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Preface
At the 33rd Annual Workshop on Mathematical Problems in Industry (MPI), Zhenyu

He and Vasu Venkateshwaran of Gore presented a problem concerning the modeling of
particle flow through a multi-layer porous media filter.

This manuscript is really a collection of reports from teams in the group working on
several aspects of the problem. Here is a brief summary of each:

1. Chen et al. outline the general problem, and introduce a discrete model for the porous
media. They present simulations of a multiply-connected multiple-layer model.

2. Bi et al. present simulations of a singly-connected multiple-layer discrete model.
3. Edwards et al. derive a continuous model for the porous media, and present some

analytical and numerical results in special cases.
4. Using a continuous model, Allaire et al. numerically analyze the performance of a

double-layer filter as the widths of the two layers vary.
5. Using a continuous model, Sun et al. numerically analyze the performance of a three-

layer filter: two wide layers with a thin transition layer sandwiched between. They
look at how to optimize filtration using characteristics of these layers.

In addition to the authors of these reports, the following people participated in the
group discussions:

Shuchi Agarwal, University of Delhi
Manuchehr Aminian, University of North Carolina, Chapel Hill
Daniel Fong, United States Merchant Marine Academy
Binan Gu, New Jersey Institute of Technology
Qingxia Li, Fisk University
Don Schwendeman, Rensselaer Polytechnic Institute
Jake Taylor-King, Oxford University

Special recognition is due to Jake Taylor-King, Anqi Chen, Joe Gaone, and Tin Phan
for making the group’s oral presentations throughout the week.
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Section 1: Introduction

Figure 1.1. Picture of layered filter [1]. Here the particles enter at the top, and exit at the
bottom. Note the variation in pore size from top to bottom, as well as the large particles
adhering to the top.

Consider a liquid mixture of solid particles in solution (for instance, water). We
consider the filtration of these particles by a filter made of a porous medium. If the pores
in the filter have a size distribution with a small variance, the particles tend to clump
together and clog the filters at the point of entry. (See §2.1 of “Porous Media: Continuous
Model” or the chapter by Allaire et al.)

Therefore, it is desirable to design porous media which consist of a wider range of pore
sizes in order to increase the effective area used for filtration. One simple way to construct
such filters is to stack layers on top of each other, with the mean pore radius decreasing
from large at the layers near the entrance to small at the layers near the exit (see Fig. 1.1).

At the workshop, the larger group analyzed various models (both discrete and con-
tinuous) for this situation. It is our hope that the analysis of such problems will provide
Gore with inspirations to design more effective filters.

In this particular report, we analyze a discrete model for the pore structure. We show
how a heterogeneous filtered can be mathematically assembled from multiple layers with
similar properties.
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Section 2: Two-Dimensional Discrete Model,
Particle Transport

(6)(3) (4) (5)

(1) (2)

(7)

(8)

Figure 2.1. Two-layer model: ymax = 1, xmax = 2, s = 2.

We model the porous matrix as a directed graph or network, as shown in Fig. 2.1.
Here the top corresponds to the flow entrance, and the bottom corresponds to the flow
exit. As a first approximation, we consider the matrix to be two-dimensional.

We extend the analysis in section 4.1 of [2], to which the interested reader is referred
for further details. Each edge represents a pore connecting two nodes, which are denoted
with parentheses (replacing the bar notation in [2]). The direction of the edge corresponds
to a positive flow (or pressure drop). Note that this is simplify a mathematical construct;
if in the true system the fluid flowed from node (2) to node (1) in Fig. 2.1, the flow would
have a negative value since it flows in the direction opposite to the arrow.

As it represents a pore, each edge i has a number di associated with it, which corre-
sponds to the diameter of the associated pore. (This can also be thought of as a capacity
for the edge.) The di are chosen to come from a particular probability distribution (see
the next section for more details). In [2], the authors consider a two-dimensional model
where the diameter of each pore came from the same distribution.

We now extend their analysis in the following manner (see Fig. 2.1):

1. We consider a single coarse layer sitting atop a single fine layer.

This will later be extended to the case where the number of layers L is greater
than 2.)

2. The coarse layer consists of ymax rows (N in [2]) of xmax nodes each (M in [2]). The
fine layer also consists of ymax rows, but with sxmax nodes each.

There is no requirement that the number of rows be the same in each layer—we
consider this case in this report for simplicity.
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Similarly, there is no reason why the scale factor s must be the same between
each layer; again, we just consider this case for simplicity.

3. Each of the xmax nodes in the bottom row of the coarse layer connects to exactly s
nodes in the top row of the fine layer.

Such an assumption would be consistent with the type of filter shown in Fig. 1.1.
However, one could imagine a filter made up of different layers simply laid on
top of one another. A discrete network for such a filter would have a different
connection structure, as described in the next chapter by Chen et al.

Fig. 2.1 illustrates the case with ymax = 1, xmax = 2, s = 2.

For later computational simplicity, as we label the nodes, we must keep the interior
nodes together as a group, and the source and sink together as a group. We use the
particular algorithm as outlined below. Nodes are numbered consecutively starting at the
upper left, so:

the first row in the coarse layer contains nodes (1) through (xmax), the second row in
the coarse layer contains nodes (xmax + 1) through (2xmax), and the last row in the
coarse layer contains nodes ymax(xmax − 1) + 1 through (ymaxxmax).
the first row in the fine layer contains nodes (ymaxxmax + 1) through (xmax(ymax +
s)), the second row in the fine layer contains nodes (xmax(ymax + s) + 1) through
(xmax(ymax+2s)), and the last row in the fine layer contains nodes (xmax((s+1)ymax−
s) + 1) through (ymaxxmax(s+ 1)).
after the last row in the fine layer, we append a source node numbered (ymaxxmax(s+
1) + 1).
the sink node is labeled last as (J), J ≡ ymaxxmax(s+ 1) + 2.

Importantly, note that all the interior nodes are numbered first. Moreover, we have Ji =
ymaxxmax(s+ 1) interior nodes, where the subscript “i” refers to “interior”.

The labeling of the edges is not as important, and Matlab can handle it automatically.
Therefore, we just count them:

there are ymax(xmax − 1) horizontal edges in the coarse layer, and ymax(sxmax − 1)
horizontal edges in the fine layer.
there are ymaxxmax vertical edges ending in the coarse layer (including the edges
originating in the source), and symaxxmax vertical edges beginning in the fine layer
(including the edges ending in the sink).
there are sxmax vertical edges leading from the coarse layer to the fine layer.

Hence the total number of edges is

I ≡ ymax(xmax − 1) + ymax(sxmax − 1) + ymaxxmax + symaxxmax + sxmax

= xmax(2(s+ 1)ymax + s)− 2ymax.



4 A. Chen, D. A. Edwards, J. Gaone

Given this directed graph, we may create the incidence matrix D ∈ RI×J as follows:

Di(j) =

−1, if edge i points away from node (j),
1, if edge i points toward node (j),
0, if edge i does not connect to node (j).

(2.1)

(Here we use capital letters for the entries of the incidence matrix instead of small letters
to avoid confusion with the diameter, below.)

Now we use the incidence matrix to solve for the flows in each edge and the pressure
drop in each node. Let p(j) be the pressure in node (j), and let (∆p)i be the difference in
pressure across edge i, which connects nodes (j1) and (j2). But then

(∆p)i = p(j2) − p(j1) =

J∑
j=1

Di(j)p(j), (2.2)

as all the other Di(j) = 0. But this is just the ith row of the following expression:

∆p = Dp, ∆p ∈ RI , p ∈ RJ . (2.3)

We may use a similar calculation to relate the volume flux Qi through edge i and the
net volume flux q(j) through node (j). In particular,

q(j) = (sum of fluxes in)− (sum of fluxes out) =
I∑

i=1

Di(j)Qi,

as all the other Di(j) = 0. But this is just the jth row of the following expression:

q = DTQ, q ∈ RJ , Q ∈ RI . (2.4)

Using a normalized form of the Hagen-Poiseuille Law [3], we have that the flow through
each node is given by

Qi = −d4i (∆p)i. (2.5)

(More discussion of the distribution of the di will be discussed in the next section.) Writing
in matrix form, we have

Q = R−1∆p, Q ∈ RI , R ∈ RI×I , (2.6a)

where R−1 is the inverse of the resistance matrix. R−1 is a diagonal matrix with

(R−1)ii = −d4i . (2.6b)

With these expressions in hand, we may eliminate the variables corresponding to the
edges and reduce to an expression that just contains variables corresponding to the edges.
Substituting (2.6a) into (2.3), we obtain

Q = R−1Dp. (2.7)
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Substituting (2.7) into (2.4), we obtain

q = DT (R−1Dp) = Lp, (2.8a)

where L ∈ RJ×J , the Laplacian matrix, is given by

L = DTR−1D. (2.8b)

Note that the Laplacian matrix is symmetric.
Now we exploit the cumbersome numbering system defined above. We know that the

net flux through any interior node is zero. But these nodes are all numbered first, so we
may rewrite (2.8a) in the following partitioned form:(

0
qs

)
=

(
A BT

B C

)(
pi

ps

)
, (2.9)

where 0 and pi ∈ RJi , ps and qs ∈ R2, A ∈ RJi×Ji , B ∈ RJi×2, and C ∈ R2×2. Moreover,
note that A and C are symmetric.

Expanding the first row of (2.9), we obtain

0 = Api +BTps

pi = −A−1BTps. (2.10)

But ps is known, for the pressure is assumed to be 0 at the sinks, and p0 at the source.
(In the code, we take p0 = 1.) Therefore, we have

pi = −A−1BT

(
1
0

)
.

