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Substantial evidence has suggested that reading and math are supported by executive

processes (EP). However, to date little is known aboutwhich portion of the neural system

underpinning domain-general executive skills works to support reading and math. In this

study, we aimed to answer this question using fMRI via two complementary approaches.

First, imaging data were acquired whilst a sample of 231 adolescents performed each of

three separate tasks designed to assess reading comprehension, numerical magnitude
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estimation, and EP in working memory (WM), respectively.With careful task designs and

conjunction analyses, we were able to isolate cross-domain brain activity specifically

related toEP, asopposedto lower-leveldomain-general processes (e.g., visualprocessing).

Second, the meta-analytic tool Neurosynth was used to independently identify brain

regions involved reading, math, and EP. Using a combination of forward and reverse

statistical inference and conjunction analyses, we again isolated brain regions specifically

supporting domain-general EP. Results from both approaches yielded overlapping

activation for reading, math, and EP in the left ventrolateral prefrontal cortex, left inferior

frontal junction, and left precentral gyrus. This pattern suggests that posterior regions of

the prefrontal cortex, rather thanmore central regions such asmid-DLPFC, play a leading

role in supporting domain-general EP utilized by both reading and math.

Complex goal-oriented behaviours rely on executive processes (EP) that purposely exert

top–down control over basic functions like motor and perceptual processes (Banich,

2009; Diamond, 2013; Miller & Cohen, 2001). EP operate across various task contexts and

are thought to be domain-general (Duncan, 2010; Rajah, Ames, & D’Esposito, 2008). For
this reason, there has been an enduring interest in the role of EP in primary academic skills

like reading andmath. Todate, substantial evidencehas shown that both reading andmath

are supported by certain aspects of EP. Individual differences in EP predict both current

(Best, Miller, & Naglieri, 2011; Jacob & Parkinson, 2015; Lan, Legare, Ponitz, Li, &

Morrison, 2011; Yeniad,Malda,Mesman, van Ijzendoorn, &Pieper, 2013) and future (Bull,

Espy, & Wiebe, 2008; Jacob & Parkinson, 2015) levels of reading and math performance.

Moreover, deficits in EP are related to low achievement in both academic domains

(Biederman et al., 2004; Rose, Feldman, & Jankowski, 2011). Whilst these behavioural
studies provide key evidence of the cognitive overlap between reading and math, little,

however, is knownabout the neuralmechanisms underlying these domain-general EP that

support both reading and math skills.

The fronto-parietal network is known to support EP (Cole, Repov�s, & Anticevic, 2014;

Vincent, Kahn, Snyder, Raichle, & Buckner, 2008). It is unclear, however, exactlywhich

portions of this extended network underlie processes required for both reading andmath.

Whilst one always has to be cautious about making reverse inferences, identifying these

brain regions would provide insights into the likely EP that are most likely jointly
associated with reading and math. As such, this information could enhance current

theoretical models and interpretations of behavioural findings that consistently show

certain EP –most often those associatedworkingmemory (WM) – are also associatedwith

reading and math ability.

Whilst the conceptualization of executive processes as used in studies relevant to

reading and reading abilities is quite varied (Church et al., 2019) and similar issues hold

with regard to mathematical abilities (Bull & Lee, 2014), there are at least two aspects of

executive function that are likely to influence both reading andmath. A prominent model
of executive function, the unity and diversity model (Friedman & Miyake, 2017; Miyake

et al., 2000) proposes that there is a unitary factor, referred to as common executive

function (EF), underlying all executive function tasks, much as g is thought to undergird

performance across intelligence tasks. This common EF factor is posited to represent the

ability to actively hold task goals inmind, especially in the face of distraction. Performance

on tasks of inhibitory control loads completely on that factor, as they often involve

maintaining a task set in the face of distraction or pre-potent response tendencies. Once

the common EF factor is accounted for, there are at least two distinct executive function
subfactors, reflecting the diversity aspect of the model. One is a working memory
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updating-specific factor that is linked to the ability to update the contents of working

memory. The other is a task-switching specific factor that provides the ability to switch

between task sets.

Both common EF and theworking memory updating-specific factor can be reasonably
thought to influence reading and math. Cirino et al. (2019) found that reading

comprehension in middle childhood is influenced both by common EF and working

memory updating. Whilst we know of no study that has taken a similar approach in

distinguishing between these two components of EF (i.e., common EF and working

memory updating-specific EF) in relation to math, the empirical work that does exist

suggests a similar influence of these two factors. For example, Cragg, Keeble, Richardson,

Roome, and Gilmore (2017) found that tasks that measure the updating of working

memory predict mathematical achievement in children, youth, and young adults, and that
these tasks along with inhibitory tasks (which load on common EF) predict factual

knowledge and procedural skill in math.

At present, the exact neural structures associated with the factors in the unity and

diversity model remain unclear. However, there is consensus across the field that lateral

prefrontal cortex (LPFC) plays a central role in executive processes by biasing information

processing towards task-related representations or processes (Banich, 2009; Miller &

Cohen, 2001). This top–down biasing process is assumed to be able to affect information

processing in multiple lower-level sensory or motor modalities and relies on connectivity
of dorsolateral prefrontal regions to target regions (Depue, Orr, Smolker, Naaz, & Banich,

2015).

Additional neuroimaging studies provided finer-grain predictions on candidate regions

of domain-general EP. Themid-DLPFC is implicated in themanipulation andmonitoring of

information in WM, especially to help resolve interference from task-irrelevant informa-

tion (Barbey, Koenigs, & Grafman, 2013; Petrides, 2000). In contrast, the inferior frontal

junction (IFJ; Muhle-Karbe et al., 2016) is shown to be involved in the identification of

information relevant to task goals and demands (Muhle-Karbe et al., 2016). Additionally,
premotor regions are implicated in the articulatory aspects of WM (Price, 2012), whilst

ventrolateral prefrontal cortex (VLPFC) has been linked to accessing and selecting

relevant information from memory (Badre & Wagner, 2007), especially in regard to

selecting amongst relevant potential words (Snyder et al., 2010). Finally, the prefrontal

cortex is known to have some degree of functional lateralization. For example, right

inferior frontal cortex is more involved in inhibitory control (Aron, Robbins, & Poldrack,

2004) whilst left inferior frontal cortex plays a more prominent role in processing of

linguistic information (Price, 2012). Which of these areas shows activations across all
three tasks, therefore, is likely to provide insights into the types of EP that are jointly

required by reading and math.

In fact, there has been some evidence supporting the idea that numerous regions

involved in EP are also active during tasks that tax reading and/ormathmechanisms.With

regard to reading, activation is observed in multiple regions of the left PFC known to be

involved in executive processes (Fedorenko & Thompson-Schill, 2014; Ferstl, Neumann,

Bogler, & von Cramon, 2008). Moreover, studies in which both EP and reading tasks were

administered found overlapping activations in the middle and inferior PFC as well as
anterior cingulate cortex (January, Trueswell, & Thompson-Schill, 2009; Ye & Zhou,

2009).With regard to math, neuronal activity in the PFC and parietal lobe is thought to be

involved in the encoding and processing of numerical magnitude (Nieder, 2016). More

interestingly, with a factorial design, Ansari, Fugelsang, Dhital, and Venkatraman (2006)

reported an interaction of the EP and number estimation processes in the left frontal lobe,
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whichwas shown recently in another study to bepredictive of levels ofmath achievement

(Wilkey & Price, 2018). These lines of evidence suggest that math and reading may

potentially rely on shared neural mechanisms involved in EP.

In this study, we chose to examine EP mechanisms in a sample of late adolescents, an
understudied age with regard to these abilities. At this critical developmental stage,

individual’s basic cognitive abilities including basic reading and math ability are relatively

well-established (Best & Miller, 2010; Chall, 1983b; Halberda, Ly, Wilmer, Naiman, &

Germine, 2012). In contrast, EP and the prefrontal regions that support them are relatively

less mature (Casey, Jones, & Hare, 2008; Gogtay et al., 2004), and their development

involves both changes in the specific regions of prefrontal cortex engaged and their

degree of activation (Andrews-Hanna et al., 2011). Hence, from a developmental

perspective, the exact region of prefrontal cortex that may be engaged in EP along with
reading and math is difficult to predict.

