COMPUTATIONAL AND DATA-INTENSIVE
(CDI) RESEARCH
-BEST PRACTICES

Sunita Chandrasekaran
Assistant Professor, University of Delaware
Dept. of Computer & Information Sciences

~ schandra@udel.edu

,I'

—\
> [ OAK RIDGE [t E\(\C\} [< | Nemours.

NVIDIA National L.aboratory | FACILITY

Xpert Network, July 15, 2021


mailto:schandra@udel.edu

BEST PRACTICES - 7 OF
MANY!

- Best Practice #1 Profiling

- Best Practice #2: Systematic Testing
- Best Practice #3: Report bugs

- Best Practice #4: Automate

- Best Practice #5: Document

- Best Practice #6: Pair Programming

- Best Practice #7: Open Source but...

2




BEST PRACTICE #1:

PROFILING




ACCELERATING A BIOPHYSICS PROBLEM ON
GPUS
(in collaboration with Prof. Juan R. Perilla, UD)

® Nuclear Magnetic Resonance (NMR) is a
vital tool in structural biology and
biochemistry

® NMR spectroscopy measures chemical shifts

® Predicting chemical shift has important uses
in scientific areas such as drug discovery

Our goal:
® Accelerate the prediction of chemical shift

® To enable execution of multiple chemical
shift predictions repeatedly

® To allow chemical shift predictions for
larger scale structures




SERIAL PROFILE VISUAL

Serial code profiling
NVProf

Obtained large overview
without needing to read
thousands of lines of
code

Identified hotspots
within the code getselect Other Contains:
2 undergrads - 1 year s

project Initialization

getcontact




OPENACC-GPU PERFORMANCE
RESULTS

100K 1.5M 6.8M 11.3M
5M atoms
atoms atoms atoms atoms

14 hours
(estimate)

Serial

(Unoptimized) 167.11s 572.01s  3547.07s 7 hours

(Opstflfleed) 53.57S 196.12s 2003.6s 1510.71S 2614.4S

Multicore 4.67s 32.82s 116.66s 153.8s 146.06s
NVIDIA P40 3.47S 17.15S 56.2s 78.57S 72.55S
NVIDIA Vioo  3.11S 13.62s 39.79S 49.63s

g

PLOS Computational Biology journal:
https://journals.plos.org/ploscompbiol/article?i
d=10.1371/journal.pcbi.1007877



https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1.full.pdf

BEST PRACTICE #2:

SYSTEMATIC TESTING




PREPARE MURAM
( AX PLANCK NIVERSITY OF CHICAGO
DIATIVE ' HD)
FOR NEXT-GENERATION SYSTEMS

. LOC: 30-40K Lines of Code

- Team: 4 Computer Scientists and 2 Solar
physicists

- Tools used: Valgrind, GDB, Python
notebooks, PCAST (an NVIDIA/PGI

validation tOOD Comprehensive model of entire life cycle of a solar

- Test bed: 3 different CPU-GPU compilers
and 2 different platforms (NCAR &
MaxPlank)

. Version Control: GitLa
The Daniel K. Inouye Solar Telescope (DKIST), a ~$300M NSF

. investment, is expected to advance the resolution of ground based
- TinNCAR :nt: 8 mon‘(ﬂgs and th Sé:)fl}gl K was

) 9 Phygics by an order of magnitude.
2 QRticking!!1

servationa




ERROR IN DENSITY
CALCULATION

Difference in density between reference and the test runs




LESSONS LEARNT

- Work in small steps: Make incremental changes
- Testing: AFTER every commit BEFORE optimizing/scaling

- DOCUMENT!!! PLEASE :-)

- Test bed: 3 diff. compilers, more than 2 hardware setup, more
than 2 versions of a compiler (perhaps?)

- Optimization: ONLY after a thorough verification of the serial
or the base version. VERIFY again

- Verification: Build Jupyter notebooks to capture and record
divergence of results between serial/multi-core CPU and GPU

10




YOOHOO - PASC
PUBLICATION!

© sunita Chandrasekaran @sunitachandra29 - Dec 14, 2020

So proud of my project team!%=,
Paper submitted &

3yrs ¢

4 talks

1 PhD prelims 2%

1 MASSIVE bug took 10 months to fix &=
RIGOROUS testing®®

Jupyter npbs

GitHub

MANY intense { w/ scientists
#InterdisciplinaryScience

The JOY u get doing spell check 4 hrs b4 the deadline!==




BEST PRACTICE #3:

REPORT BUGS




CAAR-ORNL-PICONGPU
PROJECT

. Preparing PIConGPU, a plasma Physics application
for the upcoming exascale system - Frontier

PACLEELG

¥ 04K RID

— ISAAC
‘,AMA O P|Con©i!)m|

SITYor G
YQUKRIDCE i € cnsus e%z%'ﬁih

CAAR Project in Collaboration w1th COE
Cray) developers




REPORT BUGS!

. Code Review: author of a PR cannot merge his/her own PR)
. Report bugs: help improve compilers
. Reproducible code: Useful to debug

. REPORT: Workarounds OK but "REPORT” bugs

. Report bugs via a ticket system (say Trac — wiki + issue tracker) and not
via email — PLEASE!

- The bug and its fix got to be recorded
- Documented
. Code changes to be tracked

Q) & q}cate with the developers dire SITYor

IAWARE

.



BEST PRACTICE #4:

DOCKER




COLLABORATIVE
SOFTWARE DEVELOPMENT

. Tools/Platforms such as Docker, Container, GitHub
. Dramatically reduces barrier to collaboration

. Google slides

Module 6 - Loop Optimizations with OpenACC

[labs/module6](Module 6) is the last “core” module. After Module 6, we expect students to be able to begin

parallelizing their own personal code with OpenACC with a good amount of confidence. The remaining

modules after this point are considered to be “advanced” modules, and are optional, and some may only be
NVIDIA.NGC CELERATED SOFTWARE applicable to specific audiences. Module 6 is all about loop clauses. This module is meant be very visual, so

OpenACC Training Materials

that students can get a good sense of exactly how each clause is affecting the execution of their loop.

