
Flexible brain network reconfiguration supporting
inhibitory control
Jeffrey M. Spielberga,b,1, Gregory A. Millerc,d, Wendy Hellerd, and Marie T. Baniche

aNeuroimaging Research for Veterans Center, Veterans Affairs Boston Healthcare System, Boston, MA 02130; bDepartment of Psychiatry, Boston University
School of Medicine, Boston, MA 02130; cDepartments of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
90095; dDepartment of Psychology, University of Illinois at Urbana–Champaign, Champaign, IL 61820; and eInstitute of Cognitive Science, Departments of
Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO 80309

Edited by Danielle S. Bassett, University of Pennsylvania, Philadelphia, PA, and accepted by the Editorial Board June 30, 2015 (received for review January
2, 2015)

The ability to inhibit distracting stimuli from interfering with goal-
directed behavior is crucial for success in most spheres of life. Despite
an abundance of studies examining regional brain activation, knowl-
edge of the brain networks involved in inhibitory control remains
quite limited. To address this critical gap, we applied graph theory
tools to functional magnetic resonance imaging data collectedwhile a
large sample of adults (n = 101) performed a color-word Stroop task.
Higher demand for inhibitory control was associated with restructur-
ing of the global network into a configuration that was more opti-
mized for specialized processing (functional segregation), more ef-
ficient at communicating the output of such processing across the
network (functional integration), and more resilient to potential in-
terruption (resilience). In addition, there were regional changes with
right inferior frontal sulcus and right anterior insula occupying more
central positions as network hubs, and dorsal anterior cingulate cor-
tex becoming more tightly coupled with its regional subnetwork.
Given the crucial role of inhibitory control in goal-directed behavior,
present findings identifying functional network organization support-
ing inhibitory control have the potential to provide additional insights
into how inhibitory control may break down in a wide variety of
individuals with neurological or psychiatric difficulties.
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The ability to exert cognitive control to inhibit distracting
stimuli from interfering with goal-directed behavior is crucial

for success in most spheres of life, including academic, occupa-
tional, health, and general well-being (1). However, such control is
impaired under certain conditions in both psychologically/neuro-
logically typical individuals [e.g., overeating during stressful periods
(2)] and those with pathological conditions [e.g., addiction (3)].
Consequently, understanding the neural circuitry supporting in-
hibitory aspects of cognitive control has the potential to provide
key insights into a wide array of difficulties, ranging from common
activities of daily life to psychiatric disorders.
Substantial uncertainty remains regarding the neurobiology

supporting inhibitory aspects of cognitive control (4), with the
majority of recent research focusing on which particular regions
of prefrontal cortex (PFC) are important for which specific as-
pects of inhibitory control. A large body of research has identified
a set of brain regions that appear generally crucial for inhibitory
control. For example, consistent activation was identified in sev-
eral critical regions in a recent meta-analysis of studies using the
color-word Stroop (5), which is a classic cognitive control probe
(6) and which we use in the present study. This task indexes in-
hibitory control, because an individual must maintain a task set in
the face of irrelevant, but prepotent, information that must be
inhibited. The meta-analysis revealed a number of regions, in-
cluding dorsal anterior cingulate cortex (dACC), lateral PFC
(e.g., BA 9/44/45/46), insula, and lateral parietal cortex (e.g., BA
39/40). A similar set of regions has been identified in a meta-
analysis of studies using the Go/NoGo task (7) and a meta-
analysis across a range of inhibitory control tasks (8).

