
Approved for public release

Compiler Technology and Autotuning
in the Exascale Computing Project

Mary Hall

University of Utah

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S.
Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a
capable exascale ecosystem, including software, applications, and hardware technology, to support the nation’s
exascale computing imperative.

2

Learn More

•  Exascale Computing Project:
–  https://exascaleproject.org/about/

•  MLIR for High Performance Computing
–  https://www.cs.utah.edu/mlir4hpc/

3

What is the Exascale Computing Project (ECP)?

ECP is an accelerated research and development project
funded by the US Department of Energy (DOE) to ensure
all necessary pieces are in place to deliver the nation’s
first, capable, exascale ecosystem, including mission
critical applications, an integrated software stack, and
advanced computer system engineering and hardware
components.

4

What is a “capable” exascale computing ecosystem?

Exascale means real capability improvement in the science we can do, and how fast we can do it

At least two diverse system architectures
Delivers 50x the performance of today’s 20 petaflop systems and
5x the performance of Summit, Oak Ridge National Laboratory’s
supercomputer— i.e., allows at least a quintillion floating point
operations per second
Functions with sufficient resiliency: an average fault rate
of ≤1 per week

Includes a software stack that meets the needs of a broad
spectrum of applications and workloads

Supports a wide range of applications that deliver high-fidelity
solutions in less time to problems of greater complexity

Hardware

Software

Applications

5

Programming
models and

runtimes

Development
tools

Mathematical
libraries

Data and
visualization

Software
ecosystem and

delivery

Software Technology
Develop the exascale software stack and deliver using Software Development Kits (SDKs)

Project
Management

Application
Development

Software
Technology

Hardware
and integration

ST Elements
•  55 WBS L4 subprojects executing RD&D
•  ST efforts currently contribute to 89 unique products

Challenges: Qualitative changes; Massive concurrency; Multi-
scale, multi-physics, data-driven science; Ecosystem integration

2

PROTEAS-TUNE Project Overview

Challenges

• Performance portability is a
critical challenge for sustainable
HPC software

• Heterogeneous and manycore
processors (GPUs, FPGAs,
Manycore),

• Deep memory hierarchies incl
nonvolatile memory systems
(NVM);

• Consistent with recent
expectations for FRONTIER,
AURORA

– But don’t specialize

Solutions

• Programming systems
– OpenACC, CUDA, OpenCL,

OpenMP, SYCL
– Optimization techniques and

algorithms
– Autotuning

• Open LLVM Compiler
– OpenACC support, parallel IR,

loop transformations
– Contributions to upstream LLVM

• Portable, scalable performance
analysis via TAU Performance
System and its integration

• Strategies for algorithm design for
new architectures: bricks

• Scalable approaches to using NVM,
such as embedded KV stores
(papyrus)

Impact

• Engage with ECP applications
and software teams

– Multiple engagements with
AD and ST teams

• Engage with broader community
– OpenACC Forum
– OpenMP Forum
– LLVM development

community
– Tutorials, Dev Meetings, etc

• Substantive connections with all
vendors (even non-ECP vendors)

– IBM, AMD, Intel, NVIDIA, Cray,
etc

PROTEAS-TUNE is not a one product
project; it has multiple technical thrusts.

3

• Oak Ridge National Laboratory
– Jeffrey S Vetter (PI), Joel Denny, Jungwon

Kim, Seyong Lee, Dick Glassbrook (PM)

• University of Oregon
– Allen Malony (Co-PI), Sameer Shende,
– Kevin Huck, Camille Coti

• Los Alamos National Laboratory
– Kei Davis (Co-PI), David Ringo

• Argonne National Laboratory
– Hal Finkel (Co-PI), Prasanna Balaprakash, Johannes

Doerfert, Michael Kruse

• University of Utah
– Mary Hall (Co-PI)

• Lawrence Berkeley National Laboratory
– Sam Williams (Co-PI), Hans Johansen

Project Team

•FY20 officially begins the merged project: PROTEAS + Y-TUNE -> PROTEAS-TUNE
•Operating as a combined team since March 2019 including AHM at Utah

https://confluence.exascaleproject.org/display/%7Evetter@ornl.gov
https://confluence.exascaleproject.org/display/%7Edennyje@ornl.gov
https://confluence.exascaleproject.org/display/%7Ekimj@ornl.gov
https://confluence.exascaleproject.org/display/%7Elees2@ornl.gov
https://confluence.exascaleproject.org/display/%7Emalony@cs.uoregon.edu
https://confluence.exascaleproject.org/display/%7Esameer@cs.uoregon.edu
https://confluence.exascaleproject.org/display/%7Ekhuck@cs.uoregon.edu
https://confluence.exascaleproject.org/display/%7Ekei@lanl.gov
https://confluence.exascaleproject.org/display/%7Ehfinkel@anl.gov

