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Learn More 

•  Exascale Computing Project:  
–  https://exascaleproject.org/about/ 

•  MLIR for High Performance Computing 
–  https://www.cs.utah.edu/mlir4hpc/ 
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What is the Exascale Computing Project (ECP)? 

ECP is an accelerated research and development project 
funded by the US Department of Energy (DOE) to ensure 
all necessary pieces are in place to deliver the nation’s 
first, capable, exascale ecosystem, including mission 
critical applications, an integrated software stack, and 
advanced computer system engineering and hardware 
components.  
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What is a “capable” exascale computing ecosystem? 

Exascale means real capability improvement in the science we can do, and how fast we can do it 

At least two diverse system architectures 
Delivers 50x the performance of today’s 20 petaflop systems and 
5x the performance of Summit, Oak Ridge National Laboratory’s 
supercomputer— i.e., allows at least a quintillion floating point 
operations per second 
Functions with sufficient resiliency: an average fault rate 
of ≤1 per week 

Includes a software stack that meets the needs of a broad 
spectrum of applications and workloads 

Supports a wide range of applications that deliver high-fidelity 
solutions in less time to problems of greater complexity 

Hardware 

Software 

Applications 
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Programming 
models and 

runtimes 

Development 
tools 

Mathematical 
libraries 

Data and 
visualization 

Software 
ecosystem and 

delivery 

Software Technology 
Develop the exascale software stack and deliver using Software Development Kits (SDKs) 

Project  
Management 

Application  
Development 

Software  
Technology 

Hardware  
and integration 

ST Elements 
•  55 WBS L4 subprojects executing RD&D 
•  ST efforts currently contribute to 89 unique products 

Challenges: Qualitative changes; Massive concurrency; Multi-
scale, multi-physics, data-driven science; Ecosystem integration 
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PROTEAS-TUNE Project Overview

Challenges

• Performance portability is a 
critical challenge for sustainable 
HPC software

• Heterogeneous and manycore 
processors (GPUs, FPGAs, 
Manycore), 

• Deep memory hierarchies incl 
nonvolatile memory systems 
(NVM);

• Consistent with recent 
expectations for FRONTIER, 
AURORA

– But don’t specialize

Solutions

• Programming systems
– OpenACC, CUDA, OpenCL, 

OpenMP, SYCL
– Optimization techniques and 

algorithms
– Autotuning

• Open LLVM Compiler
– OpenACC support, parallel IR, 

loop transformations
– Contributions to upstream LLVM

• Portable, scalable performance 
analysis via TAU Performance 
System and its integration

• Strategies for algorithm design for 
new architectures: bricks

• Scalable approaches to using NVM, 
such as embedded KV stores 
(papyrus)

Impact

• Engage with ECP applications 
and software teams

– Multiple engagements with 
AD and ST teams

• Engage with broader community
– OpenACC Forum
– OpenMP Forum
– LLVM development 

community
– Tutorials, Dev Meetings, etc

• Substantive connections with all 
vendors (even non-ECP vendors)

– IBM, AMD, Intel, NVIDIA, Cray, 
etc

PROTEAS-TUNE is not a one product 
project; it has multiple technical thrusts.
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• Oak Ridge National Laboratory
– Jeffrey S Vetter (PI), Joel Denny, Jungwon 

Kim, Seyong Lee, Dick Glassbrook (PM)

• University of Oregon
– Allen Malony (Co-PI), Sameer Shende,
– Kevin Huck, Camille Coti

• Los Alamos National Laboratory
– Kei Davis (Co-PI), David Ringo

• Argonne National Laboratory
– Hal Finkel (Co-PI), Prasanna Balaprakash, Johannes 

Doerfert, Michael Kruse

• University of Utah
– Mary Hall (Co-PI)

• Lawrence Berkeley National Laboratory
– Sam Williams (Co-PI), Hans Johansen

Project Team

•FY20 officially begins the merged project: PROTEAS + Y-TUNE -> PROTEAS-TUNE
•Operating as a combined team since March 2019 including AHM at Utah

https://confluence.exascaleproject.org/display/%7Evetter@ornl.gov
https://confluence.exascaleproject.org/display/%7Edennyje@ornl.gov
https://confluence.exascaleproject.org/display/%7Ekimj@ornl.gov
https://confluence.exascaleproject.org/display/%7Elees2@ornl.gov
https://confluence.exascaleproject.org/display/%7Emalony@cs.uoregon.edu
https://confluence.exascaleproject.org/display/%7Esameer@cs.uoregon.edu
https://confluence.exascaleproject.org/display/%7Ekhuck@cs.uoregon.edu
https://confluence.exascaleproject.org/display/%7Ekei@lanl.gov
https://confluence.exascaleproject.org/display/%7Ehfinkel@anl.gov
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Y-TUNE Toolkit: Distinguishing Features
CHiLL: Transformation & Code Generation
– Transformation recipes explicitly describe mapping of 

computation, expose parameters and code variants
– Optional decision algorithm generates recipes