Furthermore, recent evidence suggests that PFC connectivity
[e.g., assessed by integrity of white matter connections to PFC
(9)] is crucial for successful inhibitory control. Indeed, most
models of the brain networks supporting inhibitory control as-
sume that regions of PFC exert control by modulating activity
in more distant and often posterior regions (e.g., refs. 10–12).
Furthermore, some (e.g., refs. 13–15) have argued that modu-
latory processes between key PFC regions (e.g., dorsolateral
PFC, dACC) are critical for inhibitory control. Despite this large
body of theoretical and empirical work, there remains a dearth of
research as to how such modulatory processes are instantiated in
functional brain networks. Although a small set of studies has
examined connectivity patterns associated with inhibitory con-
trol, no study to date has elucidated the manner in which brain
networks may functionally reconfigure to support such control.
To adapt to new control demands, it is necessary to up-regulate
brain networks needed to meet the demands of the current en-
vironment and down-regulate networks that may hinder meeting
these demands. Hence, dynamic shifts should occur in overall
functional network organization in response to contextual change,
but the nature of these shifts remains unknown. For example,
brain networks might shift into a configuration with more effi-
cient intercommunication between functionally diverse regions,
or particular regions might take on a more prominent role.
Given that networks are a fundamental unit of brain organization
(16, 17), an in-depth characterization of network reconfiguration is
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a crucial step in building a comprehensive understanding of the
neural circuitry supporting inhibitory control.
Extant studies of connectivity in inhibitory control can be

grouped into two sets with regard to the methodology used. In all
cases, there is a comparison between conditions that differ with
respect to the level of inhibitory control required (e.g., when
conflicting information is presented vs. when all information is
consistent). The first set of studies used independent components
analysis (ICA) or similar techniques (18–20). In these studies, sets
of voxels with similar time courses were identified, reducing the
multivariate dataset into “components.” Next, the mean time
course of each component was correlated with task condition or
the difference between conditions to determine how strongly that
component tracked the task. This technique is useful, because the
identification of the network of regions engaged in the task is
relatively unconstrained. However, because this approach iden-
tifies “networks” as a whole, it cannot shed light on whether a
particular connection between two nodes (i.e., brain regions)
varies with inhibitory control demand. Rather, inferences can be
made only about the mean time course of all regions in a given
component. Furthermore, the studies discussed above did not test
whether connection strength differed by condition, which is
necessary to infer that the connection itself is recruited to meet
inhibitory control demand. Even had they done so, the validity of
such approaches has been questioned (21). In summary, the
methods used in these studies could indicate only that a particular
component is (de)activating concurrently with the task.
The second set of studies used psychophysiological interaction

(PPI) analysis (22–28). In these studies, one to three “seed” regions
were chosen a priori, and clusters of voxels elsewhere were identi-
fied in which the correlation between the time courses of the seed
and cluster differed significantly by condition. This approach has
advantages over ICA-related methods, because (i) it directly tests
whether connection strength itself depends on task condition; and
(ii) each connection is tested separately. However, PPI is strictly
constrained by the choice of a priori seed regions (i.e., only con-
nectivity with seed clusters is examined). Thus, important connec-
tions can be missed, and this oversight is particularly likely to occur
when only a small number of seed clusters are examined, as is the
case in the existing studies of inhibitory control networks.
Of greatest importance is that neither approach provides insight

into whether engaging inhibitory control is associated with dynamic
restructuring in the functional organization of the network. Thus, a
comprehensive understanding of the particular network connections
crucial for inhibitory control, and the manner in which networks
reorganize to support such control, remains unknown. Addressing
this issue is the focus of the present study.
Recent methodological advances—in particular, graph theory

(29)—allow for analysis of brain networks at a level of complexity
not possible in previous work, including characterization of network
functional organization. Graph theory can identify clusters of net-
work connections in which the strength of each connection varies
with the demand for inhibitory control, and this identification is ac-
complished without selecting a specific subset of seed regions a priori.
In addition, graph theory can test whether inhibitory control de-
mands lead to shifts in key topological properties (indices of network
organization) of the global network, subnetworks, and the function of
nodes within local and global networks (29). Categories of topolog-
ical properties include: functional segregation, how optimized the
network is for specialized processing; functional integration, how well
the network can combine specialized information across distributed
regions; centrality, how well a particular node facilitates network in-
tercommunication; and resilience, the vulnerability of the network to
disruption (29). Thus, examining graph theory properties under
varying levels of inhibitory control can help to delineate the manner
in which brain networks reorganize to exert inhibitory control.
To address these critical gaps, we applied graph theory to func-

