement Algorithms and Other Stuff

This method makes sure that the highest bidder is completely satisfied; however, it doesn’t
maximize the revenue for the seller. A good quality of this method is the fact that we could
use different criteria for choosing the best bidder in each step. For example, instead of being
greedy and picking the bidder that maximizes revenue at each step, we could potentially
pick the bidder that has the highest bid per time splot or the minimum number of time
slots remaining in order to fill their original order. These are different scenarios in which the
algorithm could be used, but we see in the next section that they do not maximize revenue.
We discuss the two methods in more depth below. We also note here that although the steps
above do not include the generation of an assignment matrix C, the algorithm in Matlab
does create the matrix C.

Comparison

To compare the two methods, we compute the following metric:

fr = f

(
n∑

j=1

rj

)−1

.

This value can be interpreted as the ratio of our generated revenue (using the methods above)
to the minimum revenue that would be obtained if we were given the minimum reserve value
for each time slot. In a sense, this value is the proportion of the revenue we “could have”
generated and so is a measure of how well our algorithm does in generating revenue. We
find that fr ≈ 0.3062 when using the Sum-Max method and fr ≈ 0.2755 using the Max-Sum
method. This indicates that the summing the column max is the superior method. If we run
the same two algorithms using the matrix Q∗ instead of P ∗, then this method is still better.
Using Q∗ will theoretically increase the computational time since it is more sparse, but using
this matrix basically means that we do not consider the cheap bidders – we’re more picky in
our selection. If this is the case, fr ≈ 0.1936 using the Sum-Max method and fr ≈ 0.1673
using the Max-Sum. These values make sense because Q∗ has a lot more zeros than P ∗ so
we actually accrue much less revenue when using Q∗ to compare bids.

In addition to comparing the revenue, we can consider how many orders were filled and of
the orders assigned, how much of that order was actually filled. Because the Max-Sum could
care less if an order is filled, we find that these orders are filled with an average of 6.30%
of the time slots originally requested. Using the Sum-Max method, the orders assigned to
bidders are filled with an average of 5.82% of time slots originally requested. In fact, using
the Sum-Max method the maximum proportion of filled orders is only 53.53%. Also, in the
Max-Sum method, one order is completely filled, but no orders are completely filled in the
other method. Furthermore, using the Max-Sum method 75 bidders are left with no time
slots assigned to them, but the Sum-Max method leaves only 46 bidders with nothing. We
conclude that Sum-Max is very efficient in generating revenue, but it is not very friendly
since it fills no orders completely. The table below summarizes the results.

Brooks Emerick and Eli Goldwyn 33

Value Matrix Method f fr Avg % Filled Zero Assigned

P ∗ Sum-Max $43,491,328.11 0.3062 6.30% 46
Max-Sum $39,212,490.31 0.2755 5.82% 75

Q∗ Sum-Max $27,496,495.03 0.1936 2.89% 123
Max-Sum $23,762,822.66 0.1673 5.55% 168

Using the Max-Sum, we can try to maximize revenue with different criteria for selecting
the ‘best’ bidder in each step of the algorithm. We tried several methods, which included the
following: highest bid per time slot value, minimum Hamming distance (described below),
and minimum slots remaining from original order. The last method is motivated by the
fact that it may be beneficial to fill any orders that are nearly complete. Every one of
these methods had a smaller fr as compared to the ‘maximizing revenue’ criterion. In fact,
fr < 0.23 for these methods.

Effect of Discounts

Although we didn’t have quite enough time to implement a discount scenario into the al-
gorithm, we were able to conclude that if a discount were implemented into the Max-Sum
algorithm, it could potentially yield higher revenue values. This is due to the fact that no
orders are completely filled using the Sum-Max method. If we use this method, no customer
is completely satisfied, which means we cannot take their original bid because there is no
way to satisfy it. In this case, we would have to give every buyer a discount. In contrast,
the Max-Sum method satisfies at least one customer. This means we do not have to give
that customer a discount. To demonstrate this scenario, we could assume (a rather extreme
assumption) that we give a 100% discount to anyone who does not get their complete order.
In this case, the Sum-Max method would yield a revenue of zero and the Max-Sum method
would still yield a non-zero value. To demonstrate this further, we consider a discount ρ if
your order is not completely filled. Then we can see that if a discount larger than ρ = 19%
is applied, then the Max-Sum method actually yields a higher revenue.

34 No-Replacement Algorithms and Other Stuff

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2.5

3

3.5

4

4.5
x 10

7

Constant Discount Rate (ρ)

R
e
v
e
n
u
e

Algorithm Comparison with Discount

Sum−Max

Max−Sum

This indicates that if there is a discount involved, then it may be beneficial to test both
methods. This further demonstrates that keeping some costumers happy may have a positive
influence on the overall revenue.

3 The Effect of Pods

Some time slots are longer than others. Because of this, a time slot may contain several
pods or smaller portions of one time slot that we can fill with several buyers’ commercials.
In this sense, we say that π is the number of pods that can be filled in any given time slot.
For simplicity, we assume that π is constant for each time slot. An acceptable value for π
is probably around 4 or 6 because a time slot of length 120 seconds may be filled with four
30-second commercials or six 20-second commercials. To demonstrate the effect of a varying
pod value π on the performance of our Sum-Max algorithm, we consider the the proportion
of time slots that are completely filled with commercials. To compute this last metric, we
define the Hamming distance for any bidder as

di =
n∑

j=1

|bij − cij|.

Since C = [cij] is the assignment matrix, the value di is the number of time slots that are not
filled after we assign bidder i a time schedule. Furthermore, we can compute the proportion
of time slots originally requested that are filled after assignment as dir given by

dir = 1− di

(
n∑

j=1

bij

)−1

.

Brooks Emerick and Eli Goldwyn 35

To get an idea of how this value changes with π, we plot the average dir over all bidders
using the results of the Sum-Max model. Consider the graph below:

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Percent of Filled Orders vs π (Pod Value)

π

M
e
a
n
P
e
rc
e
n
t
o
f
F
il
le
d
O
rd

e
rs

This graph makes perfect sense. Since π is the number of pods available in each time slot,
we conclude that we can more easily fill more time schedules as π increases. In fact, as π
approaches the maximum number of time slots in a bidder’s schedule, we’d expect dir to
approach 1. In our data, the maximum number of time slots in a bidder’s schedule is 216.
Therefore, if π = 216, then we would theoretically be able to fill everyone’s order. This is
why the graph asymptotically approaches 1 as π →∞.