Once we have pi, we may calculate Q from (2.7) and qs from the second row of (2.9):

qs = Bpi + Cps. (2.11)

Next we want to trace a particle’s path through the porous medium. We repeat the
analysis in section 4.3 in [2], as the discussion in section 2 of this work allows us to use the
analysis directly. We define P(k)(j) to be the probability that a particle travels directly from
node (j) to node (k) along some edge k. We set this probability equal to the proportion
of the total flux from node (j) that arrives at node (k):

P(k)(j) =


outward flux from (j) to (k) along edge i

total outward flux from (j)
, total outward flux from (j) 6= 0,

0, else.
(2.12)

To calculate the numerator of (2.12), we see that if there is a positive flux from (j) along
edge i, that means that either:

edge i is oriented away from (j), in which case Qi > 0 and Di(j) = −1
edge i is oriented toward (j), in which case Qi < 0 and Di(j) = 1
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If the sign of Qi is reversed, we have a net inward flux to (j) along edge i, which contributes
nothing to the numerator. Hence we have that the outward flux from (j) along edge i is
given by max{−Di(j)Qi, 0}. And edge i connects (j) and (k) if |Di(k)| = 1. Hence the
term in the numerator is

S(j)(k) =
I∑

i=1

|Di(k)|max{−Di(j)Qi, 0}, j 6= k. (2.13a)

Why the restriction? Well, if j = k, then we are counting every edge that emanates from
(j), so

S(j)(j) =
I∑

i=1

|Di(j)|max{−Di(j)Qi, 0} (2.13b)

becomes the denominator of (2.12). How can we calculate S? Note that Di(j)Qi is the
ijth component of ΛD, where Λ is a diagonal matrix in RI×I with

Λii = Qi. (2.14)

With this definition, then the sums in (2.13) define

S = (max{−ΛD,O})T |D|,
where we have to keep in mind that (k) is the first index, and the maximum is computed
componentwise.

Then if the sums in (2.13) define a matrix S, then

P(k)(j) =


S(j)(k)

S(j)(j)
− δ(j)(k), S(j)(j) 6= 0,

0, else,

(2.15)

where δ represents the Kronecker delta function, and is used to ensure that P(j)(j) = 0.
Note also that we have to take the transpose again.

Once this is calculated, we can create a clogging simulation as in section 4.7.1 of [2]
using the following algorithm. Consider a particle of diameter dp.

1. The particle starts at the source, so set (j) = (J − 1).
2. Choose a node (k) to which the particle will travel using the probability distribution

in (2.15), and determine the corresponding edge number i.
3. If dp < di, the particle passes through the pore.

(a) If (k) = (J) (the sink node), the particle has escaped. Return to step #1.
(b) Otherwise set (j) = (k) and go to step #2.

4. If dp ≥ di, the particle clogs the pore.

(a) Set di = 0, which means from (2.5) that there will never be flow through edge i
again.

(b) Since di has changed, so will R−1. Using that new value, calculate pi and Q.
(c) If Q 6= 0, calculate P(k)(j) and start another particle at step #1. Otherwise, the

entire filter is clogged.
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Section 3: Two-Dimensional Discrete
Model, Pore and Particle Sizes

Now that we have an algorithm in place to propagate particles through the simulated
filter, it remains to choose dp and di. For the purposes of this report, we choose the pore
sizes to have a gamma distribution:

di ∼ Γ(k, θ) =⇒ E[di] = kθ, Var[di] = kθ2. (3.1)

At first, the particle size was taken to be fixed, and we treat just a single layer. This
allows us to compare our code with computations in [2], as well as to understand the basic
transport dynamics in the porous medium before adding the complication of additional
layers.
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Figure 3.1. One-layer model, dp = 0.05, di ∼ Γ(2, 0.0475), ymax = 10, xmax = 30.

Results from a test case with a single layer are shown in Fig. 3.1; the parameters
indicate a mean pore size about double the particle size. Note that with these parame-
ters, small pores will be clogged by the particles, while larger pores continue to transport
particles.

Note that in this case, the flux graph is concave up. Initially, there is a relatively high
number of small pores that the particles can clog, so the flux decays quickly. However, as
time passes, the number of (cloggable) small pores decays as a proportion of all remaining
open pores, so the flux rate decays more slowly, eventually reaching a horizontal asymptote.
Moreover, the retention ratio will asymptote to 0 (as the molecules stop being trapped).

Next we considered the more realistic case where the particle sizes also follow a prob-
ability distribition. For the one-layer model, we took the particle sizes to follow the same
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Figure 3.2. One-layer model, dp, di ∼ Γ(2, 0.0475), ymax = 10, xmax = 30.

probability distribution as the pores, but the underlying code is general enough to handle
other situations.

Results from a test case with a single layer are shown in Fig. 3.2. Note that with these
parameters, it is highly likely that some particles will be larger than the pores. Hence the
filter completely clogs very quickly. (Compare the horizontal axes in Figs. 3.1 and 3.2.)
We postulate that the number of particles needed to clog the filter should scale with xmax,
as that’s how many pores (in a single row) it would take to shut the flow down completely.

Since both the pores and the particles come from the same distribution, at any time
we would expect the probability of a pore being clogged to be roughly the same, which
yields a retention rate graph which asymptotes to a fixed value. This is also consistent
with the flux graph, which decays relatively uniformly over the experiment. The goal for
a well-designed filter is to have a high flow rate (with high retention ratio) for almost all
of its life cycle, followed by a quick collapse as clogging occurs. This would correspond to
a flux graph which is concave down.

With the addition of another layer, the question then becomes as to how to assign
the pore diameters in the various layers. In particular, we would like the total pore cross-
sectional area in each layer to be roughly comparable. Therefore, since we have s times
as many nodes in the second layer, we would like the expected value of a single pore area
to be a factor of s smaller, so we would like the expected value of a single pore diameter
to be a factor of s1/2 smaller. Similarly, we would like the variance of the diameter to be
smaller by the same factor of s. Hence we have

di(layer l) ∼ Γ

(
k

s(l−1)/2
, θ

)

E[di(layer l)] =
kθ

s(l−1)/2
, Var[di(layer l)] =

kθ2

s(l−1)/2
, (3.2)

where the layers are numbered from top to bottom.

For the pores that connect the layers, we first use the geometric mean of the scale
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factors for the layers being connected:

di(layer l to layer l + 1) ∼ Γ

(
k

s(2l−1)/4
, θ

)
, (3.3)

Then the question remains as to how to distribute the particle sizes in the multiple-
layer case. Suppose that we have L layers. Then the geometric mean of the mean pore
sizes of the finest two layers is given by

[(
kθ

s(L−1)/2

)(
kθ

s(L−2)/2

)]1/2
=

kθ

s(2L−3)/4
=

E[di(layer 1)]

s(2L−3)/4
.

Therefore, we reduce the fixed size by a comparable factor to keep the ratio of particle size
to geometric mean of the finest two layers constant:

dp(L layers) =
dp(one layer)

s(2L−3)/4
. (3.4)

We stress that this choice was made just for testing and presenting the comparisons in the
manuscript; the code is robust enough to handle any value of dp.

Results from a test case are shown in Fig. 3.3. Note that with the new scaling in (3.4),
the particles are the same size relative to the pores connecting the layers, which means
they are larger relative to the finer layer as compared with the one-layer case. Therefore,
smaller pores will be clogged by the particles, while larger pores continue to transport
particles. Hence the flux will asymptote to a finite value (as the larger pores will never be
clogged), and the retention ratio will asymptote to 0 (as the molecules stop being trapped).
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2-D, L = 2, s = 2, xmax = 30, ymax = 10, dp = 0.042, di = Γ(2.000, 0.048)

Figure 3.3. Two-layer model, dp fixed, s = 2.



10 A. Chen, D. A. Edwards, J. Gaone

0 200 400 600 800 1000

particles introduced

0

0.2

0.4

0.6

0.8
re
te
n
ti
o
n
ra
ti
o

0 200 400 600 800 1000

particles introduced

0.5

0.6

0.7

0.8

0.9

1

re
la
ti
v
e
fl
u
x

2-D, L = 2, s = 3, xmax = 30, ymax = 10, dp = 0.038, di = Γ(2.000, 0.048)

Figure 3.4. Two-layer model, dp fixed, s = 3.

Moreover, in comparison with the one-layer case, we would expect the flux to be less,
since the particles are larger compared with the finer mesh, which would then cause the
retention ratio to decreases more slowly, since there are more pores that can be clogged.
Though this is not clear from the simulations with s = 2, it does show up in Figure 3.4,
which illustrates the case where the scale factor s = 3.

Motivated by the previous discussion, in the case of a variable particle size, we again
reduce the mean and variance by the same factor:

dp ∼ Γ

(
k

s(2L−3)/4
, θ

)
=⇒ E[dp] =

kθ

s(2L−3)/4
, Var[dp] =

kθ2

s(2L−3)/4
. (3.5)

We stress that this choice was made just for testing and presenting the comparisons in the
manuscript; the code is robust enough to handle any distribution of particle sizes, and is
set up to easily handle a gamma distribution with any combination of parameters.

Results from a test case are shown in Fig. 3.5. Note that with these parameters,
though the particles may pass through the coarse layer, it is highly like that the particles
will be larger than the pores in the fine layer. Hence the filter again completely clogs.
However, it takes longer, since there are now s times as many pores in the finer portion of
the filter. In particular, we see that as particles are first introduced, any resultant clogging
does not affect the flux very much. Hence we get a flux graph which is more concave down,
as desired.

This behavior is even more pronounced as the scale factor increases, as shown in
Figure 3.6. Note that in all three cases shown with varying particle sizes (Figs. 3.2, 3.5,
and 3.6), the retention ratio stays roughly the same.

We then expand to 3 layers; the results are shown in Figs. 3.7 and 3.8, which exhibit
the same qualitative behavior as the two-layer case. Hence introducing additional layers
should not affect the solution as much as increasing the scale factor, as long as the particles
are then resized as in (3.4) of (3.5).
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Figure 3.5. Two-layer model, dp varies, s = 2.
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Figure 3.6. Two-layer model, dp varies, s = 3.

One quantitative difference between the two- and three-layer case can be seen in the
flux graphs for the distributed pore size case. In particular, we see that the number of
particles needed to clog the filter in the three-layer case is larger than for the two-layer
case. This is because there are now s2 more nodes in the finest layer than in the coarsest
layer, which means it takes more particles to clog a row of the finest layer.