The present investigation used two complementary sources of data to examine the EP

regions jointly employed by math and reading. In an empirical approach, participants

were imaged whilst performing each of three different tasks: a sentence-level reading

comprehension task, a numerical magnitude estimation task, and a task requiring EP that

act on WM. Conjunction analyses in this within-subject design were then used to

determine which brain regions supporting domain-general EP also contribute to reading

and math performance. Due to the time constraints of the overall neuroimaging study,
however, we could only assess each of the constructs of interest (i.e., EP, reading, and

math) using one specific and limited task.

To provide insights as to the generalizability of these results, the second complemen-

tary approach used Neurosynth, a powerful meta-analytic tool designed to interrogate

patterns of brain activation associated with particular psychological functions (http://

www.neurosynth.org/; Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). In this

approach, patterns of brain activation are deduced from hundreds of studies that more

broadly assess aspects of mathematical processing, reading, and EP in WM, respectively.
Not only can this approach potentially provide converging evidence for the results from

the empirical approach, but it can also capture a broader array of related functions across

each of these three domains than is possible within a single neuroimaging paradigm. We

then present the regions identified by both approaches.

Another impediment to identifying EP underlying reading andmath is that they are not

the only domain-general processes potentially shared between reading and math. Other

domain-general processesmay include the decoding of visual symbols, likely relying upon

portions of ventral occipital-temporal cortex (For a review, see Hannagan, Amedi, Cohen,
Dehaene-Lambertz, & Dehaene, 2015), the linkage of such perceptual visual information

to an abstract representation,which relies on inferior parietal regions (Seghier, 2013), and

linkage of those abstract representations to an amodal semantic system, thought to rely

partly on anterior temporal regions (Simmons & Martin, 2009). Hence, the methods we

used were designed to intentionally separate the contributions of these lower-level

domain-general processes shared between reading andmath from the EP shared between

reading and math (refer to Figure 1).

Determining which EP-related brain regions might support both reading and math is a
non-trivial task, as there are challenges associated with such an undertaking. First, ideally

all three domains of cognition (i.e., EP, reading, andmath) should be included in the same

scanning session to allow for a controlledwithin-subjects test. Second, study designsmust

isolate the higher-level EP from the confounding lower-level domain-general processes

(see Figure 1 and Methods). Third, a large sample is required to obtain stable results.
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Likely due to these difficulties, we know of no imaging study that has determined those

aspects of EP common to reading and math.
In sum, in this study we adopted two complimentary approaches to examine brain

regions that underlie EP supporting both reading and math skills in a domain-general

fashion (Figure 1). Based on previous studies, we expect that one ormultiple areas within

the left prefrontal lobe (middle, ventral, posterior, and premotor PFC) will be identified

across both approaches, although the exact area is difficult to predict a priori.

Method

Overall approach

The overall approach used with our empirical data and with Neurosynth was similar. The

goal was to isolate brain regions activated by both reading comprehension and math

functions (a two-way conjunction) and then determine which of these is also activated by

EP inWM (a three-way conjunction). Critically, the maps used for reading and math were

chosen to identify all regions that contribute to both these cognitive domains, including
regions involved in lower-level domain-general processing (e.g., visual form processing)

as well as those involved in higher-level EP (Figure 1). In contrast, the map used for EP in

WM was designed to isolate activity specific to higher-level EP excluding lower-level

processes. The three-way conjunction then identifies the subset of the two-way regions

(between reading and math) that are specifically also involved in higher-level EP (red

regions in Figure 1). In contrast, non-EP activations related to both reading and math can

then be obtained by excluding the three-way regions from the results of the two-way

conjunction analyses (blue regions in Figure 1). To achieve these goals, the reading and
math maps were derived in a manner distinct from those for EP (see details below).

Figure 1. Logic of the analytic approach to isolate the neural underpinnings of the domain-general

executive processes jointly employed by reading and math skills. (A) In both empirical and meta-analytic

investigations, by excluding lower-level processes (LLP) in the executive map (see Method Section 1), the

conjunction of all three maps can capture the domain-general executive processes. (B) Potential prefrontal

regions supporting executive processes for reading and math include middle dorsolateral (mid-DLPFC)

linked tomanipulating andmonitoring the contents ofworkingmemory, ventrolateral (VLPFC) prefrontal

cortex linked to accessing and selection of information from long-term memory, premotor regions

involved in articulatory functions, and the inferior frontal junction (IFJ) involved in selection of task-

relevant information.
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We used the N-back task as a measure of executive processes that must act on WM,

because it requires not only the encoding and temporal storage of information inWM, but

a variety of executive processes including the continuous updating of information inWM

and the inhibition of irrelevant stimuli and responses (Rac-Lubashevsky & Kessler, 2016).
Hence, the executivemanipulation of information inWM seems to be critical for this task.

Supporting this idea, it has been shown that N-back task correlates only weakly with WM

capacity, meanwhile, its correlations with tasks or abilities involving EP are stronger

(Gajewski, Hanisch, Falkenstein, Th€ones, &Wascher, 2018; Jaeggi, Buschkuehl, Perrig, &

Meier, 2010; Kane, Conway,Miura, &Colflesh, 2007). Also suggesting that theN-back task

taps a variety of executive processes,meta-analyses indicate that it engages awide range of

frontal regions including left middle frontal and left inferior frontal gyrus, which are

commonly activated across a wide variety of executive function tasks (Mencarelli et al.,
2019; Wang, He, Wu, Zhang, Jin & Li, 2019).

A naturalistic reading comprehension task was used to assess participants’ reading

processes. A numerical line estimation task was used for the math domain (Siegler &

Opfer, 2003). This task is able to test numerical processes independent of world

knowledge andhas been shown to be correlatedwithmath performance (Schneider et al.,

2017). To assess executive processes linked to working memory, participants were given

an N-back task. The results of this design can thus provide insight into the specific

cognitive and neurocognitive mechanisms of domain-general EP that contribute to
reading and math.

Empirical investigation

Participants

Participants for the study were drawn from the Learning Disabilities Innovation Hub

(LDIH) sample,which is based on a collaborationbetweenTheOhio StateUniversity, Case

Western Reserve University, the University of Colorado Boulder, and Vanderbilt

University. Participants for the study consisted of 231 adolescents (mean age = 16.83,

SD = 1.49, 55.8% female, age range 13.92–20.75, 114 MZ twins, 102 same-sex DZ twins

and 15 singletons) recruited into the LDIH from the Western Reserve Reading and Math

Project (Soden et al., 2015) and the Colorado portion of the International Longitudinal

Twin Study of Early Reading Development (Christopher et al., 2015). Such a sample size
should provide more than adequate power, as this sample size is at least 5–10 times the

typical sample size for neuroimaging studies. Data collection was accomplished at three

universities: The Ohio State University, Case Western Reserve University and the

University of Colorado Boulder. This sample is unselected for reading or math disabilities.

The influence of participants’ non-independence (due to the inclusion of twins) on

statistical inference was controlled for by defining exchangeability blocks in permutation

tests (see section ‘Higher-level GLM analyses’). Adolescents were chosen for this

investigation as their reading and math abilities are relatively mature (Chall, 1983b;
Halberda et al., 2012). All participants had normal or corrected-to-normal vision and had

no history of neurological disorders. Informed consent was obtained from each individual

(for those older than 18) or from that individual’s parent or guardian (and his or her assent

for individuals younger than 19) prior to participation. Informed consent was obtained

from each family prior to participation, and all study procedures were approved by the

Institutional Review Board at The Ohio State University, the Case Western Reserve

University Social/Behavioral Institutional Review Board and University of Colorado

Boulder Institutional Review Board.
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Parents of twin pairs were contacted by The Ohio State University or by University of

Colorado Boulder by their preferred mode of contact as indicated during their prior

research participation. Aims of the study were described, and families who responded

were provided with a description of the project’s overview, purpose, and data collection
procedures. 80% of twins previously recruited at The Ohio State University were initially

nominated by schools in Greater Cleveland, Columbus, and Cincinnati metropolitan

areas, as well as throughout Ohio and Western Pennsylvania. Schools sent information

packets homewith parents of twinswho had entered kindergarten but not yet completed

first grade. Additional families were recruited via Ohio State birth records, mother of twin

clubs, andmedia advertisement. Twins previously recruited by the University of Colorado

Boulder were initially ascertained through the Colorado Twin Registry, which contains

records for all twin births in Colorado besides families that explicitly asked to not be
contacted. All twins were said to be in their final year of pre-school at the time of

recruitment, and 86% of parents approached by telephone agreed to participate.