Algorithm Engineering

Erik Palmer
University of South Carolina

Marilyn Vasquez
George Mason University

August 9, 2016

The purpose of the Algorithm Engineering Subgroup was to design and analyze the
approach our group took towards determining how bids should be awarded. This involved
taking a high-level view of the overall process, identifying how to split tasks so they could be
more efficiently coded, determining the elements necessary for each module to better fit into
the algorithm, and asking questions about the implications of our approach. This subgroup
did not write any code nor run any tests. Instead, we outlined steps which could later be
coded into part of the overall algorithm.

Identifying the overall goal as an iterative combinatoric auction, we divided the algorithm
into three main parts: constructing the P-Value Matrix, the winner determination problem
(WDP) and a counteroffers and discounts phase. Within this framework we discussed two
approaches for constructing the P-Value matrix. The winner determination problem was
covered by other subgroups and was therefore not a focus for us. In the counteroffer and
discount portion of the algorithm, we identified multiple ways that counteroffers could be
constructed, and outlined ideas for implementing seller side discounts.

1 The P-Value Matrix

The driving force behind most of the algorithm is the assumption that we know what each
slot is worth to a bidder, even when they do not bid on it. This information is what is coded
into the P-Value matrix (denoted as P elsewhere). In this subgroup report we will focus
on how the P-Value matrix was viewed within the problem and mention how it could be
changed or expanded to incorporate additional features.

In order to approach the problem a simplifying assumption was made for the P-Value
matrix. While both demographic and advance target data is available, the matrix was
constructed from only demographic considerations using the weighted sum method. From
our point of view the advanced targets could be thought of as added resolution for the

36

Erik Palmer, Marylin Vasquez 37

demographic data. In this sense, the 30 categories of demographic data would be increased
by the number of categories of advanced targets. Since all parts of the overall algorithm
should work for any number of categories, we decided to omit advanced targets in our
considerations.

In addition, it should be noted that a true bid originates as a constraint based order.
However, we considered a buyer’s bid price with chosen time slots as the starting point for this
algorithm. Therefore it is possible that with additional information from the constraint based
order, the P-Value matrix could be further improved to more accurately reflect the buyer’s
unstated prices for each time slot. It should also be pointed out that since the determination
of the P-Value matrix depends only on each buyer’s bid, it could be computed in parallel.

1.1 Other Methods for Creating the P-Value Matrix

Identifying the P-Value matrix as an independent module, allows for substituting other
possible calculation methods without modifying the overall algorithm. An example of such
a drop-in replacement, is the mean comparison method for identifying the most important
demographic features to a buyer. As this method will be explained in detail in another
subgroup’s write up, we will not discuss it further here. Another possibility would be to
combine both demographic and temporal methods, to adjust the calculation of initial P-
Values to more heavily favor the demographics of the slots in which earlier impressions
would appear. The details of this adjustment to the P-Values are described in the Temporal
Weighting subsection.

1.2 Questions Regarding the P-Value Matrix

There are a few questions that we considered about determining the P-Value matrix and
its place in the algorithm. The first question is whether the P-Value matrix should be
modified with each iteration of the auction? This has some important consequences as
modules developed later in the algorithm, such as the counteroffers and discounts, could be
considered to alter the value of each slot in the eyes of the bidder. In this sense, we should
ask whether the initial P-Value matrix should be weighted more heavily then subsequent
iterations, or whether iterations on the P-Value matrix should converge to the actual price
the buyer is willing to pay for a certain combination of time slots.

1.3 Temporal Weighting

It was pointed out that the three first impressions are the most important to bidders. There-
fore a scheme which accounts for this temporal difference was devised to represent this in
the values of the P-Value matrix. The scheme proceeds as follows:

1. Assume slots are arranged in time, from first to last showing. (This assumption is not
necessary, only an ordering.)

38 Algorithm Engineering

2. Calculate the P-Value matrix as usual, based on demographic data.

3. Re-weight the P-Values so that the first three impressions are given more weight and
hence higher value.

To illustrate this idea, suppose the weights are 1/2, 1/4, 1/8 for the first impression
second impression and third impression respectively, and the final 1/8 is divided between all
remaining slots equally. We could categorize this as a 2−x example. Then with these weights
we can use the same method of rescaling to determine a new bid that adjusts the perceived
value to the buyer upwards in the first slots. The most appropriate temporal weighting
scheme would need to be derived from historical data or guided by seller experience.

The following is an example of temporal weighting using the example bid in the table:

Bids Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

Bid 1:$1150 1 0 1 1 0 0 1 1

Bid 1 P-Values $300 $0 $400 $200 $0 $0 $100 $150

Assume the slots are ordered in time. We associate the largest weight, 1/2, to Slot 1
because it is the first impression, 1/4 to Slot 3, the second impression, and 1/8 to Slot 4,
the third. The remaining 1/8 is divided evenly between all the leftover slots. Thus slots 7
and 8 both have weight 1/16.

Next we define a few terms in order to simplify the calculations and elucidate the example.
They are B, the bid price, P , the price for each time slot, and w, the weights. The symbol
◦ denotes the piecewise product of two vectors. Let

B = 1150

P = {300, 0, 400, 200, 0, 0, 100, 150}
w = {1/2, 0, 1/4, 1/8, 0, 0, 1/16, 1/16}.

Then to determine the scaling factor α we use

α =
B

PwT
. (1)

The following equation determines the P-Values updated with the temporal weighting
scheme:

P ′ = α (P ◦w) . (2)

Using these methods, this example results in the following revised P-Values:

Bids Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

Bid 1 P ′-Values $593.55 $0 $395.70 $98.92 $0 $0 $24.73 $37.10

Here we can see that the temporal weighting shifted the bidder’s perceived value towards
their first three impressions, thereby achieving the desired result.

Erik Palmer, Marylin Vasquez 39

2 The Winner Determination Problem

The winner determination module of the algorithm is the most computationally intensive.
If we simply award each time slot on the basis of who we expect will pay for the most
for it (after exceeding minimum reserve), then the algorithm is relatively straightforward.
Unfortunately, this typically results in no one getting their entire order and thus a lot of
theoretically unhappy customers. The aim of the algorithmic engineering subgroup was to
isolate operations so they could be separated into different modules of the algorithm. In this
sense, we view the approach to the winner determination problem as either the Sum-Max or
Max-Sum algorithms. Since these approaches are discussed in detail elsewhere we will go no
further here.