Compiler transformation & code generation
Brick data layout for stencils

Autotuning Search (ytopt)
Pragma autotuner

Technology transfer to Clang/LLVM

Y-Tune Toolkit

Primary goal: 
Single source performance portability for 

ECP codes using autotuningBrick Data Layout for Stencils
- Fine-grain data blocking and cross-architecture code generation reduces data 

movement through hierarchical memory systems
- Architecture-specific code gen. makes bricks performance portable to CPU & GPU
Autotuning Search
- Search using Random Forests (SuRF) iteratively refines model in promising input 

region by obtaining new measurements at unevaluated input configurations
Pragma Autotuner
- Vary pragmas for compiler to investigate alternative implementations
Technology Transfer to Clang/LLVM (and MLIR)
- Integrate transformation recipes into Clang/LLVM/Polly via transformation pragmas

CHiLL released and integrated into Spack
Focus in Phase 2 shifted to LLVM and MLIR with CHiLL 
as prototype
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YTOPT/SURF: AUTOTUNING SEARCH

– Framework:
• Initialization phase

– Random or Latin hypercube  sampling

• Iterative phase
– Fit model
– Sample using the model

16

Example Surrogate Model Fitted to Sampled 
Performance

(iterative refinement improves the learning model)

https://github.com/ytopt-team/ytopt

Bayesian optimization idea for sampling new point

https://github.com/ytopt-team/ytopt
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SuRF obtained speedups comparable to domain-expert/manual tuning  

Y-TUNE Self Assessment: Clients and Users
Initial Results on SuperLU and QMCPACK 

Autotuning advantages: 
(1) Performance/portability; (2) Productivity; (3) Maintainability
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Pragma Autotuner
• Search Using Random Forest (SuRF) for autotuning search (may 

not involve compiler)

Clang

LLVM

Polly

OpenMP

Polyhedral compiler in LLVM

Pragma
Autotuner 

(using SuRF)

#pragma …

pragma metadata 

/* Polly example */
#pragma clang loop unroll(4)
for (int i = 0; i < n; i+=1)  Statement(i);

/* OpenMP example */
#pragma omp parallel loop
for (int i = 0; i < n; i+=1)  Statement(i);

/* OpenMP example */
#pragma omp target distribute simd
for (int i = 0; i < n; i+=1)  Statement(i);

A Framework for OpenMP Autotuning, V. Sreenivasan, R. Javali, 
M. Hall, T. Scogland, B. de Supinski, IWOMP’19.
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Brick Data Layout, Applied to High-Order Stencils 

• Data layout reduces data movement
– Brick: 4x4x4 subdomain w/o a ghost zone 
– Uses contiguous storage and adjacency lists 

• Achieves performance portability
– Automation of architecture-specific “vector” code 

generation
– Dramatically reduces vertical (register/cache/TLB) and 

horizontal (MPI) data movement
– Adjustable brick size and indirection adapts to 

architecture limits
– Indirection eliminates message packing and reduces 

communication overhead

with Tuowen Zhao (Utah), Sam Williams, Hans Johansen (LBNL), To appear SC’19
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Current	State	of	HPC	Compilers	
Proprietary	
•  Robust	
•  High-quality	
implementations	for	
supported	architectures	

•  Support	HPC	
community	

•  Code	not	performance	
portable	across	systems	

•  Often	conservative	

Open	Source	
•  Research	compilers	
-  State-of-the-art		
-  Experimental,	

untrusted	
-  Difficult	to	track	

language	changes	
-  Gaps,	such	as	Fortran	

frontend	
•  LLVM	and	gcc	
-  Gaps	in	HPC	support	
-  Conservative	



Current	State	of	HPC	Compilers,	cont.		

Challenges:		
•  HPC	market	not	large	enough	to	drive	significant	
change	to	open	source	or	even	proprietary	
compilers	

•  Meanwhile,	research	systems	not	sufficiently	
robust	for	production	codes	

Impact:		
•  Productivity	improvements	for	HPC	not	being	
exploited	

•  Heterogeneity	will	make	this	a	bigger	concern	



	for	(n=0;	n<N;	n++)	{	//	minibatch	size							
			for	(k=0;	k<K;	k	++)	{	//	output	feature	map									
					for	(c=0;	c<C;	c	++)	{	//	input	feature	map																
							for	(p=0;	p<P;	p	++)	{	//	output	height													
									ij	=	p	*	u;	//	input	height													
									for	(q	=0;	q<Q;	q	++)	{	//	output	width															
											ii	=	q	*	v;	//	input	width															
											for	(r=0;	r<R;	r	++)	{	//	filter	height																	
													for	(s	=0;	s<	S;	s	++)	{//	filter	width																									
															output_seq[n][k][p][q]	+=		
																							input	[n][c][ij+r][ii+s]	*	weight[k][c][r][s];													
}	}	}	}	}	}	}	

4	

Convolutional	Neural	Network	
Forward	Layer	Code	(in	C)	



Goal:	HPC	Support	in	Open	Source	
Compilers	

Short-term		

(ECP	time	frame)		
Extend	LLVM	
•  Parallel	IR	
•  Loop	transformations	
•  OpenMP/OpenACC	
•  Autotuning	
•  Fortran	frontend	

Potential	longer	term	
(But	need	to	start	now)	
Collaborate	on	MLIR	
•  Higher	level	of	abstraction	
•  Composability	of	different	
views	(parallelism?)	

•  Built-in	polyhedral	
transformations	and	code	
generation	

•  Multiple	backends	via	
LLVM	

•  Missing	frontends	
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