The racial and ethnic composition of the sample is 86.7% White, 2.9% African

American, 2.9% Hispanic, 0.6% Asian, and 2.3% Native American, Pacific Islander, or

Multiple Races, with 4.6% not reporting. Mean parental education was 15.67 years

(SD = 2.05 years; range = 10–20 years).

Procedure

Functional MRI was utilized to assess patterns of brain activation whilst participants

performed a task from each of three domains of interest: EP in WM (via an N-back task),

reading (via a sentence-level reading comprehension task), and math (via a number line

magnitude estimation task).

For the tasks assessing reading and math, contrasts were chosen that would enable

capture of all relevant brain activation whether or not it is related to EP. To that end, the

main contrast of interest was between an active task condition (passage reading for
reading or mapping a number’s magnitude onto an axis for math) and a passive control

condition (symbol reading or fixation on an axis, respectively). By using a relatively basic

(i.e., low-level) control condition, the full range of brain regions engaged in each of these

tasks, from lower-level sensory processing to higher-order processes, could be identified.

Differently, however, for the N-back task, a contrast between two active task conditions

(2-back vs. 0-back) with identical perceptual stimuli was used. This contrast allows the

specific identification of regions involved in EP without inclusion of regions involved in

lower-level non-EP domain-general processes (see Figure 2).

Image acquisition. All data were collected on 3 Tesla Siemens TIM Trio MRI scanners

with a 12-channel head coil at three imaging centres. Whole-brain structural images were

collected with a high-resolution 3D magnetization prepared rapid gradient echo

(MPRAGE) sequence (TR = 3 ms, TI = 755 ms, Flip Angle = 8°; Slice thick-

ness = 1.2 mm; FOV = 26 cm; Matrix size: 256 9 256.). Functional BOLD (blood

oxygenation level dependent) images were collected using gradient echo T2*-weighted
echoplanar imaging (EPI); (axial acquisition geometry for theNLE and reading task, SENSE

factor = 2.5, TR = 2.2 s, TE = 25 ms, flip angle = 72°, 42 slices, 3 mm slice thickness,

1mm gap, bandwidth = 2,604 Hz/pixel; for the N-back task, the TE was 28 ms). The

slices were oriented obliquely along the AC–PC line. The first four volumes from each

functional runwere discarded to allow formagnetic field equilibration. DTI datawere also
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collected but are not discussed here. The structural image was acquired first, followed by

the functional scans for the reading task and the number-line estimation task, respectively,

with aDTI scan next and then theN-back task. Each task is described inmore detail below.

All participants performed the tasks in the same order as one goal of the larger project,

described in a separate report (Wang et al., 2019), was to examine individual differences

in pattern of brain activation across our sample with regard to reading and executive

abilities.

Task paradigms

For all tasks, stimuli were projected using an active video projector and presented on a

screen at the foot of the scanner bed, viewed through a mirror placed above the

participant’s head. Afibre-optic response boxwith twobuttonswas used for responses. In

(Fixation on axis)

Domains 

(Symbol reading)  

citylana-ateMnoitagitsevnilaciripmE

Contrast Processes 
involved 

Statistic 
inference 

type 

Processes 
involved 

reading 

i. Reading 
Comprehension 
ii. LLP 
iii. EP 

Forward 

Any process 
associated 
with 
reading 

Math 

i. Numerical 
Estimation 
ii. LLP 
iii. EP 

Forward 
Any process 
associated 
with math 

Executive 

EP  
(as stimuli are the 
same in both 
conditions) 

Reverse  EP 
specifically  

(Number line 
estimation) 

(0-back task) 

Design 

(2-back task) 

(Paragraph reading) 

versus

versus

Vs.

Figure 2. Contrasts (empirical data) and statistical inference maps (Neurosynth) used in conjunction

analyses to examine the overlap of brain areas involved in reading, math, and executive processes. By

excluding lower-level domain-general processes in the executivemap (N-back task), the conjunction of all

three maps could capture the domain-general aspect of executive processes. EP = executive processes

LLP = lower-level processes. (Left-hand side) Empirical Investigation. Each participant performed three

tasks. Top Row: Reading task. Activation during paragraph reading was compared to reading symbols.

Middle Row: Participants determined whether the hash mark on a number line matched a displayed

numerical value vs. fixation on the axis. Bottom Row: Activation whilst detecting whether a letter was

identical to the letter presented two items back was compared to responding to underlined letters.

(Right-hand side) Meta-analytic Investigation. For both the reading and math topics, forward inference

maps in Neurosynth (see methods) were used to identify all brain regions significantly activated in studies

associatedwith the topics of reading andmath, respectively. For the EP topic, a reverse inferencewas used

to detect only those brain regions that are significantly associated with the particular topic above and

beyond other topics.
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addition, at the conclusion of these three tasks individuals performed a 6-min resting-state

scan.

Reading task. This task utilized a block design with three distinct conditions. For all

three conditions, however, the participant’s task was to press a button to indicate when

two consecutive screens contained repeated content. Such repetition occurred

randomly.

In the passage reading condition, the active condition of interest, an initial blank

screen lasting 1,000 ms, was followed by a series of 1–5 word phrases that formed a

meaningful paragraph. Each phrase was presented on a separate trial. As done in Aboud,

Bailey, Petrill, and Cutting (2016), we allowed 550 ms for each content word (i.e., nouns,
verbs, adjectives, and adverbs that relay semantic information) and 275 ms for each

function word (i.e., pronouns, conjunctions, prepositions, articles, and auxiliary verbs

that relay information about syntactic relationships; see Diaz et al., 2009). For example, if

one screen contained one content word and one functionword, it would be displayed for

825 ms. In the symbol block, the baseline task against the paragraph condition was

compared, a series of symbol/letter triads (e.g., ‘z/ /’, ‘/ z/’ or ‘/ / z’) were presented. In

both conditions, participants pressed a button if subsequent screens contained the same

items. There were 21–41 trials in a reading block and 14–16 trials in a symbol block. The
task also contained a word condition, which is not of interest here. In this condition, the

stimuli display and the task were the same as themeaningful paragraph condition, except

just a series of content words was displayed.

Therewere three runs in all. The sequence of the first two runswas ‘Paragraph-symbol-

paragraph-symbol-word-symbol’, and the sequence of the last run was ‘Word-symbol-

paragraph-symbol-paragraph-symbol’. The two paragraphs within a run belonged to a

single passage. The first paragraph served to introduce the topic whilst the second

elaborated on a particular detail of the subject matter. The passages were all expository
and included the following topics: Hang Gliding, Wrasses, and Hydroponics.

To ensure that individuals were comprehending the paragraphs, immediately after the

second paragraph block, participants were presented with two picture-judgement trials.

In these trials, a picture was presented for eight seconds followed by a response screen

lasting for four seconds duringwhich participants determinedwhether a picturematched

the content of the two paragraphs by making a left or right key-press. The contrast of

interest for this task was the paragraph condition minus the symbol condition.

Number-line estimation (NLE) Task – This task utilized an event-related design that

involved two conditions – a number-line estimation (NE) condition and a luminance

estimation (LE) condition. The two active conditions were intermixed in an event-related

manner across two runs of 72 trials each. However, just activation for the number-line

estimation task was examined in the present study.