2.1 Giving Preference to Certain Buyers

As was discussed in other subgroups, there exist reasons to give certain buyers preferential
treatment. The goal for the algorithm engineering subgroup was to identify these reasons,
and think about how they could be incorporated into the algorithm. Moreover, we wanted to
foresee conflicts and ask meaningful questions that arise from taking particular approaches.

The main question that arose from considering preference for certain buyers was whether
we could put a dollar amount on these preferences. This arises from the fact that taking
the Sum-Max approach yields the highest revenue for the seller. Therefore any preference
for certain buyers would necessitate reduced revenue. So the question becomes how much
revenue are we willing to sacrifice in a single auction, and in what situations, in order to give
buyers preferential treatment?

In consultation with the WDP subgroup, three methods for identifying good customers
that could be given preferential treatment were outlined. They are: 1. Those bidders closest
to having their entire order filled. Mathematically, this is the minimum Hamming distance
between the bid and accepted offers, and is discussed further in other subgroup summaries.
2. Those bidders who offer the most above the minimum reserve measured on a slot by slot
basis. 3. Other customer satisfaction reasons, such as owing the bidder a favor, or desiring
to establish or keep a relationship with a certain bidder.

One theorized method for incorporating this preferential treatment was to add the de-
termined monetary value of the preferential treatment to the P-Value Matrix. This would
raise the theoretical value a buyer was offering for a time slot. For example, a bidder close
to having their entire order filled might have the P-Values increased $20 across the board.
This change would make the algorithm more likely to award them the time slots. However
when the auction completed, the actual revenue taken in by the seller would be only the
original bid, and not the theoretical value of the preferential increase.

40 Algorithm Engineering

2.2 Tie Breaking

A comprehensive method for breaking ties is necessary. Both Sum-Max and Max-Sum meth-
ods are likely to encounter situations where bidders are offering the same amount. Ties could
be broken using a number of measures: 1. In the case of Sum-Max, we could consider which
bidder has the largest total order. 2. In the case of Max-Sum, we could consider which bid-
der has the least number of desirable slots. Desirable slots would be a slot in which another
buyer would be willing to pay more for that specific slot. 3. On whether the buyer is bidding
on a subset of their original order. 4. Other preferential measures for buyers.

2.3 Seller Price Vector

In order to isolate modules, simplify the winner determination problem and allow for greater
flexibility in building different types of counteroffer and discount schemes, the idea of a seller
price vector arose. This vector would represent the price at which the seller will sell each
time slot. At the initial stage of the auction, it could start as the minimum reserve for the
seller for each time slot. It would then be updated during each iteration of the auction. That
is, if a buyer offered more for a particular slot than the minimum bid or another bidder,
the seller price vector would be increased the respective P-Value amount for that time slot.
Having a vector like this would allow the algorithm to track a minimum price which must
be surpassed in order for the seller to agree to sell the time slot. Please note that since this
seller price vector mechanism was considered late, it was never coded into the project.

3 Counteroffers and Discounts

The last major section of the algorithm determines the sellers response to the buyer’s bids.
As was clear from simulations of the WDP, it is almost certain buyers will not be able
purchase their first choice at the first price, and some type of ensuing negotiation will be
necessary. Therefore we aimed to incorporate mechanisms into the algorithm which would
guide this next step in the auction process. Due to the multiplicity of options that could
be considered when responding to a failed bid, this portion of the algorithm has many more
independent modules than other parts. By design, these responses could be combined or
discarded without impacting the overall algorithm structure.

Each of the following subsections explains how a counteroffer or discount type mechanism
might work. We started by dividing them into the categories: replacement, subset, minimum
increase and discounts. Within each of these categories small variations of implementation
could result in large differences in the outcome of the auction. In general, replacement refers
to offering time slots other than what was included in the buyer’s bid. Subset refers to
offering only a part of the original bid. Minimum increase to win outlines how to determine
how much a buyer should increase their bid to get what they want. Finally, the discount
here refers exclusively to seller side discounts: that is, the seller deciding to discount a time
slot in order to make it more attractive to buyers.

Erik Palmer, Marylin Vasquez 41

In addition to outlining how these modules could be coded, we also tried to look ahead to
consequences. In particular, the effect of offering the minimum bid increase to win seemed
to need the most theoretical framework to avoid leading to unrealistic results. However, as
with all the techniques explained, thoughts on how to adjust, or mitigate altogether, any
undesired behaviors in the algorithm are given.

In considering the sections below, we often thought of responding to results from the
simplest WDP, taking the maximum of each time slot column (Sum-Max). While not stated,
some of the sections will be far more challenging to understand as part of an algorithm using
another method for the WDP. Another simplifying assumption for all modules in this phase
of the algorithm is that buyers do not compete directly with each other. Rather they compete
only with the winning bidder. Competition between bids is incorporated as the algorithm
iterates and a new winning bid is chosen.

3.1 Demographic Similarity

The first type of counteroffer we considered was termed a replacement type. That is, for
time slots with losing bids, other time slots we believe the buyer would be interested in are
offered with the prices at which the seller would accept. The question then became how to
determine which time slots to offer as replacements. As we assumed the demographics of
impressions was the largest factor influencing the buyer’s decisions, it was natural to compare
the demographics of remaining time slots. The details of how to determine demographic
similarity between two time slots is the subject of another subgroup.

A simple outline of a potential demographic similarity replacement algorithm is written
here:

1. Identify slots with losing bids.

2. Calculate combined demographic distribution of losing bid slots.

3. Search for combinations of unassigned slots possessing a similar distribution, order
results in terms of similarity.

4. From unassigned slots, identify slots which have a seller price closest to the original
bid.

5. Rank these offerings based on the demographic similarity and price closest to original
bid.

6. Return counteroffer.

In this outline there is still a large amount of flexibility in implementation. For example,
in step 2, rather than focus on the demographic distribution of losing bids, we could go by
what demographics were decided to be most desirable to the buyer at the beginning of the
algorithm. Another example would be to limit the replacement slots offered in step 4 to a

42 Algorithm Engineering

combination that remained under the seller’s original bid. In this sense, counteroffers would
always be within the constraints of the buyer’s original budget. Conversely, a modification
to step 4 could allow a combination of available slots which have similar demographics, but
possibly larger audience, to be identified and offered at prices which exceed the buyer’s
original bid. This type of counteroffer could be considered as a replacement upgrade.