Topics that will be covered are as follows:

Publisher Built By Latest Tag Modified * Seg/Auto clause

NVIDIA PGl Compile... 20.1.1 February 5, Independent clause
Reduction clause
Collapse clause

Tile clause

Gang Worker Vector

Description

These training materials have been developed as a collaboration between the University of

NVIDIA Corporation and are provided free of charge by OpenACC.org.
This medule touches on each of the loop clauses, show how they look within code, and give a visual

Labels representation of it. The gang/worker/vector will most likely be the lengthiest section in this module, just
because it is the most complex. Also, in the lab section of Module 6, we will make our final optimization to our
Laplace code by utilizing loop optimizations and gang/worker/vector.

Running the Docker container

The code labs have been written using Jupyter notebooks and a Dockerfile has been built to simplify
deployment. In order to serve the docker instance for a student, it is necessary to expose port 8000 from the
container, for instance, the following command would expose port 8000 inside the container as port 8000 on
the lab machine:

docker pull nvcr.io/hpc/openacc-training-materials:20.1.1

Overview T:]g‘% $ docker run --gpus all =it =--rm -p 8000:8000 nvcr.io/hpc/openacc-training-materials:20.1.1
NGC Version: 2

OpenACC Official Training Materials

These training materials have been developed as a collaboration between the University of Delaware and
NGC Version: 2.22.0 NVIDIA Corporation and are provided free of charge by OpenACC.org. Please see CONTRIBUTING mIi 6

Sunita Chandrasekaran




BEST PRACTICE #4:

AUTOMATE




BN IV SN L ) A & RN
VERIFICATION

ECP SOLLVE
OpenMP V&V

Uses vendor’s
compiler to support
Compller programming model

implementer

Uses specs as guide
for implementation

~Powmp

speCIflcatlons Ru n ning SYStem https://github.com/SOLLVE/sollve _vv

Uses specs as guide

Uses system as
for programming

; https://crpl.cis.udel.edu/ompvvsollve/
programming platform

OpenMP User
’7 U.S. DEPARTMENT OF Office of %O AK RIDGE E?KDREII?S?}—IIEIP — (
.4 ENERGY Science National Laboratory | COMPUTING FACILITY \

EEEEEEEEEEEEEEEEEEEEEEEE



https://github.com/SOLLVE/sollve_vv

ECP SOLLVE
OPENMP V&V

* Collaborative Environment
Integrated with issue tracker * Keep track of bugs and fixes
Pull request review system * Maintain code history

o gl Onestop shop forinfo
Publication, Presentations *

Coding standards * Templates - external
collaboration

19




BEST PRACTICE #5:

DOCUMENT (pretty pls! :-
))




DOCUMENTATION

Python notebooks jupyter

: Ju pyter 2D-Heat Last Checkpoint: 44 minutes ago {unsaved changes) ﬁ Logout | Gontrol Panel

mbed code as partof i oo
+ = @B B 4+ ¥ MHMRun B C B | Markdown

In [8]: | # To be sure we see some output from the compiler, we'll echo out "Compiled Successfullyl"

[ ]
#(1f the compile does not return an error)
ocumentation

pgec -03 heat.c -o heat 0

# Execute our single-thread CPU-only Jacobi Iteration to get timing information. Make sure you compiled successfully ir
# above cell first.

([ ] [ ]
rOb ab lllt Of a !./heat 0 1024 1024 20000 output.dat
Time for computing: 46.59 s
After each Sf@p, we will record the results from our benchmarking and correctness tests in a table like this one:

rogrammer updatin o et e s

the documentation o ot e

%%¥bash
pgprof -o serial.prof -—cpu-profiling-scope instruction ./heat_0 1024 1024 20000 cutput.dat
pgprof -i serial.prof

when the code changes

Time(%) Time Name
99.72% 13.09s runTest(int, char**)
99.72% 13.09s | main

(] [ ] ' 99.72% 13.098 | 727
IS lg [ i = BarbaOEGlobal2018.pdf | 2D-Heat.ipynb a  2018_SIAM_Huebl_J...pdf  +-+ | science.bib

Usetul for training and
education




BEST PRACTICE #6:

PAIR PROGRAMMING




HACKATHONS

Profile the code, understand
performance bottlenecks

Start with a smaller kernel
Use a simple system to
compile/execute the code for
starters

Identify a good starting point
Debugging - “when in doubt,
comment it out, re-test”
https://www.gpuhackathons.o

rg/

Chandrasekaran, Sunita, Guido Juckeland, Meifeng Lin, Matthew Otten, Dirk Pleiter, John

E. Stone, Juan Lucio-Vega, Michael Zingale, and Fernanda Foertter. "Best Practices in

Running Collaborative GPU Hackathons: Advancing Scientific Applications with a Sustained



BEST PRACTICE #7:

OPEN SOURCE BUT...




OPEN SOURCE IS GREAT
P

Not sustainable unless there is a community that will
help with the sustainability

Need help

. From sponsors, funding organizations, interested
vendors

. To ensure continuity of software maintenance

3,) CF{PPeyond the funded proj ect period



SUMMARY

- Best Practice #1 Profiling
- Best Practice #2: Systematic Testing |
- Best Practice #3: Report bugs
- Best Practice #4: Automate
- Best Practice #5: Document
- Best Practice #6: Pair Programming
Computational

- Best Practice #7: Open Source but... Research and

. Programming Lab