Each trial began with a cue informing the participants of the trial condition that lasted

for a jittered time period of 1,500–9,200 ms. The analyses of the fMRI data contrast
activation for the NE trials (described below) against the baseline provided by this cue.

During the cue period, a black horizontal line was presented on a white screen to visually

map out a spatial reference frame from left to right. For NE trials, two numerals were

presented below the horizontal line, 0 at the left end, and 1,000 on the right. For LE trials,

the numerals were replaced with square boxes, with the box at the left end filled white,
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and the box at the right end filled black. Above the number line, there was a fixation box

with ‘XXX’ printed inside. The fixation box appeared¾ of theway from the bottom of the

screen.

During the NE trial, after the jittered cue period, a probe appeared inside the fixation
box for a period of 1,000 ms. The probe could be one of six different Arabic numerals (5,

78, 150, 606, 725, or 938). After the probe period, a hatch mark was displayed on the

horizontal line for 2,000 ms. The hatch mark could appear at one of three different

positions with equal probability. The distance between the left end and the hatch mark

could correspond to: (1) the linear value of the probe, (2) the logarithmic value of the

probe, or (3) the mid-point between the linear and logarithmic values. Participants were

required to make a yes/no decision as to whether the position of the hatch mark matched

the numeral, and they were required to answer before the end of the 2,000 ms in which
the hatch mark appeared on screen.

During LE trials, which were not of interest for the present purposes, instead of using

numerals, the probeswere replacedwith luminance patches in greyscale. On LE trials, the

probes were constructed as square boxes with luminance levels that corresponded to the

values of the numerals in theNEcondition. Shades of greywere constructedusing theRGB

colour system. Each luminance patch was created by selecting an RGB value in the range

from 0 to 255 that corresponded to each of the 6 numerals tested in the NE trials. This was

accomplished using the following formula: RGB luminance = (1,000 – numeral) * (255/
1,000)).

N-back task – This task consisted of 2-back and 0-back conditions that were presented in

a blocked periodic design alternating between the two conditions. The task session

consisted of one run of ten blocks. At the beginning of each block, a text cue was

presented for 2.2 s or 4.4 s (25% of the time) to indicate the condition of the following

block. In each block, a series of 14 letters in white font was visually presented on a black
screen for 0.75 s each followed by a blank screen for 1.45 s. Half of the letters (randomly

selected) were underlined. In the control condition (0-back condition), participants

pressed a key whenever an underlined letter appeared on the current trial. In the 2-back

condition, participants pressed a key if the current letter matched the one presented two

trials ago.

Imaging analysis

Pre-processing. Image processing and data analysis were implemented using the FSL

package (analysis group, FMRIB, Oxford, UK, http://www.fmrib.ox.ac.uk/fsl/). Standard

pre-processing was applied: MCFLIRT, linear slice time correction/motion correction,

BET, brain extraction, time-series pre-whitening, high pass filter (0.01 Hz), and

registration and spatial normalization to the Montreal Neurological Institute (MNI) 152-
T1 2-mm template. The individual’s functional images were first registered to their high-

resolution MPRAGE scans via a 6-parameter linear registration, and the MPRAGE images

were in turn registered to the MNI template via a 12-parameter linear registration. These

registrations were combined in order to align the functional images to the template.

Functional images were resampled into standard space with 2-mm isotropic voxels and

were smoothed with a Gaussian kernel of an 8-mm full width at half-maximum.

FMRI time-series data were analysed using the general linear model (GLM) after

filtering low-frequency noise, correcting for temporal autocorrelation using an
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autoregressive AR(1) model, and convolving the stimulus function with a double-gamma

hemodynamic response function. Within the GLM approach, six linear head movement

parameters (X, Y, Z, roll, pitch, and yaw) and their squared value were included as

confound regressors. Task-specific regressors at the lower-level GLMare described below.
Quality assurance (QA) was performed before any further analysis of fMRI data. This

QA involved examining the data in a number of distinct manners. All data were examined

for their brain coverage. Data that failed to cover the entire cerebral cortexwere excluded

from further analysis. However, we allowed for some coverage loss in the inferior part of

cerebellum. Second, data with a rotation <2 degrees and a translation <2 mm within a

scanning session were directly accepted for subsequent analyses. Data failing to meet

these rotation and translation standards were further evaluated by two of the authors

independently through three methods. First, we examined the pattern of the movement
plot generated byMCFLIRT of FSL (Jenkinson, Bannister, Brady, & Smith, 2002). Plots that

showed frequent and sharp peaks of movement were considered worse than those

showed continued but slowmovement. Second, we examined the severity of movement-

related effects (Poldrack, Mumford, & Nichols, 2011) on the statistic map of interested

contrast (N-back task, 2-back vs. 0-back; NLE, number size parametric effect; reading task,

passage vs. symbol reading). Besides the standard GLM described above, for all fMRI data

failing to meet our rotation and translation standards, two more GLMs were run with two

additional types of confound regressors respectively, one using the metrics of frame
displacement (fd) and the other using themetrics of RMS intensity difference of volumeN

to volume N + 1 (dvars). The FSL tool of fsl_motion_outliers was used to generate both

type of regressors. In order to check the effect of these additional regressors,we examined

the severity ofmovement-related effects for both results of the standardGLMand results of

the GLMs with additional confound regressors, Third, we visually assessed the quantity

and severity of images distortion due to head movement by examining the all images

within a scanning session played as a movie using fslview. Each of these criteria was

graded on a scale of 1–4 (1 = good, 4 = bad). Any data had an average score larger than 3
by either author were not included in further analysis.

Several participants were excluded from statistical analyses due to data quality issues.

For the N-back task, several participants were excluded due tomissing data (N = 12), low

accuracy (exceeding three standard derivations;N = 14), poor brain coverage duringMRI

scanning (N = 21), and excessive motion (N = 14). The final sample size for the N-back

task was 170 (57.6% female, mean age = 17.02, SD = 1.45). For the number-line

estimation (NLE) task, data exclusions were due to missing data (N = 5), loss of

behavioural data (N = 4), poor brain coverage (N = 21), and excessive motion (N = 21).
The final sample size for the NLE task was 180 (59.4% female, mean age = 16.90,

SD = 1.47). For the reading task, data exclusions were also due to missing data (N = 10),

low accuracy (N = 42,whose hit rate <75% and false alarm rate >5%), poor brain coverage
(N = 23), and excessive motion (N = 17). The final sample size for the reading task was

139 (54.7% female, mean age = 17.07, SD = 1.49). After quality control, there were 107

participants who had valid data across all three tasks. Exclusion criteria were established

prior to lower-level analysis.

Lower-level GLManalyses. For the N-back task, one explanatory variable (EV)modelled

the 2-back trials to which a participant correctly responded, with a duration of 2.2 s

(equalling the TR). A second EVmodelled text cues at the beginning of each block. A third

EV modelled 2-back trials with incorrect responses with a duration of 2.2 s. A fourth EV
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modelled the control (0-back) trials with wrong responses with a duration of 2.2 s. A fifth

EV modelled the first two trials in every 2-back block, since the task is meaningful only

from the 3rd trial on. A sixth EVmodelled two empty TRs after the second trial of the first

block and three empty TRs at the end of the run. Therefore, the 0-back control condition
was left as the baseline, and the contrast between the 2-back condition and baselinewas of

primary interest [1 0 0 0 0]. This contrast was designed to isolate higher-level EPs whilst

excluding activation engaged by lower-level domain-general processes (e.g., visual item

recognition) as the same type of visual displays and stimuli was used in the 2-back and 0-

back conditions.

For the NLE task, one EV modelled the task period of a NLE trial which began at the

probe display, 1,000 ms before the hatchmark display, and ended at the time of response.