3.2 Subset Offer

The subset offer is the simplest of all the counteroffer schemes we considered. In the subset
offer, any slots requested by, but not won by the bidder are removed from their bid. The
price of the counteroffer is then computed by subtracting the P-Values corresponding to their
bids on all the losing time slots. This type of counteroffer only results in less slots awarded
to the buyer and less revenue to seller.

The scheme is outlined below:

1. Identify time slots with losing bids.

2. Remove them from the buyer’s order, lowering the buyer’s bid by the P-Value for each
lost slot.

3. Return counteroffer containing only the winning bids at a reduced price.

3.3 Minimum Bid Increase to Win

An important type of counteroffer is for a buyer to know how much they should increase
their bid to get exactly the time slots they want. This is beneficial to the seller because it
raises the amount the seller will receive for a specific time slot. Two ways to incorporate
the minimum bid increase to win counteroffer were considered. They are increasing the bid
based on a time slot by slot basis, or increasing based on the P-Value weighting of the entire
bid. The latter method led to unreasonable increases in the bid for a buyer. Nonetheless,
it led to some interesting mathematical questions which were examined by other subgroups.
The first method, which examined each slot individually, led to more realistic values.

A direct slot by slot method of determining the minimum increase looks at a bid in
which the buyer did not get all the requested slots. Then it would identify the difference
between the winning bid’s price for that time slot and the losing buyer’s price. If there was
no other bid on the slot, and the buyer’s bid was below the minimum reserve, we could think
of the minimum reserve as the winning bid amount. The next step would be to calculate
the minimum amount needed to win by summing these differences for each time slot. The
counteroffer would then consist of the buyer’s original bid increased by the minimum bid to
win.

The minimum bid increase to win algorithm outline is as follows:

1. Identify slots with losing bids.

Erik Palmer, Marylin Vasquez 43

2. Sum the difference in P-Values and the seller’s price.

3. Increase buyer’s bid amount by this difference.

4. Return counteroffer.

In considering the implications of using the algorithm described above, we discovered a
scenario in which this method would be less than optimal. Consider the case when a buyer
is overbidding on one time slot but whose P-Value for the second slot is below the seller’s
price:

Slot 1 Slot 2

Bid 1: $1500 $1000 $500

Seller’s Price $500 $750

Since the seller’s price is the maximum amount the seller will receive for the time slot,
it’s clear that accepting the bid as is, would lead to an overall price higher than the com-
bination of seller prices for the two time slots. However, the minimum bid increase to win
algorithm would currently ask the buyer to pay an additional $250 to win the bid. This
seems unreasonable since the buyer is currently overpaying on Slot 1. To avoid this it seems
a modification to the algorithm is necessary.

One possible modification would be to divide the bid into two different portions. The
part that matches the seller’s price, and the amount that pays above that. Then the amount
that pays above the seller’s price could be redistributed as necessary to other time slots. In
the current example, the buyer is overpaying for time slot 1 by $500. Suppose we split that
between the two slots, $200 for the first, and $300 for the second. Then the bid would be
revised as follows:

Slot 1 Slot 2

Bid 1: $1500 $700 $800

Seller’s Price $500 $750

Here we can see that since each P-Value is above the seller’s price, the minimum increase
would be $0, and the seller could accept the bid outright. Furthermore, if this was not the
case, and the bid for a desired slot was still below the seller price after redistributing the
overpayment we would return to original minimum increase to win algorithm.

This modification to the minimum increase algorithm is outlined as follows:

1. Identify losing slots.

2. Identify slots with overpayment.

3. Redistribute overpayment to slots with losing bids.

4. Do the Minimum Increase algorithm.

44 Algorithm Engineering

3.4 Iterative Seller Discount

A mechanism to include discounts offered by the seller in order to sell less desirable slots
was considered. We theorized that within the iterative auction framework, the seller’s price
for each time slot could be reduced a fixed amount at each step. The discount could also
increase as some sort of exponential function. Either method would serve the same goal of
generating revenue for the seller from slots that would otherwise not be awarded.

3.5 Final Counteroffer or Discount

The question was asked about what would happen at the end of the algorithm to time
slots for which the minimum bid was not met. In considering this, we thought about the
final iteration of the time constrained algorithm. It seemed reasonable that at the final
counteroffer phase, bids for time slots should be awarded even if the P-Values were below
the seller’s minimum reserve. While it would not be helpful at any other point in time, doing
this on the final step would result in revenue from time slots that would otherwise be zero.

4 Conclusion

The algorithm engineering subgroup’s holistic approach to the problem tied together many of
the different subgroups. As such, many of the ideas presented above arose out of discussions
with other subgroups. Our main contribution was to build a framework to combine all the
parts which were examined separately. This involved identifying and examining scenarios in
which our algorithm led to unreasonable outcomes, as well as proposing general guidelines
for addressing these issues and expanding the capabilities of the algorithm.

We concluded that the optimal approach was to organize the algorithm into three phases:
determining the P-Value matrix, the winner determination problem, and the counteroffers
and discounts portion; occurring in that order. This translates to determining what each
buyer will pay for each time slot, who each time slot is awarded to, and then how to re-
spond with counteroffers and discounts for unawarded time slots. Within each of these
self-contained phases a variety of smaller modifications could be considered. For example,
we outlined a temporal method for altering the P-Value matrix. In the second phase, we
identified methods to incorporate additional considerations into the winner determination
problem, such as preference for certain buyers, tie breaking, and tracking the seller’s price.
Finally, in the counteroffers and discounts phase, we discuss a multitude of methods with out-
lined processes to calculate reasonable counteroffers. In taking this structured approach we
formed a robust framework for which many further modifications to the iterative algorithm
could be conveniently included.

Algorithm Flow Chart

Illustration by Melike Sirlanci

July 13, 2016

Starting Point
1. Slots + Bids

2. Reserve
Prices

Determine
P-Value
Matrix

Constraint
Based Order
(MPI 2015)

Winner
Determination

Stopping Criteria:

1. No time slot
conflict and minimum
reserve price is met.

2. Time for the
auction has ended.

Done

If not satisfied
with results

and have
not exceeded
auction time.