Another possibility for the pores that connect the layers is to use the arithemtic mean
of the scale factors for the layers being connected:

di(layer l to layer l + 1) ∼ Γ

(
k

2s(l−1)/2
+

k

2sl/2
, θ

)
, (3.6)
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Figure 3.7. Three-layer model, dp fixed, s = 2.
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Figure 3.8. Three-layer model, dp varies, s = 2.

which replaces (3.3). Results are shown in Figs. 3.9 and 3.10, which indicate that the
choice of mean used does not appreciably affect the flux or retention rate.



Introduction; Multiple Connections 13

0 100 200 300 400 500
0.9

0.92

0.94

0.96

0.98

1

arithmetic avg

geometric avg

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

arithmetic avg

geometric avg

Figure 3.9. Comparison of means for two-layer model.
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Figure 3.10. Comparison of means for three-layer model.
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Section 4: Three-Dimensional
Discrete Model

(1, 1, 1) (sxmax, 1, 1)

(1, 1, szmax) (sxmax, 1, szmax)

(xmax, ymax, zmax)(1, ymax, zmax)

(xmax, ymax, 1)(1, ymax, 1)

Figure 4.1. Three-dimensional two-layer model: view from above. ymax = 1, xmax = 2,
zmax = 2, s = 2. Solid circles: nodes in coarse layer. Open circles: nodes in fine layer.
Dotted lines: edges within layers. Solid lines: edges between layers.

We next examine the case of a three-dimensional model. In this case each layer is a
lattice of size xmax by zmax (see Fig. 4.1, though note there is no reason why xmax and
zmax have to be equal). Here are the major differences between the 2-D and 3-D models.

In Matlab it is easiest to give (x, y, z) coordinates to each node, then assign them
sequentially to a vector in order to create D. This is illustrated in Fig. 4.1; note that
each layer will have its own coordinate system.
Since we now have s2 more nodes in the fine layer than the coarse layer (in the two
layer case), we reduce the mean pore area in the fine layer by a factor of s2, which
means a reduction in the pore diameter by s. Hence (3.2)–(3.5) become

di(layer l) ∼ Γ

(
k

sl−1
, θ

)
=⇒ E[di(layer l)] =

kθ

sl−1
, Var[di(layer l)] =

kθ2

sl−1
, (4.1)

di(layer l to layer l + 1) ∼ Γ

(
k

s(2l−1)/2
, θ

)
, (4.2)

dp(L layers) =
dp(one layer)

s(2L−3)/2
, (4.3)

dp ∼ Γ

(
k

s(2L−3)/2
, θ

)
=⇒ E[dp] =

kθ

s(2L−3)/2
, Var[dp] =

kθ2

s(2L−3)/2
. (4.4)
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Figure 4.2. Two-layer model, dp fixed.

Fig. 4.2 shows the case of constant particle size. Note that the same trends that
occurred in the two-dimensional case occur here. However, we note that since there are
now s2 more nodes in the lower layer (with a correspondingly higher number of connecting
pores), the number of pores to block is higher. Hence the flux decreases at a slower rate,
and hence the decrease in the retention ratio is difficult to discern with only 1000 particles.
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3-D, L = 2, s = 2, xmax = 9, ymax = 10, zmax = 8, dp ∼ Γ(1.414, 0.048), di = Γ(2.000, 0.048)

Figure 4.3. Two-layer model, dp varies.

Fig. 4.3 shows the case of distributed particle size. Again the number of particles
needed to clog the filter is larger because there are more pores.
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Section 5: Conclusions and Further Research
When filtering particles through a porous medium with one typical pore size, the filter

tends to clog at the inlet, thus wasting the media underneath. To rectify this problem,
engineers construct filters made of layers of media, as shown in Fig. 1.1. With varying mean
pore sizes in each layer, the filter more efficiently filters the particles. This is characterized
by a high retention ratio and a flux graph which is concave down.

In this work we presented both two- and three-dimensional discrete models for such
filters. Each pore is represented as an edge with varying capacity connecting two nodes.
Flow through the network is modeled by the Hagen-Poiseuille law, and a pore is said to
be clogged if its radius is smaller than the particle flowing through the network.

In this work, the pore diameters in each layer are modeled as given from a gamma
distribution, and the particle diameters are either set as fixed or also coming from a gamma
distribution. However, the underlying code is robust enough to handle other distributions
of particle and pore sizes as needed.

At the interface between layers, each node in the coarser layer is assumed to connect
to a larger set of nodes in the finer layer. This models layers that have relatively smooth
transitions between the layer, as in Fig. 1.1. However, other models are possible for layers
that are simply placed on top of each other; see the next chapter by Chen et al.

Our results indicate that if one constructs a filter where the mean particle size lies
between the mean pore sizes of the two finest layers of the filter, a more effective filter
(especially in terms of the flux graph) can be designed. The way one models the pore sizes
of the connections between the layers seems to be irrelevant.

These simulations provide a direct way to simulate and visualize filtration through
porous media. However, continuous models (as in the section by Breward et al.) are also
useful to understand the underlying dynamics.
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Nomenclature

A: block in partitioned form of L (2.9).
B: block in partitioned form of L (2.9).
C: block in partitioned form of L (2.9).
D: incidence matrix (2.1).
d: diameter of pore or particle (2.4).
I: total number of edges.
i: indexing variable for edges (2.1).
J : total number of nodes.
j: indexing variable for nodes (2.1).
k: indexing variable for nodes (2.12) or parameter in the gamma distribution (3.1).
L: Lagrangian matrix of (inferred) prices for each slot (2.8b) or total number of

layers (3.4).
l: indexing variable for layers.
P : matrix of transition probabilities (2.12).
p: vector of pressures in each node (2.3).
Q: vector of volume fluxes through each pore (2.4).
q: vector of volume fluxes through each node (2.4).
R: resistance matrix of (inferred) prices for each slot (2.6b).
S: matrix used in the computation of P (2.13a).

xmax: number of nodes in one direction per row of coarse layer.
ymax: number of rows per layer.
zmax: number of nodes in the other direction per row of coarse layer in three-dimensional

model.
∆p: vector of pressure drop across pores (2.3).

Λ: diagonal matrix of the Qi (2.14).
θ: parameter in the gamma distribution (3.1).

Other Notation

(·): denotes node ·.
i: as a subscript, refers to interior nodes.

p: as a subscript, refers to the particle.
s: as a subscript, refers to source or sink nodes nodes.



18 A. Chen, D. A. Edwards, J. Gaone

References

[1] W. Li, Fouling Models for Optimizing Asymmetry of Microfiltration Membranes.
Cincinnati: University of Cincinnati, 2009.

[2] U. Beuscher, et al., “Characterization of porous filtration media,” in Proceedings of the
25th Annual Workshop on Mathematical Problems in Industry, 2009.

[3] F. Civan, Porous Media Transport Phenomena. Hoboken: Wiley, 2011.



Concatenation of several filters from single-filter
building blocks

Anqi Chen
Michigan State University

Chuan Bi
University of Delaware

Taras Lakoba
University of Vermont

1 Introduction

The main idea of this approach is this: Use the already existing single-filter code as a building
block and construct a multi-filter code using that building block with minimal changes inside
it. Thus, we seek a way to concatenate two (or more) single-filter codes into a multi-filter
one.

For brevity, we will explain the idea using the two-filter case. Generalizations will be
described in later sections.

Simulation of the (multi-)filter’s performance involves two steps:

1. Find the fluxes through the network with given properties and given the pressure drop,
δP , across the filter.

2. Using these fluxes, simulate the passage of a particle through the network.

A straightforward concatenation of two single-filter codes in a two-filter code has two
obstacles that one needs to overcome. First, while we are given the total pressure drop δP
across both filters together, we do not know the pressure drops, δP1 and δP2, across each
one of the individual filters. Thus, to enable the implementation of Step 1 of the above
simulation algorithm, one needs to first find δP1 and δP2. Second, even if we are able to
determine δP1 and δP2, we will need a strategy to redistribute the total flux from the output
of Filter 1 into the input of Filter 2. In this report we will address, to various degrees of
satisfaction, ways to overcome both of these obstacles.

19
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In Section 2 we will present a method of finding δP1 and δP2 of two individual filters.
This will address the first obstacle described above. As for the second obstacle, we will
assume in Section 2 that the total output of Filter 1 is uniformly distributed into the input
of Filter 2. A justification for that will be given. In Section 3 we will present implementation
details of this method and simulation results obtained with it. In Section 4 we will outline
how our method could be generalized to three or more filters, as well as how the assumption
of the uniform distribution of Filter 1’s output into Filter 2 could be modified (in a way
other than simply prescribing a different distribution).

2 Concatenation of two filters

The total flux T through a given network is a given function of the applied pressure drop:

T = T (δP ). (1)

In the notations of the 2009 MPI report, T =
∑

itop
(qc)itop , where itop are the indices of the

top layer in the network, and qc is defined at the top of p. 9 of that report. It follows from
Sec. 4.1 of that report that the function T (δP ) in (1) is linear (for a fixed network), with
T (0) = 0. This has been verified by our simulations. Note that in doing so, one needs to
use the same seed of the random number generator, which determines the properties of the
network, when varying δP .

Suppose one concatenates two filters with the flux–pressure functions T1(δP ) and T2(δP ),
and suppose that the output of Filter 1 is uniformly distributed into the input of Filter 2.
Suppose also that the total pressure drop δPtot over both filters together is known. Then
the pressure drops δP1,2 over Filters 1, 2 are to satisfy two conditions:

T1(δP1)− T2(δP2) = 0, (2a)

δP1 + δP2 = δPtot. (2b)

Note that Eq. (2a) says that all of the output of Filter 1 goes in Filter 2.
Equations (2) form a system of 2 equations for 2 unknowns. If T1,2(δP ) were general

nonlinear functions, it could be solved iteratively by, say, the secant method. The situation,
however, is even simpler: since T1,2(δP ) are linear functions, then just two iterations of
the secant method would give the exact solution of (2). Namely, suppose that two pairs,

(δP
(1)
1 , δP

(1)
2 ) and (δP

(2)
1 , δP

(2)
2 ), are two (fairly arbitrary) guesses of the solution of (2).