tional magnetic resonance imaging (fMRI) data collected while a

large sample of adults (n = 101) performed the color-word Stroop.
We first identified clusters of interregional coupling in which
connection strength differed with inhibitory control demand (e.g.,
incongruent vs. congruent task condition). Next, we computed
graph-theory properties for both the global network and key
network hubs. We then tested whether graph properties differed
with inhibitory control demand. To elucidate the behavioral im-
pact of network shifts, significant network measures were corre-
lated with performance [reaction time (RT) and errors].
Based on evidence that PFC is critical for top-down control, we

hypothesized that PFC regions would emerge as prominent within
both global and local networks. In particular, we predicted that
lateral PFC regions (e.g., BA 9/46) would show increased connec-
tivity with dACC and lateral parietal cortex when demand for in-
hibitory control was greater, based on prior work by our group
suggesting such relationships (30). In addition, computational
models suggest that a critical component of inhibitory control is up-
regulating the strength of the desired response [vs. solely inhibiting
processing related to inappropriate responses (31)]. This up-
regulation may occur when global network communication becomes
more efficient, increasing the influence of PFC control regions over
more distal motor regions. Thus, we also predicted that inhibitory
control would be associated with restructuring in the global network
into a configuration characterized by more efficient communication
(functional integration).

Results
Inhibitory Control-Related Network Connections. The Network
Based Statistic (NBS) toolbox (32) was used to identify specific
network connections that varied with demand for inhibitory
control. Higher demand for inhibitory control (incongruent >
congruent) was associated with stronger coupling in a network
(11 nodes, 10 links; corrected P < 0.001) centered on medial
dACC, right inferior frontal sulcus (IFS; BA46), and right
anterior insula (AI). As shown in Fig. 1, more than half of the
nodes in the network were prefrontal. Fig. 2 shows connection
strengths for the relevant links by condition. See SI Results for
analyses of incongruent vs. neutral.

Inhibitory Control-Related Graph Theory Properties. The Graph
Theoretic GLM (GTG) toolbox (33) was used to identify
properties that varied with inhibitory control demands. Local
efficiency and transitivity indexed functional segregation; global
efficiency indexed functional integration; node strength, partici-
pation coefficient, and within-module degree Z-score indexed
distinct aspects of centrality; and assortativity and local assorta-
tivity indexed resilience. Three measures reflect a property of the
global network (i.e., including all nodes in the brain): assortativity,
the extent to which highly connected nodes are linked to other
highly connected nodes; global efficiency, the efficiency of global
network communication (i.e., the extent to which nodes are con-
nected to each other through the fewest possible number of
nodes); and transitivity, the amount of clustering present in the
network (i.e., the extent to which neighbors of a node also connect
to each other). Condition-related differences in global properties
reflect overall network restructuring. Five measures reflect a
property of an individual node: local efficiency, the efficiency of
communication in the local subnetwork (nodes connected to that
specific node); node strength, the overall influence of a node on the
network; local assortativity, the extent to which a node is connected
to nodes with a similar influence on the network (i.e., whether a
node is highly connected to nodes with similar vs. stronger or
weaker node strength); participation coefficient, the extent to which
a node is connected to nodes in different modules; and within-
module degree Z-score, the extent to which a node is connected to
other nodes within its own module. Modules are sets of nodes
having more within- than between-module coupling. Node-specific
properties were examined only for dACC, right IFS, and right AI,
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because these nodes exhibited greater than or equal to three con-
nections that differed significantly across task condition in the NBS
analysis. Multiple-comparison-corrected P values are in brackets.
Higher demand for inhibitory control was associated with

increases in all network-wide properties: transitivity (P = 0.002
[0.015]), global efficiency (P = 0.003 [0.024]), and assortativity
(P < 0.001 [0.002]). Higher transitivity is often associated with
greater functional specialization, whereas greater global effi-
ciency indicates more efficient overall network communication,
and higher assortativity suggests that the network is more resilient
to disruption (34, 35).
For all regions of interest (ROIs) examined, higher demand for

inhibitory control was related to increases in node strength (dACC,
P < 0.001 [<0.001]; right IFS, P < 0.001 [0.004]; right AI, P < 0.001
[<0.001]) and local efficiency (dACC, P < 0.001 [<0.001]; right IFS,
P < 0.001 [0.011]; right AI, P < 0.001 [<0.001]). Thus, each node
had a greater overall impact on network processing when the en-
vironment required stronger inhibitory control (node strength), and,
at the same time, the network of connections surrounding each
node also became more tightly clustered together (local efficiency).
Higher demand for inhibitory control was also linked to higher