Because participants sometimes answered without waiting to process the location of the
hatchmark, we considered trials as valid response trials only when participants answered

after at least 350 ms. A second EV modelled the same trial time period with a parametric

regressor that represented the demeaned base 10 logarithm of the numerical value of the

presented stimulus. A third EVmodelled the residual time on the trial that corresponds to

the time between the participant response and the end of the 2,000 ms period with the

hatchmark present on the screen. A fourth EVmodelled trials with invalid responses (less

than 350 ms or no response recorded). These trials were coded with a duration of

3,000 ms. (corresponding to the 1,000 ms probe period and the 2,000 ms hatch mark
period). Similarly, four corresponding EVs modelled the luminance trials. Consequently,

what was left in the baseline was the fixation period containing the cue before the probe

stimulus, when the line and probe box were present. In the current study, the EV of

primary interest was the parametric regressor of the NE trials versus the cue/fixation

period.

For the Reading task, one EVmodelled the passage block and another EVmodelled the

word block. A third EV was included to model the two picture-judgement trials. The

symbol block was left as the baseline. The EV for the passage against the baseline (symbol
reading; 1 0 0) was the primary contrast of interest for this task.

Higher-level GLM analyses. For each lower level contrast, one-sample t-tests, that is a

single group average EV in the GLM, were performed at the higher level to obtain the

group average of individual activations. Permutation tests are more reliable than

parametric tests for neuroimaging data, as they provide better control of false positives

and require fewer assumptions (Winkler, Ridgway,Webster, Smith, &Nichols, 2014). The
exchangeability assumption of permutation tests requires that the joint distribution of

data remains unaltered after shuffling,whichmeans observations need to be independent.

However, this independence cannot be guaranteed when familial relationship exists in

the sample (e.g., data from twin pairsmay be related). Such structured non-independence

canbe addressed through the usage of exchangeability blocks (EBs),which contain blocks

of exchangeable units. Units of data within an EB can be shuffled freely, and EBs can be

shuffled as awhole. Hence,we adopted amulti-level block permutationmethod (Winkler,

Webster, Vidaurre, Nichols, & Smith, 2015) implemented in FSL’s PALM function
(Winkler et al., 2014). In order to account for non-independence due to the family

structure of this sample, nested exchangeability blocks were defined that restricted

permutations to data with the same family structure (e.g., permutation was allowed

between families consisting of two monozygotic twins as a whole, but was not allowed

between one family with two monozygotic twins and another family with two dizygotic
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twins). In this manner, family structure was accounted for without directly modelling

these complicated repeated-measures factors.Weperformed 5,000 permutations for each

analysis. We applied a voxel-wise false discovery rate (FDR) correction for multiple

comparisons (Genovese, Lazar, & Nichols, 2002). A p value adjusted for FDR across all
voxels (size, 2 9 2 9 2 mm) in the brainwasproduced for each voxel. Formain effects of

each task, voxels with a 1-p value >.95 (corrected for FDR) were considered significant.

Analysis of site effects. Given our data were acquired in three different fMRI scanners,

we examined the possible effects due to site differences. To this end, for each contrast of

interest, an additional higher-level GLM was performed. This model contained three

explanatory variables (EVs), each corresponding to the lower level input from one
scanning site. A site effect was defined as a significant F effect (after FDR correction). To

control for potential site differences in statistical power due to differences in sample size

across sites,we kept the sample size fromeach site comparable (N-back task, 69, 52, 49 for

three sites or equal [NLE task, 44; reading task, 21]).

Meta-analytic investigation

For the meta-analysis, maps were derived in Neurosynth (http://neurosynth.org), a meta-
analytic tool for investigating commonalities in patterns of brain activation across studies

(Yarkoni et al., 2011).We utilized the 200-word topics set extracted with a standard topic

modelling approach from the abstracts of all articles in the Neurosynth database as of July

2015 (11,406 articles). More specifically, we utilized topic 196 for reading (N = 314

studies; terms are as follows: reading, phonological, word, readers, letter, letters, visual,

dyslexia, orthographic, words, processing, dyslexic, children, spelling, rhyming, form,

vot, language, strings, developmental, suggest, phonology, consistency, orthography,

revealed, dyslexics, va, normal, representations, skill, suggesting, impaired, single, sound,
skilled, print, skills, written, decoding, and phoneme), topic 116 for numerical processing

(N = 206 studies; terms are as follows: number, numerical, arithmetic, numbers,

processing, magnitude, calculation, digit, symbolic, mathematical, distance, math,

mental, activation, multiplication, addition, counting, representation, tasks, numerosity,

subtraction, retrieval, digits, operations, comparison, quantifiers, quantity, verbal, adults,

non-symbolic, arabic, competence, operation, symbols, exact, estimation, single, arrays,

quantities, and hips), and topic 022 for EP in WM (N = 485 studies; terms are as follows:

memory, working, verbal, term, load, maintenance, performance, information, cognitive,
tasks, executive, storage, spatial, capacity, performed, updating, vstm, span, rehearsal,

manipulation, function, functions, phonological, cognition, visuospatial, swm, articula-

tory, ef, sternberg, demands, material, pre, digit, store, networks, delayed, correlates,

maintaining, efficient, and increase). Using topics rather than a single word (e.g.,

‘reading’) allow us to capture brain activation associated with a richer set of related

concepts (i.e., reading-related processes).

To identify all brain regions associated with each of the reading and math topics, we

employed forward inference maps. Such maps identify all regions from visual input to
higher-order association areas that are significantly activated during such tasks. For EP,

however, we wished to identify those regions specifically associated with EP above and

beyond othermental processes. To do so,we used a reverse inferencemap that delineates

those brain regions for which there is a significant probability that when activated, a

region is associated with the topic of interest above and beyond the average of other
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topics. However, suchmaps do not necessarily identify brain regionsuniquely associated

with a given topic, but rather identify those regions that have an increased probability of

being activated by tasks that assess the concepts contained within a given topic (e.g.,

executive) as compared to other terms (e.g., reading).

Conjunction analyses

As there is a difference of opinion on how best to pursue conjunction analyses, we took a

middle of the road approach. On the one hand, Nichols, Brett, Andersson, Wager, and

Poline (2005) argue that all the comparisons in the conjunction should be individually

significant, so that a proper null hypothesis of logical ‘AND’ is tested. However, Friston,

Penny, and Glaser (2005) suggest that such an approach results in a very high threshold
that is ‘a very conservative procedure, particularly in the context ofmultiple comparisons’

and is ‘generally unnecessary’.Wemade a compromise of between the two viewpoints by

using a square root of the significant alpha value (.05) with voxel-wise FDR correction for

both three-way and two-way conjunction analyses.

For the empirical analysis, after using FSL’s PALM (Winkler, Ridgway,Webster, Smith&

Nichols, 2014) to take into account family structure, statistical maps from each task were

thresholded at a level of .2236 (square root of .05; FDR corrected). These maps were then

binarized. The Fslmaths tool was used to create a map of the set of voxels that activated
across both the number-line estimation and reading comprehension tasks at p < .05

(.2236 * .2236 = .049). We then set out to determine which of the voxels so identified in

this two-way conjunction also showed activation during theperformance of the EP (i.e.,N-

back) task (p < .011; i.e., .2236*.2236*.2236), indicative of a three-way conjunction. To

determine regions activated for reading comprehension and number-line estimation that

did not involve EP, this three-waymapwas subtracted from the two-way conjunctionmap

of reading comprehension and number-line estimation (p < .039; i.e., .2236 * .2236*[1 –
.2236] (refer back to Figure 1A).

One might argue that such an approach, whilst setting a threshold that is equivalent

across all three tasks, provides a relatively liberal threshold for activation for the EP task

(i.e., p < .2236) vis a vis the threshold for the conjunction of reading comprehension and

number-line estimation (p < .05) leading to an overestimation of the contribution of

executive regions. Hence, we also computedmaps forwhich the threshold for the EP task

(p < .01) was equivalent to that for the conjunction of reading comprehension and

number-line estimation (.1 for reading and .1 for math yielding p < .01 for their

conjunction). This conjunction map yielded results of the same pattern as the approach
we discuss here (Figure S1).