Then according to the secant method, the vector(
δP

(3)
1

δP
(3)
2

)
=

(
δP

(2)
1

δP
(2)
2

)
− J−1

(
T1(δP

(2)
1 )− T2(δP (2)

2 )

δP
(2)
1 + δP

(2)
2 − δPtot

)
, (3a)

where the Jacobian

J =

 T1(δP
(2)
1 )−T1(δP (1)

1 )

δP
(2)
1 −δP (1)

1

−T2(δP
(2)
2 )−T2(δP (1)

2 )

δP
(2)
2 −δP (1)

2

1 1

 , (3b)
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is the exact solution of system (2).
The above process provides the values of the pressure drops over the individual filters,

from which the single-filter code can determine the fluxes over each filter. Once a particle
sent through this network blocks it, the network’s configuration changes, and the fluxes are
to be re-calculated, just as in the single-filter code.

Remark 1 Recall that the above procedure assumes that the total output (flux) of
Filter 1 is aggregated into one number, T1(δP1), and then evenly distributed into the nodes
of Filter 2’s input layer. (Of course, the even distribution can be replaced with any other
distribution.) This simple idea should produce the same average result as the combined
filter built (somehow) of the two networks, and also averaged over a large number of random
realizations of the network. This is because the properties of the filter are assumed to be
uniform in the direction transverse to the flux, and the random structure of the bottom filter
is in no way related to that of the top filter.

Remark 2 The question remains how to determine the sample size over which the av-
erage should be taken. Qualitatively, the more variation is assumed in: (i) the network
properties and (ii) the particle sizes, the larger the sample size should be. This is analo-
gous to the fact that one needs a larger sample size to find the average of a wider random
distribution than of a tighter one. However, it is unclear to us how to quantify the required
sample size theoretically. Practically, however, one can do it by experimentation as follows.
Start with a very narrow distribution of both the network properties and particle sizes. Ver-
ify that the above method and other methods, like the direct modeling of a thicker filter,
do indeed produce the same result after averaging over some sample size. Then gradually
(i.e., by a little) increase the variance in either the network properties or the particle size
distribution. See if by increasing the sample size one can have the averages of the above and
other methods coincide. If one indeed can, then proceed to further increase the variances.
If not, an error somewhere needs to be found.

3 Implementation in a code and numerical results

3.1 Implementation details

Here we describe the implementation of a code that concatenates two single-filter codes,
as restructured and annotated by Prof. Edwards in 2017. The single-layer codes are two-
dimensional, as defined in the MPI 2009 report. This means that each filter is represented
as a two-dimensional network, where one dimension (denoted as y in the code and below)
corresponds to the direction of the liquid flux, while the other dimension (denoted as x)
represents the random porous medium (i.e., the filter) in the direction transverse to the flux.
Recall that in those codes, flux through the filter is determined by the pressure drop δP
(denoted as P in the code itself), the incidence matrix D, and pore sizes.

Denote the l-th single-layer1 by a xlmax × ylmax network. For concatenated filters, we

1In the following we will (admittedly, somewhat sloppily) use words “layer” and “filter” to denote the
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assume ylmax = y1max while xlmax = sl−1 · x1max. That is, the number of rows, ymax, in each
layer is the same and the number of columns in a given layer is s times that in the previous
layer. Then we can calculate the incidence matrices, Dl, and assign pore sizes, dli, to links
between nodes in each single-layer network model. Here we consider a model with only two
concatenated layers; thus l = 1, 2. One can generalize the two-layer model to multilayer
models straightforwardly.

Once we get the essential parameters and matrices intialized for each layer, we can calcu-
late the flux through them and start to run the clogging simulation of two-layer concatenation
model using the following algorithm.

1. Calculate the pressure drop δPl on each layer by Eq. (2); then calculate the probability
distribution P l

(k)(j) that a particle travels directly from node (j) to node (k) along some

edge k (defined in Section 3 of Prof. Edwards’ report) in layer l.

Consider a particle of diameter dP. Suppose that particles go through the layers one
by one. The particle starts from the top layer, therefore we set l = 1.

2. The particle starts at the source, so set (j) = (J l − 1). Here (j) is the node where
the particle is found in a given step and J l is the total number of nodes in each layer.
Thus, we order the nodes in a way that (J l− 1) is the source node; for the top layer in
Fig. 1 it is depicted as the “bar” above the row of nodes. (Also, in the code, (j) = J l

corresponds to the sink node, depicted in Fig. 1 by the single node in between the two
layers.) Note that J l ≡ ylmax · xlmax + 2 may be different for each layer.

3. Choose a node (k) to which the particle will travel using the probability distribution
P l
(k)(j). Then determine the edge number i as follows. Create a vector v ∈ RJ with
v(j) = −1, v(k) = 1, and all others entries being 0. Then when we compute the product
Dv, the i-th element will have absolute value 2 (since both columns (j) and (k) will
be nonzero in that row), and all the others will not.

4. If dP ≤ di, the particle passes through the pore.

(a) If (k) is a sink node, defined in item 2 above, the particle has escaped the current
layer.

i. If l = 2, the particle has escaped the two-layer concatenated filter. Start a
new particle simulation by setting l = 1: return to step #2.

ii. Otherwise the particle is moving to the next layer; then set l = l + 1 and
return to step #2

(b) Otherwise set (j) = (k) and go to step #3.

5. If dP > di, the particle clogs the pore represented by link i.

same thing.
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(a) Set di = 0, which means from the definition of P l
(k)(j) that there will never be flow

through edge i in layer l again.

(b) Given the new value of Rl, calculate pli and Ql, where Rl and Ql are the resistance
matrix and the flux through each node, as defined in the 2009 MPI report.

(c) If Ql 6= 0, l = 1, 2, update the pressure drop δP l, l = 1, 2 and the probabil-
ities P l

(k)(j)l = 1, 2 and then start simulating another particle as per step #2.
Otherwise, the current layer is clogged, meaning the entire filter is clogged.

In our implementation of concatenation of two layers, there is no transition layer between
them. Rather, the output of all pores in the last row of the first layer (located at the top in
Fig. 1) is lumped to go into a single node (in the middle of Fig. 1). From there, the flow is
distributed into the first row of the second layer.

Figure 1: Schematics illustrating the two-layer concatenation model; here ymax = 1, xmax =
4, s = 1.

Remark 3 It should be noted that in the current implementation of the single-filter
code, both the input and output links of your network can capture particles. In other words,
the filter can get clogged both in its first layer of pores (links), which precedes the first row
of nodes, and in the last row of pores (links), which follows the last row of nodes. This
should be modified in later editions of the two-layer (and many-layer) code, because for the
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concatenation idea to work, either only the input or only the output links, but not both, can
capture particles.

3.2 Numerical results

In the following, we compare the behavior of our two-layer concatenation (global) model
with the two-layer (local) model constructed by Prof. Edwards in 2017 and described in the
previous chapter of this Report. The “global” model code is in twolayer.m and the “local”
model code is in mlhc2d.m; each code can run independently of the other. Readers can
see that many functions in them are named and organized similarly, which is because our
“global” model code is build upon the “local” model code.

By the discussion in Prof. Edwards’s section of this Report, the pore sizes di satisfy
the gamma distribution, di ∼ Γ(k, θ) with k = 2, θ = 0.0475, implying that E[di] = kθ,
Var[di] = kθ2. For l-th layer, the pore size distribution is dli ∼ Γ(k/sl−1, θ).

In the particle simulations, both codes use a random number generator in the process
of predicting which pore the particle will move to. Therefore, in the simulations reported
below, we ran the code 10 to 50 times and then took the average of the retention ratio and
relative flux.

We run two different types of experiments (for two concatenated layers), distinguished
by the scale parameter s.

• s = 1.

In this case, the local model (developed by Prof. Edwards in 2017) is identical to the
original one-layer network model of size x1max×2 ·y1max (by our assumption of xlmax and
ylmax, the sizes of the networks used to model both layers are the same). The pore size
distribution is the same for both layers, and the connection between the nodes of the
layers is one-to-one (each node in the lowest row of layer 1 is connected to one node in
the top row of layer 2).

On the other hand, our global model, illustrated by Fig. 1, can be viewed as two layers,
with a middle node added between them. Otherwise, the parameters xmax and ymax
and the pore size distribution are taken in our experiment to be the same as for the
local model.

1. First we test the case where all particles are of the same size, dP = 0.05. The
retention ratio is expected to decrease to 0 and relative flux is expected to converge
to a fixed value as discussed in the 2009 MPI report. We discovered a 0.8%
difference in the averaged relative flux and a 2.9% difference in the averaged
retention ratio between the two network models; see Fig. 2.

It is unclear whether this difference is statistically significant, given the finite sam-
pling size. However, assuming that it does represent the general trend, below we
provide its explanation. Namely, the above comparison shows that more particles
are retained in the global model than in the local model and a smaller relative
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flux is observed in the global model. The possible reason for this phenomenon is
that there are more pores (represented by links in edges in the network in Fig. 1)
in the global model than in the local one due to the addition of another joint
layer. This appears to be a plausible explanation since we observed (albeit more
systematic studies are needed here) that the difference in the relative flux and
retention ratio between the two models decreases as we increase the number of
rows in a layer.
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Figure 2: Comparison of local and global models for the average flux and retention ratio in
10 runs. Parameters: s = 1, particle diameter dp = 0.05, x1max = 20, y1max = 40.