participation coefficient for right IFS (P = 0.004 [0.034]) and right
AI (P = 0.003 [0.008]) (dACC, P > 0.9). This finding suggests that
engagement of inhibitory control leads these nodes to connect
with a greater diversity of functional modules, which may reflect a
stronger influence on more diverse types of processes. Higher
demand for inhibitory control was associated with stronger within-
module degree Z-score for only medial dACC (P < 0.001
[<0.001]) (IFS and AI, P > 0.9). This finding indicates that dACC
became more tightly interconnected with nodes in the same
module when stronger inhibitory control was needed, suggesting
that dACC had a greater influence on the specific processes oc-
curring within this module. Finally, higher demand for inhibitory
control was associated with stronger local assortativity for only
right AI (P = 0.002 [0.009]) (IFS and AI, P > 0.8). Given the
concurrent increase in node strength, this result suggests that
greater demand for inhibitory control led right AI to become more
tightly coupled with other high-influence nodes and relatively less
coupled with low-influence regions. See SI Results for similar
analyses for incongruent vs. neutral.

Relationship with Individual Differences in Behavior. Several net-
work parameters correlated positively with (incongruent vs.
congruent) RT: mean NBS network connection strength (r =
0.214, P = 0.039), global efficiency (r = 0.243, P = 0.019), and
transitivity (r = 0.235, P = 0.023). Similarly, several network
parameters correlated with incongruent vs. congruent error rate:
mean NBS network connection strength (r = 0.212, P = 0.041),
global efficiency (r = 0.223, P = 0.032), transitivity (r = 0.216, P =
0.037), right IFS node strength (r = 0.234, P = 0.024), right AI
node strength (r = 0.221, P = 0.033), and right IFS local effi-
ciency (r = 0.228, P = 0.028). See SI Results for analyses using
drift diffusion model parameters.

Regional Task Activation. To provide a context for network anal-
yses, we also ran a typical general linear model (GLM) analysis
to determine which regions showed greater regional task acti-
vation (Supporting Information). Details regarding overlap and
relationships with behavior are in SI Results. Briefly, increased
activation was found for incongruent > congruent in regions that
also emerged in network analyses (e.g., dACC) and regions that
did not (e.g., thalamus).

Discussion
The goal of the present study was to identify and better un-
derstand the manner in which functional brain networks adapt to
support the ability to inhibit distracting stimuli from interfering
with goal-directed behavior. Using graph theory to analyze data
from a color-word Stroop task, we provide a novel character-
ization of the manner in which brain networks functionally
restructure to support inhibitory control. First, we identified a
network of nodes that exhibited greater interconnectivity during
periods of higher demand for inhibitory control (Figs. 1 and 2).
Prefrontal regions dominated this network, with medial dACC,

Fig. 1. Network exhibiting greater coupling when demand for inhibitory
control is high compared with low. (A) Sphere color represents module
membership; sphere size reflects node strength (across incongruent and
congruent). Upper is a 3D axial view from above the brain; Lower is a 3D
coronal view from anterior to the brain (to maintain the right side of the
brain on the right side of the image for both views, posterior is positioned
on top for the axial view). Sphere placement reflects the center of mass node
location. (B) Circle color represents module membership; circle size reflects
node strength. This representation was created via Kamada– Kawai spring
embedder algorithm. Only links (and corresponding nodes) identified in NBS
analyses are shown above. IFG, inferior frontal gyrus; L, left; M, medial; MFG,
middle frontal gyrus; MTG, middle temporal gyrus; R, right; SFG, superior
frontal gyrus; STG, superior temporal gyrus.