Counteroffers
and/or

Discounts

Everyone
agrees.

Some bidders
do not accept
counteroffer.

45

A Mathematical Programming Approach to Solve the
Programmatic TV Advertising Problem

Pavan Kumar Narayanan
SUNY Buffalo State

pavan.narayanan@gmail.com

August 9, 2016

This report summarizes the models and methodology that have been developed as part
of a solution architecture for the combinatorial auction problem for hybrid programming TV
markets. This solution is attempting to solve merely a part of master problem and should be
combined and looked at along with Dr. Edwards’ master solution methodology. I intend to
keep my methodology succinct and have divided this section into two parts: description about
part of the problem that we have attempted to solve using mathematical programming and
the proposed methodology that was executed with data provided by Clypd. Please refer to
the problem statement given by Clypd for a detailed presentation of the problem statement.

1 Problem Structuring

The problem is to determine the best strategy for TV programmers to balance constraint-
based and bid-based orders in order to maximize profit and the number of accepted orders.
In auctioning advertising slots, at each round of the auction, the bidders would select more
than one slot (group of items where each item corresponds to a slot) which they wish to
purchase and place an order for the entire package that consists of multiple placements. The
TV programmer’s objective is to maximize the profit and number of accepted orders. One
of the constraints is that, at the end of each round of the auction when the placement is
allotted to a specific bidder, it is deemed a completed transaction. Once a TV placement is
allotted to a specific bidder, that placement will be removed from the available list of TV
slots for business.

In the context of mathematical auction theory, this problem can be formulated as a com-
binatorial sealed-bid auction where the bidder submits bids for combinations of items in each
round while the seller (TV Programmer) would look for efficient allocation of bids in order
to maximize the revenue. The latter allocation problem is called the Winner Determination
Problem.

To illustrate, let us look at the problem scenario:

46

Pavan Kumar Narayanan 47

Table 1: Placements Schedule

Placements ID TV Network Date/Time
A CBS 2016-06-15 20:00:00
B Fox 2016-06-15 20:00:00
C PBS 2016-06-15 20:00:00
D ABC 2016-06-15 20:30:00

Let us look at the potential bids for each combination of slots:

Table 2: Potential bids

S Bidder 1 Bidder 2 Bidder3
AB 50 10 10
BC 10 40 60
CD 10 10 50
AD 60 70 20
ABC 60 30 60
BCD 40 50 30
ADC 40 60 50
ADB 30 50 40
ABCD 100 100 100

We can see that allocating placements A and D to Bidder 2, and allocating B and C
to Bidder 3, would maximize the TV programmer’s revenue and satisfy all the orders. The
complexity arises when we have hundreds of bidders, each bidder bidding more than one
combination of items for thousands of placement slots. The data provided by Clypd had 300
bids for 14861 placements.

2 Solution Methodology

The following is the high-level solution methodology employed to solve this problem. By
employing this methodology, we could generate revenue of $174,697,013.30 and fulfill 33.91%
of orders in the first round of the auction.

Step I: Solve the Master Problem and Sub-problem:

(a) Master Problem:

maximize
n∑

j=1

PjXj

48 Programming TV Advertising using Mathematical Programming

subject to
n∑

j=1

BijXj ≤ T, ∀ i ∈ m,

Xj ∈ {0, 1},
where

Pj ← the price vector that corresponds to bids,

Bij ← the ‘i’ number of items in each bid j,

T ← number of items that could be fit in the slot.

The objective function is to maximize the revenue by choosing the highest-priced
bids subject to the constraint that, while choosing the bids, the total number of
placements for each time slot should be less than or equal to the total number of
available placements, T .

(b) Sub-problem for assigning # of placements to each time slot T :

maximize
∑
i∈A

n∑
j∈T

CijYij

subject to ∑
i∈A

Yij = 1, ∀j ∈ T, (time slots),

∑
j∈T

Yij = 1, ∀i ∈ A, (chosen placements),

Yij ∈ {0, 1}.
Here, each time slot T can accommodate several placements; for example, a time
slot T of 120 seconds could handle four ad-placements of 30 seconds each. This
assignment problem further looks for opportunities to enhance total revenue gen-
erated by further letting the bidders choose placements that would help them
reach out to their target audience effectively.

Step II: Upon obtaining the optimal solution to the above problem, remove the accepted bids
from the bids matrix to form a new bids matrix:

Bij −B∗kj = Bi−k,j ← new bids matrix.

Step III: If a bidder bids for a placement that is less than the reserve price, then remove that
bid (now we reshuffle and propose new bids to bidders who lost in the first round of
the auction):

if Pj < rj then Bij = 0, ∀ i ∈ {1, 2, 3, ..., 300} (bidders).

Pavan Kumar Narayanan 49

Step IV: For each time slot, choose the maximum bid price that a bidder has proposed:

arg max
j

(j1, j2, j3, ...jn), ∀ j ∈ {1, 2, 3, ..., 14861} (time slots).

Step V: Extract the maximum bid prices and transform to obtain the TV programmer’s pro-
posed allocation for each bidder. For illustration,

Bidder 14 alloted slot # (336, 1148, 1201, 9935, 10000)
Bidder 16 alloted slot # (325, 1207, 9856, 9926, 11477, 11530, 11755, 11785)
Bidder 28 alloted slot # (2316, 7558)
.
.
Bidder n (....)

Step VI: Repeat Steps I to IV for the next rounds of the auction.

The idea is to propose the revised allocation for bidders that would help the bidders
themselves to choose other bids that are not allocated yet in the second round of the auction.

3 Scope and Limitations

3.1 Scope of this Methodology:

• Recommendation System Development: From the TV programmer’s point of
view, while proposing the revised bid allocation to bidders, a recommender engine
may be developed by looking at similarity measures between viewers of various demo-
graphics that would benefit the TV programmer’s unallocated slots and help bidders
explore new time slots.

• Time Slot Assignment Problem: The assignment problem can be modeled with
increased complexity as the time slots may not be of the same duration. Some slots can
be of 120 seconds duration, and there could be cases where smaller or larger durations
may arise. TV placement assignment should benefit the TV programmer by further
maximizing revenue by satisfying more bidders in the initial round of the auction.