To identify significant clusters in these conjunctionmaps,we computed the average Z-

value across the relevant maps (e.g., two-way conjunction: reading comprehension and

number-line estimation; three-way conjunction: reading comprehension, number-line

estimation, and EP) and then masked them with the appropriate binarized map. FSL’s

cluster commandwas then used to identify clusters forwhich theZ value exceeds p < .05

after permutation testing and FDR correction.

For the meta-analysis, Neurosynth only provides statistical maps for each topic at a
voxel-wise threshold of p < .01 with FDR correction. These statistical maps were

downloaded and subjected to the same conjunction and cluster identification procedures

as the empirical data. This procedure yielded a voxel-wise significance level of

p < .000001 for the three-way map of reading, math, and EP, and a level of p < .000099

for the map of co-activation of reading and math excluding regions activated for EP. The
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use of a more stringent statistical threshold for the Neurosynth maps as compared to our

empiricalmaps is reasonable given the greater power provided by themultitude of studies

in the Neurosynth database.

Results

Empirical data

Behavioural results

All tasks yielded acceptable levels of performance. In the N-back task, participants

responded more quickly, t(169) = �8.94, p < .001, and more accurately, t(169) = 7.07,

p < .001, in the 0-back condition (mean RT = 565 ms, mean accuracy = 94.1%) than in

the 2-back condition (mean RT = 628 ms, mean accuracy = 88.9%).

Signal detection theory (d’) was used to characterize behavioural performance in the
number-line estimation (NLE) task. Here,d’was the difference between theZ scores of hit

rate, the ratio of correctly responded trials in the linear trial condition, and the Z scores of

false alarm rate, the ratio of trials where the participant indicated themarkerwas correctly

placed in the log or log/linear conditions. The d’ value of the number-line estimation

condition (d’ = 2.26) was significantly different from zero, t(179) = 43.39, p < .001,

suggesting that participants were able to linearly map the number to the number axis.

For the reading task, the average hit rate for repeated stimuliwas 94% (SD = 5.8%), and

average false alarm rate was 0.5% (SD = 0.7%). The average accuracy for picture judging
trials after each passage was 88.2% (SD = 2.3%).

Overall group imaging results

Patterns of activation for each of the three tasks were consistent with expectations. For

the reading task, the contrast of passages versus symbols yielded large left-sided activation

in temporal regions as well as frontal activation (See Figure 3 and Table S1). For the

number line task, there was extensive activation across a large portion of occipital cortex
as well as the intraparietal sulcus implicated in numerical estimation (see Figure 3 and

Table S2). In the N-back task, there was robust activation across portions of the fronto-

parietal network and the cingulo-opercular network for the contrast of 2-back versus the –
back control condition (see Figure 3 and Table S3). No significant site-related effects, as

assessed by an F test, were observed.

Figure 3. Main effects of the three tasks. The threshold was p < .05 (permutation testing, FDR

corrected).
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Common activation across reading comprehension, number-line estimation, and executive processes in

working memory

The three-way conjunction analysis yielded activations in regions of the left middle and

inferior frontal gyrus (see Figure 4A, areas in red and Table 1). In addition, regions of the
occipitotemporal cortex of the left hemisphere, posterior middle temporal gyrus of the

right hemisphere, and cerebellum were also activated by all three tasks. There are 2,014

voxels in this three-way conjunction map, accounting for 3.1% of activation in the N-back

results map (when applying a common threshold of p < .2236), 3.5% of activation in the

reading task (threshold of p < .2236), and 17.4% of activation in the NLE task (p < .2236).

Common activation across reading comprehension and number-line estimation, excluding regions

involved in executive processes in working memory (N-back)

As expected, therewas significant overlap in activation between the reading and number-

line estimation task that did not involve EP. Most of these were observed in posterior

regions of the brain, more specifically occipitotemporal regions (see Figure 4A, areas in

blue and Table 2).

Neurosynth data

Common activation across reading, math, and executive processes in working memory

Activations across all three topics were observed in left frontal cortex extending from left

precentral gyrus to dorsolateral prefrontal cortex to inferior frontal gyrus. Medial

Figure 4. Results of the conjunction analyses across approaches. Both (A) Empirical and (B)Neurosynth

results are shown. Regions supporting domain-general executive processes (three-way conjunction) are

shown in red. Regions supporting common lower-level functions for math and reading (excluding

executive processes) are shown in blue. (C) Regions that yield activation in the both the empirical and

Neurosynth analyses. Regions that show activation across all three tasks are shown in magenta, whilst

those that activate for both reading and math (but not executive processes) are shown in cyan (D).
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activation in frontal cortex was observed bilaterally in the anterior cingulate cortex and

the supplementary motor area (SMA). In addition, activation across all three topics was

observed in the superior and inferior parietal lobules bilaterally (see Figure 4B, areas in

Table 1. Clusters that significantly activated empirically across all three tasks: reading comprehension,

number-line estimation, and executive processes in working memory (N-back)

Region Size BA Z X Y Z

Left Temporal Occipital Fusiform Cortex 1,151 37 6.1 �44 �58 �14

Right Occipital Pole 198 18 6.72 20 �96 0

Right Middle Temporal Gyrus: Temporooccipital part 154 21 5.26 64 �42 �6

Left Inferior Frontal Gyrus: pars opercularis 103 44 7.91 �48 16 26

Left Intracalcarine Cortex 62 17 4.66 �8 �78 8

Right Cerebellum Crus 2 51 6.59 10 �78 �32

Right Middle Temporal Gyrus: Posterior division 50 22 3.46 54 �40 6

Left Middle Frontal Gyrus 47 44 6.46 �50 10 34

Right Middle Frontal Gyrus 40 9 5.65 50 18 30

Left Inferior Frontal Gyrus: pars opercularis 19 44 5.22 �56 14 8

Left Precentral Gyrus 15 44 6.37 �44 4 26

Left Inferior Frontal Gyrus: pars triangularis 12 45 4.05 �44 46 4

Left Occipital Pole 10 18 3.49 �30 �92 2

BA = Brodmann area.

The voxel-wise significance for the three-way conjunction analysis was p < .011 (FDR corrected).

Clusters with a size of 10 voxels or larger are reported. Z values were averaged across the three tasks.

The peak with the highest Z value within a cluster was reported. X, Y, Z: peak coordinate in MNI space.

Table 2. Clusters that significantly activated empirically for the reading comprehension and number-line

estimation tasks, but not executive processes in working memory (N-back)

Region Size BA Z X Y Z

Left Occipital Fusiform Gyrus 1,556 17 7.59 �14 �86 �12

Right Occipital Pole 258 18 6.41 22 �96 18

Left Occipital Pole 125 18 4.56 �20 �94 22

Left Postcentral Gyrus 37 4 3.44 �58 �16 48

Right Putamen 21 2.76 �28 �10 0

Right Occipital Fusiform Gyrus 19 19 2.93 32 �72 �16

Right Temporal Pole 19 38 6.51 52 12 �20

Right Intracalcarine Cortex 18 17 4.16 14 �62 10

Right Lateral Occipital Cortex: Superior division 14 37 2.56 50 �66 22

Right Temporal Occipital Fusiform Cortex 13 37 2.51 48 �50 �26

Right Central Opercular Cortex 11 43 3.74 38 �18 18

Right Middle Temporal Gyrus: Temporooccipital part 11 21 3.26 66 �48 2

Right Temporal Pole 11 38 3.93 60 12 �12

Right Hippocampus 11 34 4.35 20 �4 �16

BA = Brodmann area.

The voxel-wise significance threshold was p < .038 (FDR corrected). Clusters with a size of 10 voxels or

larger are reported. Z values were averaged across the reading and number-line estimation tasks. The

peak with the highest Z value within a cluster was reported. X, Y, Z: peak coordinate in MNI space.
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red, and Table 3). The three-way conjunctionmap has 2,964 voxels, accounting for 41.5%

of activation in the EP topic map, 15.3% of activation in the reading topic map, and 18.6%

of activation in the math topic map.