Fig. 2. Connection strength of the inhibition-related network by condition.
Circle segment color reflects module, and connection width reflects con-
nection strength. Upper corresponds to incongruent condition; Lower cor-
responds to congruent. Only links (and corresponding nodes) identified in
NBS analyses are shown above. IFG, inferior frontal gyrus; L, left; M, medial;
MFG, middle frontal gyrus; MTG, middle temporal gyrus; R, right; SFG, su-
perior frontal gyrus; STG, superior temporal gyrus.
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right IFS, and right AI occupying central positions as network hubs
(regions essential for network interconnectivity). In addition, we
identified several ways in which global network organization shifted
to meet demand for inhibitory control (i.e., increased transitivity,
global efficiency, and assortativity). Observed network shifts signif-
icantly predicted behavior (RT/accuracy), underscoring the func-
tional importance of network restructuring.

Reorganization in the Global Network. A number of network met-
rics indicated that the global network (i.e., including all 114
nodes, not limited to nodes found in NBS analyses) exhibited
significant restructuring when demand for inhibitory control was
higher (i.e., network connectivity shifted into a configuration with
different topological features). First, increased assortativity was
observed, which indicates that nodes with high levels of connectivity
(i.e., influence) tend to be coupled with other highly connected
nodes, and nodes with little influence tend to be coupled with
similarly low-influence nodes. This pattern is commonly observed in
networks that are resilient to disruption (e.g., removal of nodes),
because the core of highly influential nodes provides redundancy
(35). Second, increases in global efficiency were observed, which
indicates that the overall efficiency of communication (i.e., func-
tional integration) was greater during periods of higher demand for
inhibitory control. Thus, increased inhibitory control was linked to a
pattern often observed in networks able to optimally integrate their
processing. At the same time, we observed increased transitivity.
Transitivity reflects the extent to which nodes form tightly clustered
groupings (i.e., functional segregation), and higher transitivity is
often associated with greater functional specialization (34). To-
gether, increased global efficiency and transitivity indicate that in-
creased inhibitory control is associated with a global network that
allows the products of different types of specialized processing to be
integrated (29). The combination of both high segregation and
integration is found in diverse types of networks (e.g., social, power
grids) and has been termed a “small world” organization (36). A
small world is thought to be an optimal configuration, because
networks of this type tend to show greater computational power,
low wiring cost, efficient parallel processing, and rapid adaptive
reconfiguration (36).
Examination of individual differences in behavior revealed that

inhibition-related increases in both transitivity and global efficiency
were related to longer RT and more errors. One potential in-
terpretation of these findings is that, counterintuitively, greater
transitivity and global efficiency are in fact detrimental to perfor-
mance. Alternatively, it is also possible that greater clustering and
more efficient communication in the global network are critical for
inhibitory control, and those individuals for whom the task is more
difficult must engage these network shifts to a greater extent.
Although far from definitive, two pieces of evidence are in favor

of the second interpretation. First, transitivity and global efficiency
were higher in the incongruent condition across all participants,
indicating that these forms of network restructuring occur generally
in response to greater demand for inhibitory control. It would be
counterproductive for this reorganization to occur if higher transi-
tivity and global efficiency were in fact detrimental. Second, in-
dividuals who had greater activation (observed in the regional task
analyses) in bilateral dorsolateral PFC (dlPFC) also produced more
errors under the high-demand condition. Although this finding
could be similarly interpreted as dlPFC activation being detrimental
to inhibitory control, we know from past lesion work (37) that
dlPFC is crucial for such control.
In summary, measures of global network organization suggest

that greater demand for inhibitory control is associated with net-
work restructuring into a more efficient and resilient configura-
tion. These findings provide novel insights into the neural circuitry
supporting inhibitory control, because, to our knowledge, this work
is the first study to (i) show that shifts in the global network are

crucial for such control; and (ii) characterize the particular patterns
of global network restructuring that occur.