3.2 Limitations of this Methodology:

• Order Target: Order targets for bidders who did not win the first round were only
partially met. Ideally, the problem statement is to meet order targets for all bidders
but due to constraints, we can only satisfy high-priced bids. This may not help the
bidder-TV programmer relationship if bids were not met consistently due to low-priced
bids.

50 Programming TV Advertising using Mathematical Programming

• Replacements: Replacements are when a bidder fails to win an time slot, a dif-
ferent item that is available and closest to the target demographics may be offered.
Replacements are not included in this methodology.

4 Conclusion

Although there are numerous ways to solve these sorts of problems, the mathematical pro-
gramming approach may be the best way of attempting to solve this combinatorial auction
problem. This solution methodology may be looked at as a first step to solve the problem
and there is certainly enough scope to satisfy all the bidder’s requirements by recommending
certain time slots that would fit a given bidder’s target demographics, and offering replace-
ments with competitive pricing that would satisfy the bidder’s requirements. We should also
collect relevant data about pricing, the nature of the business, and many more attributes
about the bidder in order to further develop this proposed methodology.

Qualitative Properties of the Value Matrix

Marina Chugunova

July 12, 2016

Assume that due to a winning strategy the ability of a buyer to get a particular time slot
in a bid depends on a corresponding estimated value in the value matrix P . That means
that if the computed estimated values pij of the buyer i for the time slot j is not big enough
the buyer might not be able to get the desired time slot (someone else can take the slot j).
It seems quite obvious that the buyer should not be able to reverse the situation (i.e., to get
the slot j) by just adding more time slots to the bid without changing the total payment.

Definition 1.1 We say that the value matrix P is consistent if the estimated value pij of
each time slot j in the bid of the buyer i will not increase if an additional time slot is added
to this bid while the total bid price stays unchanged.

Let demographics, which is used to construct the value matrix P , consist of k = 1, . . . , K
different categories. For example: if we have data about three age groups for males and
females then the total number of different categories is given by K = 3 ∗ 2 = 6. Let N
be the total number of time slots available in the bidding game, i.e., Slotj = 1, . . . , N .
Consistency of the value matrix P does not depend on a particular ordering of the time
slots so, without loss of generality, we can compare for the bidder i two options: to bid for
the slots Slotj = 1, . . . , N − 1 or to bid for all slots Slotj = 1, . . . , N using the same total
bid price. If the value matrix P is consistent then bidding for an extra slot N should not
increase estimated values of time slots Slotj = 1, . . . , N − 1.

Using that the demographics distribution for each time slot Slotj is known and given
by positive integers Slotj,k, we can represent the non-increasing property of the estimated
values of time slots Slotj = 1, . . . , N − 1 by using the following inequality (where all Slotj,k
with j = 1, . . . , N , k = 1, . . . , K are positive integers):

K∑
k=1

Slotj,k

(
N−1∑
n=1

Slotn,k

)
K∑
k=1

(
N−1∑
n=1

Slotn,k

)2 ≥

K∑
k=1

Slotj,k

(
N∑

n=1

Slotn,k

)
K∑
k=1

(
N∑

n=1

Slotn,k

)2 .

The inequality above is derived by straightforward computations of the estimated values
of the Slotj in the value matrix P for two types of bidding: for slots Slotj = 1, . . . , N − 1

51

52 Qualitative Properties of the Value Matrix

and for slots Slotj = 1, . . . , N with the same total bid price (because the total price is the
same in both cases it actually scales out from the inequality, i.e., the consistency is solely
defined by the given demographics data).

To get some insight into the consistency property let us start from a set of simple examples
(particular cases).

1. Example 1 (the demographic data available is only showing the total number of people
watching TV at the given time interval K = 1).

The inequality simplifies to a trivial one:

Slot1,1
N−1∑
n=1

Slotn,1

≥ Slot1,1
N∑

n=1

Slotn,1

,

that holds true for any positive integers.

2. Example 2 (only two time slots are available in the bidding game N = 2).

The inequality simplifies to a trivial one:

1 ≥

K∑
k=1

Slot1,k

(
2∑

n=1

Slotn,k

)
K∑
k=1

(
2∑

n=1

Slotn,k

)2 ,

that holds true for any positive integers.

3. Example 3 (only three time slots are available in the bidding game N = 3). To simplify
notations in this example we will use j = 1, ak := Slot1,k, bk := Slot2,k and ck = Slot3,k
so in new variables the inequality can be rewritten as:

K∑
k=1

ak(ak + bk)

K∑
k=1

(ak + bk)2
≥

K∑
k=1

ak(ak + bk + ck)

K∑
k=1

(ak + bk + ck)2
,

where ak, bk and ck are positive integers. Unfortunately this inequality fails if c1
is small and b2 is large compared to all other coefficients. The simplest way to see
why the inequality does not hold in general for N = 3 is based on application of basic
calculus. If this inequality holds then it holds for all nonnegative real numbers. Indeed,
due to homogeneity (because it holds for positive integers) it would also hold for all
positive rational numbers and then we can proceed by continuity. Therefore if we
denote by F (a,b, c) the right hand side of the inequality, then if the inequality holds
then ∂ckF (a,b, c) ≤ 0 for c = 0. Calculating the partial derivative ∂c1F (a,b,0) for
K = 2 we can see that it becomes positive as b2 →∞ that leads to the contradiction.
The inequality fails for example for the set c1 = 1, b2 = 40, c2 = b2 = a1 = a2 = 10.

Marina Chugunova 53

A more interesting question, from the applied point of view, is the optimal choice of the
time slots for the constrained maximal payment. Assume that a buyer cannot pay more for
the bid than some fixed maximum amount of money (budget constraint). If the buyer adds
to the bid too many time slots then estimated values for these time slots might become too
low and this will result in losing the desired slots in the bidding game. Reducing the number
of time slots in the bid will increase the probability of getting them. The open question here
could be the question of the optimal strategy for the buyer under this money constraint (to
avoid the situation “if you are too greedy you might get nothing”).

Replacements

Irene De Teresa
University of Delaware

Marilyn Vazquez
George Mason University

July 25, 2016

As previously described, there is a very large percentage of unsatisfied buyers, so it
is in the main interest for the sellers to develop a method to provide counteroffers and
replacements that are attractive for the unsatisfied buyers but are still profitable. The aim
of this section is to propose methods to find replacements that offer a similar number of
population impressions in the categories that were originally interesting for the buyer.