15 Exascale Computing Project

Y-TUNE Toolkit: Distinguishing Features
CHiLL: Transformation & Code Generation
– Transformation recipes explicitly describe mapping of

computation, expose parameters and code variants
– Optional decision algorithm generates recipes

Compiler transformation & code generation
Brick data layout for stencils

Autotuning Search (ytopt)
Pragma autotuner

Technology transfer to Clang/LLVM

Y-Tune Toolkit

Primary goal:
Single source performance portability for

ECP codes using autotuningBrick Data Layout for Stencils
- Fine-grain data blocking and cross-architecture code generation reduces data

movement through hierarchical memory systems
- Architecture-specific code gen. makes bricks performance portable to CPU & GPU
Autotuning Search
- Search using Random Forests (SuRF) iteratively refines model in promising input

region by obtaining new measurements at unevaluated input configurations
Pragma Autotuner
- Vary pragmas for compiler to investigate alternative implementations
Technology Transfer to Clang/LLVM (and MLIR)
- Integrate transformation recipes into Clang/LLVM/Polly via transformation pragmas

CHiLL released and integrated into Spack
Focus in Phase 2 shifted to LLVM and MLIR with CHiLL
as prototype

16

YTOPT/SURF: AUTOTUNING SEARCH

– Framework:
• Initialization phase

– Random or Latin hypercube sampling

• Iterative phase
– Fit model
– Sample using the model

16

Example Surrogate Model Fitted to Sampled
Performance

(iterative refinement improves the learning model)

https://github.com/ytopt-team/ytopt

Bayesian optimization idea for sampling new point

https://github.com/ytopt-team/ytopt

17 Exascale Computing Project

SuRF obtained speedups comparable to domain-expert/manual tuning

Y-TUNE Self Assessment: Clients and Users
Initial Results on SuperLU and QMCPACK

Autotuning advantages:
(1) Performance/portability; (2) Productivity; (3) Maintainability

18 Exascale Computing Project

Pragma Autotuner
• Search Using Random Forest (SuRF) for autotuning search (may

not involve compiler)

Clang

LLVM

Polly

OpenMP

Polyhedral compiler in LLVM

Pragma
Autotuner

(using SuRF)

#pragma …

pragma metadata

/* Polly example */
#pragma clang loop unroll(4)
for (int i = 0; i < n; i+=1) Statement(i);

/* OpenMP example */
#pragma omp parallel loop
for (int i = 0; i < n; i+=1) Statement(i);

/* OpenMP example */
#pragma omp target distribute simd
for (int i = 0; i < n; i+=1) Statement(i);

A Framework for OpenMP Autotuning, V. Sreenivasan, R. Javali,
M. Hall, T. Scogland, B. de Supinski, IWOMP’19.

19 Exascale Computing Project

Brick Data Layout, Applied to High-Order Stencils

• Data layout reduces data movement
– Brick: 4x4x4 subdomain w/o a ghost zone
– Uses contiguous storage and adjacency lists

• Achieves performance portability
– Automation of architecture-specific “vector” code

generation
– Dramatically reduces vertical (register/cache/TLB) and

horizontal (MPI) data movement
– Adjustable brick size and indirection adapts to

architecture limits
– Indirection eliminates message packing and reduces

communication overhead

with Tuowen Zhao (Utah), Sam Williams, Hans Johansen (LBNL), To appear SC’19

Organizing	Committee:	
Uday	Bondhugula,	Indian	Institute	of	Science		
Albert	Cohen,	Google	
Tobias	Grosser,	ETH		
Mary	Hall,	University	of	Utah	
Santosh	Pande,	Georgia	Tech	
P.	Sadayappan,	University	of	Utah	
Vivek	Sarkar,	Georgia	Tech	
Michelle	Strout,	University	of	Arizona		
Reid	Tatge,	Google		

Current	State	of	HPC	Compilers	
Proprietary	
•  Robust	
•  High-quality	
implementations	for	
supported	architectures	

•  Support	HPC	
community	

•  Code	not	performance	
portable	across	systems	

•  Often	conservative	

Open	Source	
•  Research	compilers	
-  State-of-the-art		
-  Experimental,	

untrusted	
-  Difficult	to	track	

language	changes	
-  Gaps,	such	as	Fortran	

frontend	
•  LLVM	and	gcc	
-  Gaps	in	HPC	support	
-  Conservative	

Current	State	of	HPC	Compilers,	cont.		