2. Then we test the case dP ∼ Γ(k, θ), where to the comparison pool of our two
models — local and global — we have added the original single-layer network
model described in the 2009 MPI report. As discussed there, the retention ratio
is expected to increase to 1 and relative flux is expected to decrease to 0. We find
(see Fig. 3) that the average relative flux looks similar for all three models, with a
less than a 10% difference in the x-intercept, which indicates the number of parti-
cles needed to clog the whole filter. As for retention ratio, we see that the global
and one-layer model both predict a significantly (by about 20%) smaller value of
the lowest retention ratio. This means that the filter can capture more particles
before being clogged according to the local model, described in this section of the
report, than according to the global and single-layer models. This appears to be
consistent with the other discrepancy betwen the two models, described at the
end of the previous item.

3. Finally, we investigate the effect of increasing the variance of particle size dis-
tribution. To that end, we test the case dP ∼ Γ(k, 2θ) and keep the pore size
di distribution unchanged from the previous case. We see in Fig. 5 that as the
variance is doubled (from θ to 2θ), the x-intercepts of two models are about the
same. However, the discrepancy between the two models’ prediction of the ratio

rretention ≡
1−min retention ratio of local model

1−min retention ratio of global model
(4)
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Figure 3: Comparison of the local, global, and original one-layer models for the average flux
and retention ratio in 30 runs. Parameters: s = 1, particle diameter dp ∼ Γ(2, θ), x1max = 30,
y1max = 10. Note that the original one-layer model has ymax = 20, i.e., twice as many nodes
as each layer in the two-layer models.

is greater for the greater variance. Specifically, from Fig. 5(b) this ratio can be
estimated to be:

rretention(θ) ∼ rretention(2θ) ∼ 3 . . . 4. (5)

At present, the reason for this discrepancy between the two models is unclear and
must be investigated further before one can advocate for a particular model, local
or global. See also Remark 3 above.
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Figure 4: Comparison of local and global models for averaging flux and retention ratio in 30
runs for two models with s = 1, particle diameter dp ∼ Γ(2, 2 · θ). x1max = 30, y1max = 10.

• s = 2.

In this case, the local and global models can be compared to one another but not to
the original one-layer model, as the two layers now have different “densities” of nodes
(and hence pores) per row. The pore size distribution is also allowed to be different in
the two layers.
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We test the cases dP ∼ Γ(
√

2, var ·θ) for var = 1, 2. When var = 1, the x-intercepts of
the relative flux also have a 10% difference as in the s = 1 case above. When var = 2,
they are almost the same. As for the ratio (4), we found that

rretention(θ) ≈ 0.28

0.14
≈ 2; rretention(2θ) ≈ 0.12

0.03
≈ 4. (6)

Thus, again, the global model predicts the retention of a greater share of particles.
A relation of this discrepancy to the fact pointed out in Remark 3 remains to be
investigated further.
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Figure 5: Comparison of local and global models for averaging flux and retention ratio in 30
runs for two models with s = 2, particle diameter dp ∼ Γ(

√
2, var ·θ). x1max = 30, y1max = 10.

To summarize, both models, local and global, give close results for the number of particles
needed to clog the filter. Also, that number decreases as θ, the variance of the pore size dis-
tribution, increases. On the other hand, the above preliminary results show a non-negligible
discrepancy that may exist between the two models in predicting the retention ratio. It
needs to be investigated further, perhaps following the guidelines in Remark 2 above.

4 Generalizations

Under the earlier assumption of the uniform redistribution of a filter’s output into the input
of the filter after it, the method described in Section 2 is generalized straightforwardly. For
example, for 3 concatenated filters, one finds the pressure drops over each one of them from
the system:

T1(δP1)− T2(δP2) = 0, (7a)

T2(δP2)− T3(δP3) = 0, (7b)

δP1 + δP2 + δP3 = δPtot. (7c)
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The solution is given by the counterpart of (3): δP
(3)
1

δP
(3)
2

δP
(3)
3

 =

 δP
(2)
1

δP
(2)
2

δP
(2)
3

− J−1

 T1(δP
(2)
1 )− T2(δP (2)

2 )

T2(δP
(2)
2 )− T3(δP (2)

3 )

δP
(2)
1 + δP

(2)
2 + δP

(2)
3 − δPtot

 , (8a)

where the Jacobian

J =


T1(δP

(2)
1 )−T1(δP (1)

1 )

δP
(2)
1 −δP (1)

1

−T2(δP
(2)
2 )−T2(δP (1)

2 )

δP
(2)
2 −δP (1)

2

T2(δP
(2)
2 )−T2(δP (1)

2 )

δP
(2)
2 −δP (1)

2

−T3(δP
(2)
3 )−T3(δP (1)

3 )

δP
(2)
3 −δP (1)

3

1 1 1

 . (8b)

Now let us point out how the distribution of a filter’s output into the next filter’s input
can be made more “local”. That is, how can we model the situation where the output of the
left half of Filter 1 goes entirely into the input of the left half of Filter 2, and the output of
the right half of Filter 1 goes entirely into the input of the right half of Filter 2? This can
be done by an extension of the approach in Section 2. To describe that extension, consider
again the case of just two filters. Then equations (2) get replaced with:

T1,i(δP1,i)− T2,i(δP2,i) = 0, (9a)

δP1,i + δP2,i = δPtot; (9b)

T1,ii(δP1,ii)− T2,ii(δP2,ii) = 0, (9c)

δP1,ii + δP2,ii = δPtot. (9d)

Here δPj,i (δPj,ii), j = 1, 2 is the pressure drop over the left (right) half of Filter j, and
Tj,i(δPj,i) (Tj,ii(δPj,ii)) is the total flow through the left (right) half of each filter. Note that
we have assumed that the output of the left half of Filter 1 enters only into the left half of
Filter 2. We had to do so (or otherwise prescribe exactly what percentage of T1,i goes in to
the left half for Filter 2) since the problem would have been under-determined otherwise.

System (9) can also be solved by the secant method. However, unlike the cases considered
earlier, here Tj,i and Tj,ii are not linear functions of their respective pressure drops, because
the halves of the filter are connected. Consequently, the generalization of Eqs. (3) will
provide the next iteration towards the exact solution, but not the solution itself, of (9).
However, in practice, the secant method converges fast, and this issue is not expected to
slow down the algorithm considerably (maybe, it will slow it down by a factor of two or so).

The extension of the above idea to the case where each filter is subdivided into M parts
is straightforward. Thus, concatenating N filters, each of which is subdivided into M parts,
will require the solution of a system of NM equations by the secant method.



Porous Media: Continuous Model

C. Breward, J. Chapman
Oxford University

L. Cummings
New Jersey Institute of Technology

D. A. Edwards
University of Delaware

T. Phan
Arizona State University

1 Governing Equations

We consider a continuous model of the filtration of particles of n different sizes through a

porous medium. We consider a one-dimensional transport model:

∂(εC̃i)

∂t̃
+

∂

∂x̃

(
Ũ C̃i

)
= Di

∂2C̃i

∂x̃2
− S̃i, i = 1, 2, . . . , n. (1)

Here C̃i is the concentration of the particle of size i in the underlying fluid, ε is the porosity

of the medium, Ũ is the Darcy velocity, and Di is the molecular diffusion coefficient for the

particle of size i. The sink term S̃i > 0 represents adsorption of the particles to the sides

of the pores. This adsorption process also clogs the pore, and so the porosity decreases

proportionally to each of the adsorption processes:

∂ε

∂t̃
= −

n∑
i=1

αiS̃i, (2)

where α is a proportionality constant. (For more details on the derivation of (1), see [1,

§3.2].)

We simplify our model by assuming that all the particles are of one size (so we drop the

29
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subscript i from C̃). Furthermore, by computing the Péclet number for the system (which

measures the ratio of convective effects to diffusive ones), we obtain a value which is higher

than 103. Hence we can assume the diffusion term does not contribute much in the process,

so we neglect the diffusion term in (1). This makes physical sense, as the fluid is assumed

to be pushed through the filter so the advection term is significantly larger than diffusion

term. Hence our system (1) and (2) reduces to

∂(εC̃)

∂t̃
+ Ũ

∂C̃

∂x
= −S̃,

∂ε

∂t̃
= −αS̃.

(3)

Phenomenologically, the rate of clogging increases with higher concentration, so for sim-

plicity, take

S̃ = λC̃, (4)

where λ is a constant measuring how likely a particle is to stick to the side of the pore [2,

§2.3]. This constitutive relation is motivated by models of electrostatic attraction. Thus our

system (3) reduces to

∂(εC̃)

∂t̃
+ Ũ

∂C̃

∂x̃
= −λC̃, (5)

∂ε

∂t̃
= −αλC̃. (6)

We assume the fluid is incompressible, which means the spatial derivative of the flow

velocity is negligible. Hence we take
∂Ũ

∂x̃
= 0. (7)

Ũ can be obtained from the pressure gradient via Darcy’s Law [1, §1.4.1]:

Ũ(t̃) = −k
µ

∂P̃

∂x̃
, (8)

where P̃ is the pressure and µ is the viscosity of the fluid. The intrinsic permeability k of

the medium depends on the porosity according to the Kozeny-Carmen equation

k(ε) =
χε3

(1− ε)2
, (9)
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where χ represents the local structure of the porous material. Moreover, we have used (7)

to write Ũ as a function solely of t̃.

The filter occupies the region x̃ ∈ [0, h]. At the top of the filter (x̃ = h), the concentration

is a given constant:

C̃(h, t̃) = C∗, (10)

while at the bottom of the filter, the pressure is assumed to be 0:

P̃ (0, t̃) = 0. (11)

Initially, the porosity in the medium is known, and the concentration is 0:

ε(x̃, 0) = ε∗(x̃), C̃(x̃, 0) = 0. (12)

1.1 Scaling

To simplify the problem for further analysis, we scale our variables. Motivated by (10), we

let

C(x, t) =
C̃(x̃, t̃)

C∗
, x =

x̃

h
. (13)

There are several time scales in the problem. As we are most interested in the process by

which the filter clogs, we choose a time scale which balances the porosity evolution equation

(6). Substituting (13) into (6), we obtain

∂ε

∂t̃
= −αλC∗C

∂ε

∂t
= −C, t = αλC∗t̃. (14)

In a typical experiment, the pressure at the top of the filter may be kept at a constant

value P∗, so we have

P (x, t) =
P̃ (x̃, t̃)

P∗
. (15)

Substituting (13) and (15) into (8) yields a scaling for Ũ :

Ũ(t̃) = −P∗

hµ

∂P

∂x

χε3

(1− ε)2
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parameter value unit source
C∗ 10−3 mol/m3 Gore
h 10−4 m Gore
pore radius 2.5× 10−8 m Gore
ε∗ 0.1 - 1 unitless Gore
λ 0.1 s−1 guess
µ 10−3 N · s/m2 Gore
χ 10−16 m2 Gore

Table 1: Table of parameter values.