1 Clustering Whole Orders

One of the methods to find replacements consists on first mapping the set of possible orders
U into a new space (called the Demographic space), where the demographic properties as-
sociated to these orders are better reflected. Having done so, we proceed by clustering the
orders using these demographic coordinates, to finally identify the orders that are in the same
cluster that the unsatisfied buyer originally wanted. Among the orders that are in the same
cluster (and presumably with more similar demographic characteristics), we choose the ones
that are still available and, if possible, that have some of the originally requested slots. The
following steps describe this idea more precisely.

Step 1. Let N be the number of available slots offered by the seller. We first find a
space of orders

U := {b ∈ ZN
2 | b is a possible order of slots}.

Here

bi =

{
1 if slot i is included in the order,

0 otherwise.

Naturally, since in realistic examples the number of slots available in a week is typically
around N = 14000 and the number of slots selected by the buyer is around k = 100, one

54

I. De Teresa, M. Vazquez 55

can’t be exhaustive and include all the
(
N
k

)
possibilities. Therefore, the first problem that

we face is how to construct U in a way that includes enough “possible orders”.
In order to solve this issue, we propose to take the original set B of orders included in

our database, which consists of 300 real orders from the buyers, and then run the following
algorithm:

U = B
for all b in B:

by := {i | bi = 1}

bn := {i | bi = 0}, ln := |bn|

for all i in by

δ = b

δi = 0

p ∼ UNIF(1, ..., ln) % p is a random variable in {1, 2, ..., ln}
n∗ = n(p)

δ(n∗) = 1

U = U ∪ {δ}.
end

end

Step 2. Once U is defined, we can use the demographics matrix V to map this set of
orders into a space that reflects the total number of impressions per population category
that the buyers intend to reach.

More precisely, we define the map f : U ⊂ {0, 1}N → Nn, by

f(b) = b ∗ V T ,

where n is the number of population categories (which typically is n = 30), and V ∈ NN×n

is the demographics matrix: that is, Vi,j is the number of impressions of population category
j that are associated to slot i.

Step 3. This third step consists of identifying the different clusters in the range of
f , in order to associate possible orders that share similar distributions of impressions per
population category.

Step 4. (The replacement) Finally, in order to find a replacement for a concrete b
that couldn’t be satisfied, we identify the cluster Cb to which f(b) belongs. Then, cancel all
the possibilities in Cb that conflict with any already-assigned slot, defining:

C ′b := {f(b′) ∈ Cb | b′ does not conflict with any already-assigned slot}.

56 Replacements

And finally, we choose as a replacement of b the element br ∈ U defined by

b′ such that f(b′) = arg min{||f(b)− f(b′)||2 | b′ ∈ C ′b|},

where || · ||2 is the usual Euclidean norm in Rn.

Toy example. In order to give a concrete example, we will consider now a very simple
case. Let’s consider N = 6 slots and n = 2 population categories (male and female), with
associated demographics matrix to be the transpose of the following table:

V T M F

Slot 1 30 10
Slot 2 25 05
Slot 3 25 20
Slot 4 05 35
Slot 5 10 25
Slot 6 05 30

Let’s suppose that we are in the situation where one of the buyers bid for an order uL,
but that this cannot be satisfied since another already-assigned order uw has slots in common
with uL. So we can start now our replacement algorithm.

Step 1. Let’s suppose that the buyers typically choose two slots among the six available.
In this toy example, we can consider U , the space of possible orders, to be exhaustive: that
is, U consists of all the

(
6
2

)
= 15 vectors of length 6 with either 0 or 1 in each entry:

U Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

b1 1 1 0 0 0 0
b2 1 0 1 0 0 0
...
b15 0 0 0 0 1 1

Step 2. Now we transform all the possible orders in U into the demographics space. In
Figure 1, we show the image of these 15 orders under the mapping f .

In Figure 2 we show the two conficting orders uL and uw. Therefore, we proceed in the
algorithm.

Step 3. At this point, we first find the cluster to which the unsatisfied buyer belongs in
the demographics space (Range(f)) (Figure 3). Next, we discard orders in this cluster that
possibly conflict with the assigned slots (Figure 4), to finally find the option that is closest
to b′ (Figure 5).

I. De Teresa, M. Vazquez 57

Female Viewers

10 20 30 40 50 60

M
a

le
 V

ie
w

e
rs

15

20

25

30

35

40

45

50

55

60

65
Demographics

Figure 1: Mapping U into the demographic space (step 2 of the algorithm). Each of the
points f(u) = (fu,mu) marked here corresponds to the demographic values associated to
order u (that is, fu and mu are the total number of female and male viewers associated to
the slots in u).

2 Clustering Individual Slots

An alternative to clustering complete orders is to cluster individual slots. If a buyer wants
slots that were already assigned to someone else, the seller can offer slots in the same cluster
as the ones the buyer originally requested. The following is an outline of the implemented
algorithm to achieve this goal:

Input: B, V , W (indices of winners)
Step 1. Identify L (indices of non winners), F (indices of a slot no longer available),
and R (indices of a slot that needs a replacement).
Step 2. Cluster the rows of V : i.e., cluster the slots based on their demographics.
Step 3. For i ∈ R and k = 1, . . . , N :

Ci,k =

{
i k is the index of a slot in the same cluster as i, and k 6∈ F,
0 otherwise.

Step 4. Form S ∈ Nm,N+1, where S1,j tells you the bidder index and for ` ∈ L s.t ` ≥ 2,
S`,k = C`,k.

Output: S

58 Replacements

Female Viewers

10 20 30 40 50 60

M
a

le
 V

ie
w

e
rs

15

20

25

30

35

40

45

50

55

60

65

U
W

U
L

Demographics

Figure 2: In the demographic space, the two conficting orders corresponding to the unsatisfied
buyer and to the winner are shown: uL (shown in red) and uw (in green).

To illustrate the algorithm, consider an auction with 5 bidders (m = 5) and 75 possible slots
(N = 75) with the orders in Table 1.