Putative Inhibitory Control Network Hubs.Medial dACC, right IFS,
and right AI appear to serve as key network hubs, as evidenced
by the large number of differential links associated with each
node and the observed increases in node strength and local
efficiency when inhibitory demand was greater. Higher node
strength indicates that these nodes had a greater influence on
general network processing (i.e., not limited to the specific
subnetwork observed in the NBS analyses). Greater local effi-
ciency indicates that the nodes connected to these putative hubs
also became more tightly clustered together (i.e., interconnected
with each other). Thus, higher demand for inhibitory control
appears to lead to increased efficiency in the subnetworks sur-
rounding these hubs, which may reflect greater specialized pro-
cessing within these subnetworks. Although past research and
theory would predict greater node strength (i.e., that these re-
gions become more influential on the network), the concurrent
increase in local efficiency is a novel finding. Specifically, this
finding indicates that reorganization of connectivity patterns
around these key hubs is crucial for inhibitory control, beyond
connectivity with the hubs themselves.
Unlike node strength and local efficiency, only dACC evi-

denced greater within-module degree Z-score when stronger
inhibitory control was required. This finding indicates that dACC
became more tightly interconnected with nodes in the same
module, which is consistent with evidence suggesting that dACC
plays a prominent role in determining whether an error has been
made and subsequent engagement of lateral PFC regions (part
of the same module) to exert stronger top-down control (13, 30,
38). Present findings are also in line with the cascade of control
model, in which dACC plays a role in late-stage aspects of
control (control not previously imposed by lateral PFC) (13, 30).
The role of right IFS [encompassing parts of nearby inferior

frontal gyrus (IFG)/middle frontal gyrus (MFG)] as a hub in the
identified network is consistent with proposals that right IFG
serves as a context-general “brake” (39). For example, lesions to
right IFG impair inhibitory control, as does transcranial mag-
netic stimulation (40). This proposal is also supported by our
finding of increased right IFS participation coefficient, which
indicates that engaging inhibitory control leads right IFS to
connect with a greater diversity of functional modules. Thus, the
influence of right IFS on functionally different processes appears
to be broader in contexts requiring inhibitory control. Behavioral
findings further support the central role of right IFS in inhibitory
control, given significant associations between accuracy and right
IFS node strength and local efficiency.
Similar to right IFS, right AI also evidenced increased par-

ticipation coefficient, which may reflect a stronger influence of
AI on more diverse types of processes. This finding is consistent
with evidence suggesting that right AI influences brain network
reorganization to support attention to—and further processing
of—salient events by bringing cognitive control networks online
and disengaging the default mode network (41). Interestingly,
the particular right AI ROI identified in the present work cor-
responds to what has been labeled dorsal AI (42), which tends to
coactivate with fronto-parietal association cortex, as opposed to
ventral AI, which is thought to be more relevant for affective
processes (43). Evidence also suggests that AI influences dy-
namic switching between networks involved in internally (e.g.,
posterior cingulate) and externally (e.g., dorsolateral PFC) di-
rected action, based on current needs (43). Thus, our finding of
increased right AI participation coefficient provides support for
the role of this region in adjusting network balance in accordance
with which information is currently salient.
Finally, only right AI was associated with greater local assor-

tativity, further underscoring the crucial and potentially unique

Spielberg et al. PNAS | August 11, 2015 | vol. 112 | no. 32 | 10023

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S



role for this region in inhibitory control. Combined with the
observed increase in right AI node strength, this finding indicates
that inhibitory control is associated with preferential connectivity
between right AI and other highly influential nodes. Thus, right
AI may orchestrate switches between different functional net-
works by signaling highly connected hubs to bring their module
online or to down-regulate, depending on current needs.

Comparison with Neutral Baseline. Several differences emerged
when using the neutral condition as a baseline. As evident in Sup-
porting Information, the network is larger and more bilateral; medial
dACC is no longer central (although it is present); and a different
region of IFG is central [pars opercularis vs. IFS (anterior to pars
opercularis)]. These differences must be interpreted in the context of
the different processes occurring during each condition (13, 44). For
example, there are two streams of color information (word meaning
and ink color) that must be disambiguated in both congruent
and incongruent (but not neutral). In addition, there is direct conflict
between the two streams of color information (only) in incongruent,
which requires top-down inhibitory control. Thus, contrasting in-
congruent to congruent isolates top-down inhibitory control, whereas
the network observed when contrasting against neutral also reflects
disambiguation of color information, and this result is reflected in the
fact that a wider set of circuitry is engaged.
The fact that using congruent as a baseline isolates inhibitory

control to a greater degree than when using neutral provides
insight into why medial dACC is no longer prominent, given the
key role of this region in regulating response conflict and late-
stage selection (13). One possible reason for why right IFG pars
opercularis (IFGpo) emerges as central when using neutral as a
baseline is that this contrast also includes disambiguation of the
two streams of color-related information. Thus, this network also
reflects processing related to regulating color-related word
meaning in general (aside from conflict per se), hence the more
central role of right IFGpo, which has been implicated as a
context-general “brake” (39). In summary, the incongruent vs.
neutral contrast revealed a broader network, likely reflecting the
additional processing isolated in this contrast.