Common Activation across reading and math, excluding regions involved in the executive processes in

working memory

Activation was observed across a large number of regions including the left superior

parietal lobule, precentral gyrus, bilateral supramarginal gyrus, precentral gyrus, middle

frontal gyrus, IFG, paracingulate gyrus, SMA, anterior insula (AI), superior occipital gyrus,

inferior temporal gyrus, and lateral occipital cortex (see Figure 4B, areas in blue and

Table 4).

Commonalities between the empirical and Neurosynth results

To determine the convergence across our approaches, we identified regions that showed

an effect in both the empirical and Neurosynth data (see Figure 4C).

Common activation across reading, math, and executive processes in working memory

This analysis yielded significant activation in left prefrontal regions including the inferior

frontal junction (IFJ), premotor regions, and ventral lateral prefrontal cortex (seemagenta

regions in Figure 4C andTable 5), suggesting these regionsmayplay a critical role in the EP

that underlie both reading and math.

Common activation across reading and math, excluding regions involved in the executive processes in

working memory

Only one region – the left fusiform gyrus – yielded activation across both approaches (see
Figure 4C, areas in cyan, and Table 6). This finding suggests common reliance of reading

Table 3. Clusters that significantly activated in Neurosynth across all three topics: Reading, math, and

executive processes

Region Size BA Z X Y Z

Left Precentral Gyrus 792 44 19.6 �46 8 28

Left Superior Parietal Lobule 719 7 15.3 �30 �58 44

Left Paracingulate Gyrus 547 6 17.5 �4 10 52

Right Superior Parietal Lobule 534 7 14.9 30 �56 44

Right Middle Frontal Gyrus 95 6 8.57 30 �2 52

Right Insular Cortex 70 47 15.6 34 22 0

Right Middle Frontal Gyrus 60 45 7.14 46 34 24

Left Middle Frontal Gyrus 48 6 7.76 �28 �2 52

Left Insular Cortex 48 6 13.3 �32 22 0

Left Cerebellum Crus1 17 4.62 �40 �62 �28

Right Cerebellum 6 10 37 4.84 28 �60 �28

BA = Brodmann area.

The voxel-wise significance level was p < .000001 (FDR corrected). Clusters with a size of 10 voxels or

larger are reported. Z values were averaged across the three Neurosynth topic maps. The peak with the

highest Z value within a cluster was reported. X, Y, Z: peak coordinate in MNI space.
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and math on a common lower-level neural mechanism for the discrimination of visual

form.

Comparison of overlapping activation between reading and math including vs.

excluding executive regions

A major goal of our study was to determine the degree to which the neural mechanisms

underlying reading and math rely on common executive processes as compared to other
domain-general processes (e.g., visual form analysis). As another perspective on this

question, we determined the proportion of voxels that co-activated for reading and math

that also yielded significant activation for executive processes. As can be seen in Table 7,

Table 4. Clusters that significantly activated in Neurosynth for the topics of reading and math, but not

executive processes in working memory

Label Size BA Z X Y Z

Left Superior Parietal Lobule 1,043 7 18.8 �26 �58 46

Left Temporal Occipital Fusiform Cortex 802 37 17.8 �44 �58 �16

Left Superior Frontal Gyrus 716 6 18.8 �4 12 54

Left Middle Frontal Gyrus 675 44 21.9 �48 10 32

Right Lateral Occipital Cortex: superior division 629 7 15.5 30 �60 50

Right Precentral Gyrus 614 44 17.6 46 8 28

Right Inferior Temporal Gyrus: Temporooccipital part 486 37 9.89 46 �60 �8

Left Insular Cortex 409 47 17.9 �34 24 0

Right Insular Cortex 336 47 19.1 34 24 �4

Left Pallidum 54 6.3 �22 8 4

Left Lateral Occipital Cortex: Superior division 37 39 6.04 �50 �62 24

Left Inferior Frontal Gyrus: Pars triangularis 28 45 7.13 �44 38 4

Left Precentral Gyrus 21 6 8.03 �26 �6 52

Left Lateral Occipital Cortex: superior division 19 18 4.74 �30 �86 10

Left Occipital Pole 14 18 4.42 �24 �94 6

BA = Brodmann area.

The voxel-wise significance level for this conjunction analysis was p < .000099 (FDR corrected). Clusters

with a size larger than 10 were reported. Z values were averaged across the reading andmath topic maps.

The peak with the highest Z value within a cluster was reported. X, Y, Z: peak coordinate in MNI space.

Table 5. Common activation across the empirical and Neurosynth results for the conjunction of

reading, math, and executive processes in working memory

Label Size BA Z X Y Z

Left Inferior frontal junction 38 44 11.9 �46 12 28

Left Inferior Frontal Gyrus: pars opercularis 15 44 10.1 �46 4 26

Left precentral gyrus 7 6 7.54 �42 2 36

Left precentral gyrus 5 6 7.61 �50 4 36

BA = Brodmann area.

Z values were averaged across all relevant Neurosynth topic maps and empirical maps. The peak with the

highest Z value within a cluster was reported. X, Y, Z: peak coordinate in MNI space.
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of all the voxels that are jointly activated by reading and math (Total), 47.5% in the

empirical maps and 33.2% in theNeurosynthmaps are accounted for by brain regions that

are also activated by executive processes, suggesting that of all domain-general processes

that are activated across reading and math, executive processes account for a substantial

proportion.

Discussion

Empirical neuroimaging data across multiple tasks measured in the same individuals as

well as a meta-analytic approach using the Neurosynth database suggests that executive

processes supported by inferior and posterior parts of left lateral prefrontal cortex are

important for both reading and math performance. This finding is consistent with the

hypothesis that executive operations, which act on information in WM, constitute some

of the commonality in neural processing between reading and math. Whilst regions
involved in EP are not the only brain regions in which overlapping activation is observed

between reading and math tasks, they do account for a substantial proportion of the

observed overlap in activation (Table 7). To our knowledge, this is the first study to

examine the neural correlates of the overlap between these different dimensions of

academic functioning (i.e., reading and math) in the same study.

It is worth commenting on all the potential functions of the lateral prefrontal regions

that were revealed across both of our methods. Whilst one must be cautious in inferring

psychological processes frompatterns of brain activation (Poldrack, 2006), the location of
activation may nonetheless provide some insights into the processes involved. One

region, premotor cortex, has been linked to articulatory and motoric aspects of WM

(Price, 2012). Another – the inferior frontal junction (IFJ) – has been proposed to be an

important region for EP (Derrfuss, Brass, Neumann, & von Cramon, 2005), including

selecting task-relevant information, and switching between tasks or representational sets

(Derrfuss et al., 2005). The final region – ventrolateral prefrontal cortex (VLPFC)

including Broca’s area (BA44) – has traditionally been viewed as a region involved in

language production (Hagoort, 2014), comprehension (e.g., Rodd, Davis, & Johnsrude,

Table 6. Common activation across the empirical and Neurosynth results for the 2-way conjunction of

reading and math excluding executive regions

Label Size BA Z X Y Z

Left fusiform gyrus 28 19 6.89 �36 �70 �14

BA = Brodmann area.

Z values were averaged across all relevant Neurosynth topic maps and empirical maps. The peak with the

highest Z value within a cluster was reported. X, Y, Z: peak coordinate in MNI space.

Table 7. Number of voxels contained in overlap maps for reading and math

Activation across

reading, math and

executive processes

Activation across reading

and math but not

executive processes Total

Empirical 2,014 (47.5%) 2,227 (52.5%) 4,241

Neurosynth 2,964 (33.2%) 5,964 (66.8%) 8,928
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2005), and syntax (e.g., Vigneau et al., 2006). However, this region also activates during

math tasks such as exact arithmetic (Arsalidou & Taylor, 2011) and mathematical logic

(Houde & Tzourio-Mazoyer, 2003). Our findings are consistent with other work

suggesting that this region may have a more domain-general executive role in resolving
interference amongst competing items inWM (Nelson, Reuter-Lorenz, Persson, Sylvester,

& Jonides, 2009), helping to select and retrieve goal-relevant information from long-term

memory (Hirshorn & Thompson-Schill, 2006) or organizing information in a hierarchical

manner (Bahlmann, Schubotz, Mueller, Koester, & Friederici, 2009).