U(t) = − ε3

(1− ε)2
∂P

∂x
, U(t) =

Ũ(t̃)hµ

P∗χ
. (16)

Substituting the scales in (13), (14), and (16) into (5), we obtain

C∗(αλC∗)
∂(εC)

∂t
+
P∗χC∗

h2µ
U
∂C

∂x
= −λC∗C,

LC
∂(εC)

∂t
+ U

∂C

∂x
= −CBC, (17)

CB =
λµh2

P∗χ
, LC =

αλC∗h
2µ

P∗χ
= αC∗CB. (18)

Estimated values of the experimental parameters are summarized in Table 1. With these

values, one may compute other parameters. In particular, assuming a spherical shape for

the pore, we have that the pore volume is given by

4

3
π(2.5)3 × 10−24 m3 ≈ 5× 10−23 m3.

Then noting that α must have units of inverse concentration, and is related to the concen-

tration (in molecules) near the surface of the pore, we use Avogadro’s number to compute

α ≈ 5× 10−23 m3 · 6× 1023

mol
= 30

m3

mol
. (19)

With this value in hand, we can compute our two dimensionless ratios:

CB =
λµh2

P∗χ
≈ (10−1)(10−3)(10−8)

(105)(10−16)
= 10−1,
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LC = αC∗CB ≈ (30)(10−3)(10−1) ≈ 10−3,

We treat CB as O(1), but LC as o(1), so we may neglect the first term in (17), yielding

U
∂C

∂x
= −CBC, (20)

so we are in the steady state of the evolution equation. Hence we ignore the initial condition

for C̃ in (12). Hence the important boundary and initial conditions are given by

C(1, t) = 1, ε(x, 0) = ε∗(x), (21)

P (0, t) = 0. (22)

Solving (20) subject to (21), we have

C(x) = e−w(t)(1−x), w(t) = − CB

U(t)
> 0. (23)

1.2 Relating the Pressure and Velocity

We may manipulate and integrate (16) to obtain the following relationship between the

pressure and velocity:

∂P

∂x
= −(1− ε)2

ε3
U(t)

P = −U(t)

∫ x

0

(1− ε(s, t))2

ε(s, t)3
ds,

where we have used (22). The other place where the pressure is known is at the top of the

filter, where we have

P (1, t) ≡ P1(t) = −I(t)U(t), I(t) =

∫ 1

0

(1− ε)2

ε3
dx. (24)

Recall that with the orientation of x, U < 0.

Hence our final system is given by (14), (20), and (24), subject to (21).
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2 Constant Flux

In practice, there are two ways to implement this system. The first is to maintain a constant

flux (and hence U) at x = 1; the other is to keep a constant pressure there. If U is constant,

then w is constant. Substituting (23) with w constant into (14) and integrating, we have

ε(x, t) = ε∗(x)− e−w(1−x)t, (25)

where we have used (21). Therefore, we see that as t increases, there will be some time t0

for which ε(x, t0) = 0 for some x. At that point, the filter is clogged. Also note from (24), as

ε → 0, I → ∞ and hence the pressure needed to maintain the constant flux grows without

bound.

2.1 Constant Initial Porosity

If the initial porosity is set at a constant ε0, then (25) becomes

ε(x, t) = ε0 − e−w(1−x)t.

The largest negative contribution comes from x = 1, and hence we have that

min
x
ε(x, t) = ε(0, t) = ε0 − t,

from which we have that t0 = ε0, and the filter clogs at the top. This is the behavior seen

experimentally.

2.2 Exponential Initial Porosity

Motivated by the form of (25), we consider the case where the initial porosity matches the

concentration profile:

ε∗(x) = γe−w(1−x), (26)

where γ > 0 is some constant. Such an initial profile is consistent with layered filters

currently used (see Fig. 2.2).

Substituting (26) into (25), we obtain

ε(x, t) = e−w(1−x)(γ − t),
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Figure 1: Picture of layered filter [3]. Here the particles enter at the top, and exit at the
bottom. Note the variation in pore size from top to bottom, as well as the large particles
adhering to the top.

where γ > 0 is some constant. In this case the porosity decreases proportionally all along the

length of the porous media. As a result, when the filter clogs at t0 = γ, it does so because

ε = 0 for all x. This would seem to be the ideal design for a filter, because no empty voids

are wasted because of a clog upstream.

2.3 Comparing the Profiles

In order to make a more quantitative comparison, we consider two filters (made of the

same material) to be comparable if the pressure needed to drive pure liquid through both is

identical. In other words, given U , P1(0) is the same for both filters, which from (24) just

means that I(0) is the same for both filters.

Given two comparable filters, we say that one is preferable if it has a larger total amount

of particles absorbed by the time the filter fails. Hence we integrate our sink term S̃ over all
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space and time; in our dimensionless context, that means we compute

J ≡
∫ t0

0

∫ 1

0

C(x, t) dx. (27)

In our case, we have

J = t0

[
e−w(1−x)

w

]1
0

=
t0(1− e−w)

w
,

where we have used (23), and hence a filter is preferable if its failure time is larger.

Making the two types of filters comparable provides a condition on γ and ε0:∫ 1

0

(1− ε0)2

ε30
dx =

∫ 1

0

(1− γe−w(1−x))2

γ3e−3w(1−x)
dx.

However, we have that γe−w(1−x) < γ except at x = 0. Hence the numerator of the integrand

is smaller if we remove the exponential, and the denominator is smaller. Hence we have

(1− ε0)2

ε30
>

∫ 1

0

(1− γ)2

γ3
dx =

(1− γ)2

γ3
, (28)

where we have used the fact that ε0 and γ are both constants in [0, 1]. But by the arguments

we used before, we see that (28) will be satisfied if ε0 < γ, since then the numerator on the

left is larger than its counterpart on the right, and the denominator on the left is smaller

than on the right. Hence ε0 < γ, which means that the failure time for the exponential

porosity is longer, which makes it a better filter.

3 Constant Pressure

Now suppose that we keep P1 constant instead, which we take to be P1 = 1 without loss of

generality. Then from (24) we have

− 1

U(t)
=

I(t)

P1(t)
=⇒ w(t) = CBI(t).

Hence it follows from (14) that
∂ε

∂t
= −e−w(t)(1−x),
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which cannot be easily integrated. Therefore, we see that if we can reduce the Breward

constant while keeping the Linda constant small, the porosity will decay at a slower rate.

However, from (18) we can see that this can be done only by decreasing either α or C∗ while

increasing CB.

4 More Complicated Sink Terms

4.1 New Equations

Note from (14) that
dε(1, t)

dt
= −C(1, t) = −1

for any experiment. Hence the porosity decays linearly at the top of the filter, which seems

unsatisfactory. Therefore, we propose more realistic sink terms.

For simplicity, consider a pore with a circular cross section. First, we note that if we

consider attraction to the walls, the rate at which the particles adhere should be proportional

to how many molecules are within some distance dr from the wall. And as those particles

adhere, they will reduce the cross-sectional area A. Hence we have that

dA

dt
∝ 2πr dr,

where the right-hand side is the area of a thin shell near the wall. If we consider a spherical

pore of volume V , we have
d(V 2/3)

dt
∝ V 1/3,

where we treat dr as a constant. But the porosity is proportional to the volume of the pores,

so we have

2

3ε1/3
dε

dt
∝ ε1/3

dε

dt
∝ ε2/3,

so we could replace (4) with

S̃ = λC̃ε2/3. (29)

However, there is also a mechanism by which particles can block smaller pores entirely.
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That process is not only proportional to C̃, but also to Ũ , since the faster the flow rate, the

more molecules can reach pores which it is possible for them to block. Hence we would have

a sink term of the form

δŨC̃f(ε),

where δ is a proportionality constant (perhaps based on the pore geometry or structure) and

f(ε) is a dimensionless function of ε. When the porosity is 1, the pores are so large that they

can’t be blocked, so f(0) = 0. As the porosity tends to zero, the pores are so small that

they can be easily blocked, so the sink term saturates and f(1) = 1.

The easiest function to use would be a linear one. Since the blocking mechanism is

dictated by the relative size of the radii of pore and particle, f should really depend on r,

which is proportional to ε1/3. Hence we could replace (4) with

S̃ = λC̃ε2/3 + δŨC̃(1− ε1/3) (30)

to take into account both mechanisms. Making these replacements, (5) and (6) become

∂(εC̃)

∂t̃
+ Ũ

∂C̃

∂x̃
= −

[
λC̃ε2/3 + δŨC̃(1− ε1/3)

]
, (31)

∂ε

∂t̃
= −α

[
λC̃ε2/3 + δŨC̃(1− ε1/3)

]
. (32)

4.2 Numerical Results

Equation (31) and (32) are difficult to solve analytically; thus we provide numerical results

instead. We provide the numerical simulation for the constant flux case with parameters in

Tab. 1.

In Fig. 2, we consider the case where the initial porosity profile ε(x) is constant. This

would correspond to a filter made of a single layer of material. Note that as time proceeds,

the porosity decreases most at the inlet end x = 1, as expected. Also, the concentration

changes most at the inlet end, reinforcing that most of the filtration is occurring at the inlet.

Not very many particles are reaching the downstream end, which is why the porosity doesn’t

change very much there.