Challenges:		
•  HPC	market	not	large	enough	to	drive	significant	
change	to	open	source	or	even	proprietary	
compilers	

•  Meanwhile,	research	systems	not	sufficiently	
robust	for	production	codes	

Impact:		
•  Productivity	improvements	for	HPC	not	being	
exploited	

•  Heterogeneity	will	make	this	a	bigger	concern	

	for	(n=0;	n<N;	n++)	{	//	minibatch	size							
			for	(k=0;	k<K;	k	++)	{	//	output	feature	map									
					for	(c=0;	c<C;	c	++)	{	//	input	feature	map																
							for	(p=0;	p<P;	p	++)	{	//	output	height													
									ij	=	p	*	u;	//	input	height													
									for	(q	=0;	q<Q;	q	++)	{	//	output	width															
											ii	=	q	*	v;	//	input	width															
											for	(r=0;	r<R;	r	++)	{	//	filter	height																	
													for	(s	=0;	s<	S;	s	++)	{//	filter	width																									
															output_seq[n][k][p][q]	+=		
																							input	[n][c][ij+r][ii+s]	*	weight[k][c][r][s];													
}	}	}	}	}	}	}	

4	

Convolutional	Neural	Network	
Forward	Layer	Code	(in	C)	

Goal:	HPC	Support	in	Open	Source	
Compilers	

Short-term		

(ECP	time	frame)		
Extend	LLVM	
•  Parallel	IR	
•  Loop	transformations	
•  OpenMP/OpenACC	
•  Autotuning	
•  Fortran	frontend	

Potential	longer	term	
(But	need	to	start	now)	
Collaborate	on	MLIR	
•  Higher	level	of	abstraction	
•  Composability	of	different	
views	(parallelism?)	

•  Built-in	polyhedral	
transformations	and	code	
generation	

•  Multiple	backends	via	
LLVM	

•  Missing	frontends	

	September 2019 ECP ST Project Review�ECP Project FY20 WBS 2.3.2.10 PROTEAS-TUNE
	PROTEAS-TUNE Project Overview
	Project Team
	Project Thrusts (As defined for FY20)
	Deployment
	T2 - LLVM
	LLVM and the Exascale Ecosystem
	Loop Optimization Infrastructure and Capabilities
	Parallelism and Inter-Procedural Analysis
	Just-in-Time Compilation (in C++)
	T1 - CLACC
	T1 - Clacc: Overview
	T1 - Clacc: Exascale Platform Integration
	T3, T4 - Performance Portability and Autotuning
	Y-TUNE Toolkit: Distinguishing Features
	YTOPT/SURF: AUTOTUNING SEARCH
	Slide Number 17
	Pragma Autotuner
	Brick Data Layout, Applied to High-Order Stencils
	T5 – Performance Analysis
	ECP Performance Analysis with TAU Performance System
	TAU Integration with ECP Applications and Runtime Systems
	Client integration efforts
	Overall strategy to client engagement and integration
	Organizing Upcoming Workshop with Google
	YTUNE+AMReX Collaboration
	Autotuners: Easy-to-Use Common Interface in Python (with XSDK4ECP)
	Engagement: CODAR, ADIOS Interaction Update
	AMRex performance analysis with TAU
	CANDLE benchmarks performance analysis with TAU
	Integration Challenges
	Dev Tools Specific Questions
	Perlmutter, Aurora, and Frontier represent very different node architecture and software environments. As appropriate, how is your project preparing for this challenge, including performance portability, creating abstraction layers, etc.?�
	Bonus
	Software
	Delivering capabilities to stakeholders
	PapyrusKV: A High-Performance Parallel Key-Value Store for Distributed NVM Architectures
	T1 - Clacc: PHIRE integration
	AMRex: optimization work in progress
	Recent Publications (2018)