Considering the various functions of these three regions, it seems that multiple types,

rather than a single type, of EPs are involved in reading and math. This observation is

consistent with a recent meta-analysis on behavioural studies, which suggests that

different subtypes of EP almost indistinguishably contribute to reading andmath (Jacob&
Parkinson, 2015). However, there may be a hierarchy of these EP functions. At a higher

level, IFJ and VLPFC may work together to actively select task-relevant information. Such

processes are exerted upon information from different cognitive domains, including

language and math. Then, at a lower level, the premotor cortex may be involved in

determining or executing the specific actions consistent with those higher-level

processes.

It isworth noting that themain lateral prefrontal region forwhichwe did not observe a

three-way conjunction of activation across both the empirical and meta-analytic
approaches was mid-DLPFC. In many models, this region serves to bias information

processing towards goal-relevant information (Banich, 2009; Miller & Cohen, 2001). This

region has also been implicated in successful maintenance of relevant information in the

presence of distraction (Feredoes, Heinen, Weiskopf, Ruff, & Driver, 2011) and/or in the

face of pre-potent but task-irrelevant information (Snyder, Banich, & Munakata, 2014).

The reasons why this region did not show activation in our study are not clear, but there

are a number of possibilities. First, the lack of activation in these regions may have

occurred because these regions are still developing with regard to executive processes
(e.g., Andrews-Hanna et al., 2011) in our adolescent sample. Another possibility is that

portions of mid-DLPFC function are activated in amore highly domain-specificway at this

age, as different portions of DLPFC were activatied in the main effect of the three tasks

(Figure 3). Finally, the specific reading comprehension and numerical estimation

paradigms we employed in our empirical investigation may not tap this type of control

process, although it may in fact be engaged across more demanding reading and math

tasks. One way to more directly address this issue in future studies might be to design a

study that additively manipulates reading, math, and executive operations within the
same paradigm.

What then is to be made of the finding that most regions of lateral prefrontal cortex

show overlap in activation across all three domains: reading, math & EP in WM? We

propose that whilst certain regions of the left hemisphere, such as Broca’s area, have been

conceptualized as ‘language related’, they may potentially be better conceptualized as

supporting domain-general EP that are utilized during both language processing and other

higher-order cognitive operations that involve systematic relationships amongst items.

For example, sentence comprehension requires an understanding of the relationship
between words within a syntactic frame, and mathematical abilities involving magnitude

estimation require mapping of values onto a reference frame of the number line.

One difference between results of empirical and Neurosynth analyses is that left

inferior occipitotemporal regions were activated in all three empirical tasks but were

activated in only two Neurosynth topic (reading and math) maps (Figure 4A, B). This area
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is located in the ventral stream of visual processing, which is related to object recognition

and formation of representations (Goodale & Milner, 1992; Mishkin, Ungerleider, &

Macko, 1983). Since all empirical tasks are visual tasks, activation in this area is expected.

On the other hand, as for theNeurosynth analysis, we chose the reverse inferencemap for
the EP topic, which by definition controls for the modalities of the stimuli on which EP

acts, which likely accounts for the absence of occipitotemporal activation in thismap.We

suggest that the regions highlighted in both empirical and Neurosynth analyses may best

represent neural substrates of domain-general EP (Figure 4C), as they took advantage of

these two complementary methods.

Clinical implications
In addition to the important implications for cognitive models of executive processes as

they influence academic achievement, the current results suggest that future studies

should testwhether a sharedweakness in EPmediated by left lateral prefrontal cortexmay

help to explain the frequent co-occurrence between clinical diagnoses of reading

disability and math disability. Understanding the causes of the ubiquitous comorbidity

amongst developmental disorders such as learning disabilities, attention-deficit/hyperac-

tivity disorder, and autism spectrum disorders is a key direction for future research, and

the current results illustrate the potential utility of the design described in this paper to be
used as a tool to address this question. Such design should be used in combination with

emerging techniques likemachine learning andmultimodality approaches (Astle, Bathelt,

Team, & Holmes, 2019; Lerman-Sinkoff et al., 2017).

Further, whilst EP account for a significant proportion of the covariance between

reading and math, additional covariance remains to be explained. The pattern we

observed is consistent with multiple deficit models of reading and math difficulties and

suggests that weaknesses in EP are an important domain-general factor in multifactorial

neurocognitive models in which weaknesses in several cognitive domains act in
combination to contribute to learning disabilities (Pennington, 2006; Willcutt et al.,

2013). The major brain region not involved in EP in WM, but which nonetheless that

showed consistent overlap in activation between reading and math was the ventral visual

processing stream. This overlapmay simply reflect the fact that bothmath and reading rely

upon visual input and symbols that are subsequently translated to more abstract

representations with amodal meaning. Exactly how executive processes might influence

the learning of reading and math during this adolescent developmental stage of life is not

clear, although this issue has been considered with regard to pre-school and grade-school
children (Church et al., 2019; Cragg et al., 2017).

Limitations

In interpreting our results, it is important to note that the NLE task yielded smaller regions

of activation than those of the N-back and reading tasks (Figure 4). We hold that this may

be due to a difference in task design: the NLE task utilized an event-related design whilst

the other two tasks used a block design. Therefore, although the task itself was able to
adequately assess activation with numerical estimation, this difference in the design

across tasksmayhave caused theNLE task to be relatively under-powered compared to the

other two tasks. As such, it might be that if a block design was employed to assess

numerical estimation, onemight find additional EP regions beyond thoseweobserved that

would show overlap in activation across all three tasks.
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One should consider the limitations imposed by the scope of empirical tasks we used.

The number line task taps a rather basic aspect of math ability, that is number sense and

magnitude processing. Nonetheless, it should be noted that performance on magnitude

processing is highly predictive of mathematical competence and that this relationship
does not reduce substantially with age (Schneider et al., 2017). In addition, the reading

task was also not especially challenging as the sentences, although topical across frames,

did not involve higher-order integration across paragraphs. From this perspective, our

results most likely downplay the role at EP may play in more advanced reading and

mathematical skills. The results from themeta-analytic platform,Neurosynth, are based on

text analysis of published studies and as such do not provide information on the types of

tasks nor the difficulty of the studies contributing to its results. Nonetheless, the topics do

cover a broad range of processes underlying each of reading and of math. It should be
noted that the limitation of each of these approaches is in some sense the opposite. The

empirical approach was limited to a restricted set of tasks tapping a narrow range of

processes involved in math, reading, and executive function. In contrast, the Neurosnyth

approach was much broader encompassing a wide variety of tasks that are involved in

such processes. As such, the convergence of findings across both approaches is notable.

A final caveat should be noted. The conclusion of both analyses in this study is based on

averaged result of a large number of participants and do not take individual differences

into account. However, the neural substrates of domain-general EP may vary for different
sub-groups of adolescents, such as those of differing or levels of ability. Since this study

was not designed to examine individual differences in EP, this would be an interesting

topic for a future research.

Conclusion and implications

Interpretations of our resultsmust beput in the context of the developmental status of our

participants, whose average age was approximately seventeen. At this point in their lives,
our participantswould likely be relatively proficient in their comprehension of the simple

paragraphs utilized in our study, as well as the number sense tapped by the number line

task (Chall, 1983a; Siegler & Opfer, 2003). As has been suggested by others, it is critical to

focus on domain-specific skills during grade school, such as phonological processing in

reading (Wagner&Torgesen, 1987) and number sense inmath (Namkung& Fuchs, 2016)

that serve as a foundation upon which more complex skills can develop. Once mastery

over such basic underlying processes (e.g., number sense, phonology, and vocabulary)

has been established,more sophisticated use of language andmathematical reasoningmay
be enabled by frontal lobe-supported domain-general EP in WM that allow such

information to be accessed and deployed effectively. Taken together, the results suggest

that the associations observed between reading and math may result from their mutual

reliance on EP in WM, which are supported by the posterior and lateral parts of left PFC

that act on and enable the effective use of information in WM.
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