In Fig. 3, we model the case where the initial porosity profile ε(x) varies in a piecewise-

constant fashion. This models a filter consisting of a series of layers. Note from the left

figure in Fig. 3 that the porosity increases as x increases, corresponding to the finest filter

at the outlet, and the coarsest filter at the inlet.
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Figure 2: The case of constant initial profile of porosity. The red curve represents the initial
condition; while the red arrow represents the evolution with respect to time. The initial
porosity of the filter is assumed to be homogeneous in space.

Figure 3: The case of non-constant initial profile of porosity. The red curve represents
the initial profile; while the red arrow represents the evolution with respect to time. The
variation in the initial porosity profile represents the two different layers with a connecting
dip.
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Note that as time proceeds, the porosity decreases most at the high end of each layer;

in other words, each layer behaves like the constant-profile case in Fig. 2. Even though the

porosity is largest in the topmost filter, the porosity decreases the most there, eventually

clogging the filter. This is reasonable, as the top layer still filters the most particles, given

its large porosity. Hence the concentration of particles in the flow decreases significantly

before reaching the next layer, as shown in Fig. 3. Also, note that the concentration profile

is smooth because a smooth transition is used to connect the discontinuities in our numerical

work.

5 Conclusions

In this chapter we proposed a continuous model for the filtration of particles in a porous

media. Given the large Péclet number for the filter, diffusion can be neglected and the full

system (1) and (2) can be reduced to (3). Given the simple form (4) for the adsorption term,

the problem simplifies further to (14) and (20) with appropriate scalings. Using Darcy’s

Law, we established the relationship (24) between the pressure at the inlet and the velocity

in the filter.

In the case of constant flux, the problem admits analytical solutions for the concentration

C and the porosity ε. These demonstrate that the blocking process is fastest at the inlet,

causing a pore with constant initial ε to block at x = 1. The multi-layer filters we wish to

describe can be approximated with an exponentially varying porosity. We showed that such

a porosity profile leads to a longer failure time, and hence a better filter.

In the more realistic case of constant inlet pressure, solutions must be generated numer-

ically. We also introduced a more complicated expression (30) for the particle sink at the

pores. Numerical simulations of the resulting equations again demonstrated that the pores

tend to clog at the upstream end, no matter the underlying porosity.

Nomenclature

Units are listed in terms of mass (M), moles (N), length (L), time (T ), and temperature

(θ). If a symbol appears both with and without tildes, the symbol with tildes has units,

while the one without is dimensionless. Equation numbers where a variable is first defined

is listed, if appropriate.



C. Breward et al. 41

A: characteristic cross-sectional area of pore.

C̃: concentration of particles, units N/L3 (1).

CB: dimensionless constant multiplying sink term in (17).

D: diffusion coefficient, units L2/T (1).

f(ε): sink term characterizing blocking.

h: height of filter, units L (10).

I: integral relating velocity to pressure (24).

i: indexing variable (1).

J : measure of accumulated flux (27).

k: intrinsic permeability, units L2 (8).

LC: dimensionless constant multiplying evolution term in (17).

p̃: pressure, units M/(LT 2) (8).

r: characteristic radius of pore.

S̃: particle sink term, units N/L3T (1).

t̃: time, units T (1).

Ũ : Darcy velocity, units L/T (1).

V : characteristic volume of pore.

w(t): exponent in expression for C (23).

x̃: distance from inlet, units L (1).

α: proportionality constant in porosity evolution equation (2), units L3/N .

γ: constant in exponential initial profile for ε (26).

δ: constant in blocking sink term, units L−1.
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ε: porosity (1).

λ: proportionality constant in sink equation (4), units T−1.

µ: viscosity of fluid, units M/(LT ) (8).

χ: proportionality constant in Kozeny-Carmen equation (9), units L2.

Other Notation

i ∈ Z: as a subscript on C̃, used to indicate a particle size (1).

0: as a subscript on ε, refers to a constant initial value; as a subscript on t, refers to

fouling time.

1: as a subscript on P , refers to the value at x = 1 (24).

∗: as a subscript on C, used to indicate a characteristic value (10); as a subscript on

ε, used to indicate an initial condition (12).
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Study of dependence of a double-layer filter performance
on depths of filter’s layers
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All our numerical simulations are based on the model derived for a one-layer filter by
Faruk Civan in [1].

Consider a porous medium whose initial and instantaneous effective (interconnected)
porosities are denoted by φi and φ. Let u and ρ represent the volumetric flux and density
of the flowing fluid containing fine particles. ρp is the particle material mass density. w and
σ denote the mass and volume fractions of particles present in the flowing fluid medium. ε
is the volume fraction of particles deposited in bulk porous media. t and x denote the time
and distance from the injection point.

Consider a one-dimensional model of a filter (porous media material) with x ∈ [0, L].
The time evolution of the volume fraction of particles deposited in porous media can be
calculated as follows

∂ε

∂t
= κu (σ − d · ∇σ) , (1)

where ε = 1 − φ and ε = 1 − φi at t = 0. Here σ = σ(x, t) represents the volume fraction
of particles in the flow. Furthermore, d = ατ , where α is the longitudinal dispersion of the
filter, and τ is the tortuosity of the filter.

Let Ah, Ph, Lh denote the cross-sectional area, perimeter, and length of the mean hy-
draulic flow tube. n denotes the number of hydraulic tubes providing flow through the
porous media. Then, the bulk volume of porous medium and the pore volume of all the
hydraulic tubes Vp in a bulk representative elementary volume Vb of porous media are given
respectively by Vb = Ab Lb, Vp = nAb Lb.
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The tortuosity τ of the mean hydraulic tube is defined as the ratio of the hydraulic tube
length Lh to the bulk length Lb, so τ = Lh/Lb.

We consider Darcy Flow, enabling us to write

u = −K
µ

(
∂P

∂x
− ρg

)
(2)

where

K = φ2ν+1 γ2
(

φ

1− φ

)2β

.

The coefficients ν, γ, and β are given by

β =
1

2(1−D1/D̃1)
,

ν =
1

2

(
d1
3
− 1

)
,

γ =

exp

[
lnn (3−D1)(2/(D̃1 −D1)) (C1/C̃1)

3

(2(D̃1−D1))

]
2τ
√

2πLb/C1

.

The cross-sectional area open for flow, the areosity of porous media, is given by a frac-
tional relation: Ab c̃1φ

d̃1/3 = nAh that determines d̃1 and c̃1 implicitly.

The total pore surface nPh Lh = C̃1[VbΣb]
D̃1/3 (Σb is a total pore surface per unit bulk

volume) that determines D̃1 and C̃1, also implicitly.

Scaling parameters c1, d1, C1, D1 are empirical values, found by fitting to experimental
data.

This form generalizes a well-known Kozeny–Carman relation (β = 1 case):

K = δ2
φ3

180(1− φ)2
,

where δ is an average size of grains in porous media.

The limitation of the Kozeny–Carman model is due to the assumption that the flow tubes
remain open or conductive at all times because of the definition of hydraulic tubes and the use
of this concept for realization of porous media. Therefore, this model is primarily intended
for applications to static porous materials, whose effective or conductive pore structure and
properties (porosity, permeability, tortuosity, and so on) remain unchanged during fluid flow
(cf. [2]).
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The parameter µ is the dynamic viscosity of the fluid. σ here is governed by conservation
of mass:

∂σ

∂t
+ a

∂σ

∂x
+ bσ = c

∂2σ

∂x2
,

a =
u

φ

(
1−

[
1− ρP

ρ
σ

]
κd

)
,

b =
u

φ

[
1− ρP

ρ
σ

]
κ,

c =
u

φ
d,

σ(x, 0) = σ0(x).

In our computations we will neglect the diffusion term because of the large value of the
Péclet number: ∼ 103. Thus, all terms proportional to d in the above equations are set
to zero. Moreover, we also neglect the term proportional to σ with coefficient b, because
σ ∼ 10−4 and ρP/ρ ≈ 1.

For numerical simulations (via a finite difference scheme implemented in Matlab) the
following numeric values for the parameters in the above equations were used:

φ(t = 0) = 0.8 . . . 0.9; κ = 105 . . . 106 m−1; µ = 10−3 Pa · s,

χ = 10−16 m2; h = 10−4 m; P = 105 Pa. (3)

Figure 1 illustrates that after a short period of time (approximately 0.02 seconds) the
concentration of particles stabilizes.

Figure 2 illustrates the main disadvantage of a uniform one-layer filter. Namely, most of
the clogging occurs near the top of the filter and thus most of filter’s material is left unused
at the time when the top of the filter gets completely clogged. This results in a short lifetime
of the filter. One of solutions which can make a filter’s clogging more uniform through the
depth of the filter is construction of multi-layer filters.

Figure 3 shows results of simulations for a two-layer filter for different values of its layers’
depths (the top layer has pore diameter 4 times larger than the bottom one). The blue
line corresponds to the 50/50 case, where both layers have the same depth. The red line
corresponds to the 70/30 case, where the coarse filter takes 70 percent of the total depth, and
the green line corresponds to the 30/70 case, where the coarse filter takes only 30 percent of
the total depth. If we, for the moment, define the best-performing filter as that yielding the
maximum total (i.e., integrated over time) flow of the filtrate, then the best performance is
exhibited by the 70/30 filter (red line).

Thus, for the simple model that we used, it is obvious that for the case of two-layer
filtration, the fine filter should have the smallest depth (which is constrained only by its
ability to reduce the original concentration of particles to a prescribed, near-zero value).