Bidder Slots requested
A 5,10,12,20,25,52,55
B 5,10,20,32,45,49,62
C 5,10,17,20,31,61,72
D 14,51,60,63,65,74,75
E 11,44,54,60,64,65,75

Table 1: Sample orders of 5 different bidders.

For simplicity, suppose that the demographics of interest are only gender viewership and
that the first 50 slots are mainly viewed by females and the last 25 slots are mainly viewed
by males. Figure 6 shows how this distinction forms clusters in the data. Of course, with
real data, we expect noise and high dimensionality to represent some of the challenges to
the clustering step.

Now, suppose that after the bidders give the seller their orders and corresponding bids,
the seller decides that Bidders B and D are the winners, so W = {2, 4}. For the first
step in the algorithm, it is easy to calculate that L = {1, 3, 5}. Also, from Table 1, we

I. De Teresa, M. Vazquez 59

Female Viewers

10 20 30 40 50 60

M
a

le
 V

ie
w

e
rs

15

20

25

30

35

40

45

50

55

60

65

U
W

U
L

Demographics

Figure 3: Step 3. Identification of the set of orders u that belong to the same cluster as ul
(shown in pink).

get that F = {5, 10, 11, 12, 14, 20, 25, 32, 44, 45, 49, 51, 52, 54, 55, 60, 63, 64, 65, 74, 75}, which
is the array containing the slots that have been given away. Looking at Table 1 one also can
see that slots 5, 10, and 20 were given to Bidder B, and slots 60, 65, and 75 were given to
Bidder D, but the other bidders also wanted some combination of these slots, which means
that R = {5, 10, 20, 60, 65, 75}. Step 2 is illustrated in Figure 7(a), where the colored points
in represent the slots taken, and specifically the yellow dots represent the slots that need to
be replaced. The clustering step, which is step 2 of the algorithm, can be seen in Figure 7(b).
One can think of step 3 as finding the replacements and keeping a record of which slot they
are replacing. For our example, Figure 7(c)-(d) shows the suggested replacements made by
the algorithm, which is done in step 3. In Figure 7(c) one can see how the suggestions, which
are marked in blue and green, are the available slots in the same cluster as those that need
to be replaced. Figure 7(d) is another illustration of the results, where the x-axis represents
the slots that need replacement and the y-axis represents the slots that will be given as
replacements. For example, we see that (10,1) is a green circle and (70,55) is a blue circle.
This means that slot 1 can be a replacement for slot 10, which was in the second cluster
and hence the green color. Similarly, slot 55 can be a replacement for slot 70, which was in
the first cluster and hence the blue color. The red stars in Figure 7(d) represent those slots
that were not available as replacements. Note that these correspond to F . On step 4, we
simply add in the first column of S the information of which bidder needs the replacements
that we gave. In our example, that just means that we identify Bidders A and C as the ones

60 Replacements

Female Viewers

10 20 30 40 50 60

M
a

le
 V

ie
w

e
rs

15

20

25

30

35

40

45

50

55

60

65

U
W

U
L

Demographics

Figure 4: Step 4. In green, we mark all the orders that we cannot take into account for
replacements because they contain already assigned slots.

that need the replacements for slots 5, 10, and 25 and Bidder E as the one that need the
replacements for slots 60, 65, and 70.

3 Future Work and Challenges

One of the main issues of both these approaches is which clustering algorithm to use. While
the user can chose the clustering algorithm of their choice, we are using the continuous k-
nearest neighbors algorithm in [1], since in previous research by some of the authors, this
algorithm has shown to be efficient and accurate.

Future work includes: (1) test these algorithms with real data and calculate the accuracy
and efficiency of both approaches and (2) narrow down the suggestions for each bidder. (1) is
important because it will help us better understand the benefits and costs of each algorithm
and help the user decide the algorithm that best suits their needs. To accomplish (2), we can
minimize the Euclidean distance in the demographic coordinates, but we must also consider
the bidder’s budgets, willingness to pay for each slot, and the reserve price.

I. De Teresa, M. Vazquez 61

Female Viewers

10 20 30 40 50 60

M
a

le
 V

ie
w

e
rs

15

20

25

30

35

40

45

50

55

60

65

U
W

U
L

U
R

Demographics

Figure 5: Among the options in the same cluster that don’t conflict with any already assigned
slot (still shown in pink), the proposed replacement is the closest to ul.

References

[1] T. Berry and T. Sauer. Consistent manifold representation for topological data analysis.
Submitted to Foundations of Computational Mathematics, 2016.

62 Replacements

0 10 20 30 40 50 60 70

Number of Female Viewers (in thousands)

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f
M

a
le

 V
ie

w
e
rs

 (
in

 t
h
o
u
s
a
n
d
s
)

Artificial Example of Demographics of Each Slot

X: 17.67

Y: 48.04

Figure 6: Each data point in this figure represents the demographic coordinates of a single
slot. For example, slot 57 has 17.67 thousand female viewers and 48.04 thousand male
viewers.

I. De Teresa, M. Vazquez 63

0 10 20 30 40 50 60 70

Number of Female Viewers (in thousands)

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f
M

a
le

 V
ie

w
e
rs

 (
in

 t
h
o
u
s
a
n
d
s
)

Artificial Example of Demographics of Each Slot

0 10 20 30 40 50 60 70

Number of Female Viewers (in thousands)

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f
M

a
le

 V
ie

w
e
rs

 (
in

 t
h
o
u
s
a
n
d
s
)

Artificial Example of Demographics of Each Slot

(a) (b)

0 10 20 30 40 50 60 70

Number of Female Viewers (in thousands)

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

M
a

le
 V

ie
w

e
rs

 (
in

 t
h

o
u

s
a

n
d

s
)

Artificial Example of Demographics of Each Slot

0 10 20 30 40 50 60 70
Slots that Need Replacement

0

10

20

30

40

50

60

70

80
R

e
p

la
c
in

g
 S

lo
ts

Results

(c) (d)

Figure 7: (a) Step 1: The colored data points, both yellow and red, represent the slots that
were taken by the winner of the bid. In particular, the yellow data points are those slots
that were requested by bidders that did not win the auction and hence the seller needs to
find replacements for them. (b) Step 2: The data clustered. (c) The suggested replacements
in each cluster. (d) Another way to view the results. The x-axis represent the slots that
need replacement (5,10,20,60,65,70) and the y-axis the slots that can replace them. The red
stars are those slots that were already taken.