The above analysis can be straightforwardly extended to optimize a multi-layer filter.
Namely, we first define a quantity that needs to be optimized. Instead of the total filtrate
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Time evolution of the particle concentration (from time 0 to time 0.02 s)

Figure 1: Illustration of particle concentration stabilization for the continuous model. Time
snapshots of particle concentration for time t < 0.02 s are shown by dashed lines; the
decreasing values of σ(x = h, t) in the plot correspond to increasing values of t. The solid
line is for t = 0.02 s.
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Figure 2: Illustration of the clogging at the top for the uniform filter. Time snapshots of the
clogging distribution are shown by dashed lines; these lines become lower as t increases.
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flow, as above, this may be the filter’s lifetime, tstop, defined so that the fluid’s flow through
the filter at t = tstop decreases to a given percentage of its initial value (assuming a constant
pressure drop). Next, one assigns a set of values to the parameters of the filter’s layer i:
κi (filtration rate), χi (constant proportional to d2 in the permeability K), and depth hi.
Requiring that these parameters be such that the particle concentration at the output of the
filter σ(x = h, t ≤ tstop) is maintained at a given level, one then proceeds to vary them to
maximize the filter’s lifetime tstop[κi, χi, hi]. Of course, making the model more realistic by
including particles of different diameters and also the possibility of blocking (“sieving”) of
the pores by larger particles, is also a possible venue for future study.

It might be interesting to compare performance of filters for different temperature regimes,
as a filter configuration for an optimal performance under low temperature might not be a
good choice for higher temperatures. Temperature variation affects the governing particulate
transport and rate processes in porous media in very complicated ways. Particles tend to
deposit more preferentially over the pore surface at lower temperatures than higher temper-
atures. Hence, colder temperature conditions are favorable for more pore surface attachment
and retention of fine particles [3]. Conversely, at sufficiently high temperatures, pore sur-
face conditions become more suitable for particle detachment. Therefore, fine particles are
less likely to deposit over the pore surface but rather migrate toward the pore throats and
form particle bridges, though only under favorable conditions. The effect of temperature
on permeability cannot be neglected because permeability reduction occurs primarily by
pore–throat constriction. Even a small increase in temperature can cause sufficient grain
expansion to choke the pore–throat openings and to reduce the permeability substantially.
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Continuum model (Cake model) for the Gore MPI
problem
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1 Introduction

Gore presented a multilayer membrane filter and wants to understand how the “junction”
regions between layers affect the filtration performance. These junction regions are created
when two layers of materials with different porosities are pressed and connected together to
form the multilayer membrane filter. To understand how the junction regions or the porosity
profile of the multilayer membrane affects the filtration, we formulated a simple continuum
model for the fouling of a variable-porosity membrane in unidirectional flow. This will
address Gore’s goal to: “Develop a continuum model or framework for characterizing mass
transport of species inside of a multilayer porous medium”. We call it a cake model as
the structures we considered assemble the cake layer formed during the final stage of the
filtration.

In figure 1, (a) shows the typical “node-fibril” microstructure of the membrane filter, (b)
shows the simplified microstructure where the balls represent the nodes and lines represent
the fibers, and (c) is a picture of multilayer membrane structure presented by Gore.

During the MPI workshop we developed an idealized model in which the membrane is
viewed as an assembly of identical spheres (the nodes), which provide the surface area for
adsorption of particles and thus realizing filtration. The multilayer structure can then be
modeled by different packing schemes as indicated in figure 2, where the top layer is packed
loosely, representing high porosity and the bottom layer is densely packed which indicates
low porosity.

2 Darcy Flow and Fouling Model

We consider dead-end filtration under pressure drop P0 through a planar membrane that
lies parallel to the (Y, Z)-plane, with unidirectional Darcy flow through the membrane in
the positive X-direction. The membrane properties and flow are assumed homogeneous in
the (Y, Z)-plane, but the membrane has depth-dependent permeability (even if permeability
is initially uniform, fouling will lead to nonuniformities over time), which we denote by
K(X,T ). We use uppercase fonts to denote dimensional quantities.

49
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Figure 1: (a) is a picture of the micro structure of a typical membrane filter; (b) is a simplified representation
for the micro structure where the balls represent the nodes and lines represent the fibers; (c) is a picture of
the multilayer membrane filter presented by Gore.
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x

Figure 2: Cake model scheme.

The superficial Darcy velocity U = (U(X,T ), 0, 0) within the membrane is given in terms
of the pressure P by

U = −K(X,T )

µ

∂P

∂X
,

∂

∂X

(
K(X,T )

∂P

∂X

)
= 0, 0 ≤ X ≤ D, (1)

P (0, T ) = P0, P (D,T ) = 0, (2)

where D is the membrane thickness and µ is the viscosity of the Newtonian feed solution. The
modeling challenge is to link the permeability K(X,T ) to membrane characteristics, which
evolve in time due to fouling, to obtain a predictive model. We use the Kozeny–Carman
equation (see, e.g. [5]) to relate its permeability K to its void fraction φ:

K =
φ3

KozS2
cp(1− φ)2

, (3)

where φ(X,T ) is the void fraction or porosity of the cake layers (φ ∈ (0, 1); for randomly-
packed spherical particles for example, φ ≈ 0.37); Scp is the specific area (the ratio of the
surface area to the volume of the solid fraction of the porous medium); and Koz is the Kozeny
constant (Carman proposed a value of 5 in [5]).

The model is completed by making assumptions about how particles are deposited within
the membrane. In the spirit of an earlier membrane fouling model for the one-layer membrane
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filter [8], we propose a simple advection model for the small particles:

Up
∂C

∂X
= −Λ

C

(φ∆p)1/3
. (4)

Here the pore velocity Up within the membrane is related to the superficial Darcy velocity
U by Up = U

φ
.

As in [8], the model assumes that small particles are deposited at a rate proportional
to the local particle concentration. The constant Λ captures the physics of the attraction
between the large particles (nodes) and the small particles (contaminants). In essence, the
pores of the membrane consist of the spaces between nodes of volume ∆p; therefore we
assume that (φ∆p)1/3 will be proportional to the pore radius. The membrane porosity φ
decreases in response to the particle deposition: consistent with [8] (with pore radius A
taken proportional to (φ∆p)1/3) we propose

∂φ

∂T
= −Λ(φ∆p)2/3C. (5)

3 Scaling and nondimensionalization

We nondimensionalize the model presented above using the scalings

X = Dx, T =
1

Λ∆
2/3
p C0

t, (U,Up) =
P0

µDKozS2
cp

(u, up),

P = P0p, C = C0c, K =
1

KozS2
cp

k, (6)

giving a dimensionless model for u(x, t), up(x, t), p(x, t) a(x, t), c(x, t) and φ(t). The dimen-
sionless governing equations in the membrane layer 0 ≤ x ≤ 1 are

u = −k ∂p
∂x
,

∂u

∂x
= 0, (7)

k =
φ3

(1− φ)2
, (8)

∂φ

∂t
= −cφ2/3, (9)

u
∂c

∂x
= −αcφ2/3, α =

ΛµD2KozS
2
cp

P0∆p
1/3

, (10)

with boundary and initial conditions

p(0, t) = 1, p(1, t) = 0, c(0, t) = 1. (11)

The above implicitly assumes that the specific area, Scp, is constant throughout. This will
not quite be true, but we believe it is reasonable to neglect its evolution due to fouling.
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4 Results and Discussion

Equations (7) and (11) give the following analytic solution for p:

p = 1−
∫ x
0

1
k
dx̃∫ 1

0
1
k
dx̃
. (12)

From equation (7) we find u is a function of time only:

u =
1∫ 1

0
1
k
dx̃
. (13)

From the above analytic solutions for p and u we find the following system of equations:

∂c

∂x
= −αcφ

2
3

∫ 1

0

1

k
dx̃, k =

φ3

(1− φ)2
, (14)

∂φ

∂t
= −φ

2
3 c. (15)

We have the following BC and IC:

c(0, t) = 1; φ(x, 0) = φ0(x). (16)

Gore provided an initial profile for a simple two-layer member filter. Each layer has width
about 0.45 in our length scale, with a middle layer connecting the two layers with different
porosities. The middle layer (connecting layer) has length scale 0.1, which may have yet a
third porosity, depending on the pressing and the material properties of the two layers (see
Fig. 3(a)).

There are different ways to evaluate the performance of filters; in this study we use
throughput and outlet particle concentration. The throughput measures how much fluid can
be processed before the membrane is completely clogged. The concentration at the outlet
measures how effective the filtration is. Here we consider the filtration is effective if 90%
of the particles are removed, i.e., the concentration at the outlet should be below 0.1 for
feed solution of concentration 1. Figures 3(b,c) show how throughput and concentration
change by varying φm (see Fig. 3(a)), the porosity of the middle “junction” layer, from 0.1
to 0.5. From Figure 3(b) we can see that when α = 1, increasing the porosity will increase
the throughput, which is a quantity we want to maximize. For small α (0.1 in Fig. 3(c)),
increasing the porosity of the middle layer will increase the throughput, but the filtration
becomes ineffective as soon as φm > 0.15. This simulation indicates the optimization of
the porosity profile of multilayer membrane filters depends on the constant Λ and other
parameters that can affect α, such as applied pressure P0, viscosity µ, and membrane depth
D as indicated by (10). These quantities allow us to manipulate α to achieve the optimized
filtration based on the application.
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Figure 3: (a) Porosity profile with φm being indicated for the middle layer; (b) plot for varying the middle
layer porosity φm with α = 1; (c) plot for varying the middle layer porosity φm with α = 0.1.

5 Conclusions and Future Study

In this study, we began to formulate an optimization problem based on our continuum model.
The optimization depends on the application, i.e., the definition of effective filtration may
be desired to be 99.99% particle removal in some applications, while for other situations
90% removal is effective. Under different constraints, one may be able to select an optimized
filter which maximizes the throughput under given conditions, i.e., for fixed α, by varying
the porosity profile of the membrane filter; or given the fixed profile of porosity, some α
will give the highest throughput, which is yet another type of optimization. With guidance
from Gore, we believe we will be able to carry out optimization of our model. We also plan
to refine our model to account for (i) changes in specific area Scp due to fouling; and (ii)
changes in node size ∆p with membrane depth. If time permits we also plan to compare
our results to those from an alternative model based on homogenization theory [2]. One of
the authors of that study has agreed to run simulations of that model to compare with our
model results. I would also like to compare our results with the discrete network model, and
another continuum model that MPI group member Binan Gu worked on. We would like to
publish our findings in a peer-reviewed journal within one year.
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