Relation to Task-Activated Regions. The set of network nodes
found in the network analyses substantially overlapped the set of
regions found in regional task activation analyses (Supporting In-
formation). However, the sets of regions emerging from the two
analyses were not identical, with nodes such as amygdala/
hippocampus emerging in network, but not regional task,
analyses, underscoring the need for both techniques. More
importantly, even had there been complete overlap in the two sets,
network analyses provided a wealth of information not available
otherwise. For example, network analyses offer insight into which
nodes functionally interact to support inhibition, as opposed to
simply activating during approximately the same period. Further-
more, network analyses identified medial dACC, right IFS, and
right AI as critical network hubs, and this importance is not nec-
essarily reflected in indices of regional task analysis (e.g., cluster
size). Finally, network findings provide insights into the manner in
which the organizational properties of both the global network and
identified hubs shifted to support inhibitory control. Analysis of
regional task activation alone cannot provide any insight into these
processes, supporting the necessity to assay brain networks, partic-
ularly via sophisticated analysis techniques such as graph theory.
Thus, the network analyses conducted in the present study provide
unique insights into the functional organization of brain circuitry
supporting inhibitory control.

Strengths and Limitations. The present study benefited from a
number of strengths, including a large sample size (n = 101) and
a methodology that allowed brain networks to be explored with a
high level of sophistication. As with any study, several limitations

must be considered when making inferences about present findings.
For example, although the color-word Stroop powerfully recruits
inhibitory control, the version used in the present study cannot dif-
ferentiate among the component subprocesses (e.g., imposing a task
set, differentiating between two potentially relevant streams of in-
formation, response selection, and evaluation). Future research using
more sophisticated paradigms is needed to parse the network com-
ponents specific to these subprocesses. In addition, the temporal
resolution of fMRI is relatively slow, both in terms of sampling rate
and the hemodynamic response (HDR). Recent advances in fMRI
acquisition (e.g., multiband) can dramatically increase sampling rate
(e.g., from 2 down to 0.4 s), and the use of such acquisitions to probe
inhibitory control networks would likely be of great utility. However,
these acquisitions are still limited by HDR. Thus, obtaining the
most accurate representation of these networks will likely require
the combination of fMRI with methods such as EEG/magneto-
encephalography that possess exquisite temporal resolution. Finally,
two of the graph properties examined (participation coefficient and
within-module degree Z-score) relied on a division of nodes into
several modules. Thus, bias may have been introduced into findings
related to these properties by any error in the assignment of nodes
into modules.

Summary and Conclusions
Despite these limitations, present findings provide critical in-
sights into the network connections that are particularly crucial for
inhibitory control and the manner in which brain networks re-
organize to support such control. To meet demand for inhibitory
control, the global brain network appears to reorganize to become
more optimized for specialized processing, more efficient at com-
municating the output of such processing across the network, and
more resilient to potential interruption. In addition, dACC, right
IFS, and right AI appear to be particularly important hubs in the
network instantiating inhibitory control. In addition, findings pro-
vide preliminary evidence for specific roles for each hub in in-
hibitory control. In particular, in response to higher demand for
inhibitory control, dACC preferentially increased connectivity with
other regions involved in top-down control, which may indicate that
dACC martials control resources when necessary. In contrast, in-
creased control demand led right IFS to increase connectivity with
regions involved in functionally diverse processes, suggesting that
this region more directly influences response-related processes. Fi-
nally, right AI preferentially linked to other highly influential nodes
in response to higher demand for inhibitory control, suggesting that
right AI orchestrates the up-/down-regulation of different functional
networks by signaling communication hubs in these networks.
Although present findings do not have direct clinical impli-

cations, they do provide a framework for deeper insight into the
particular network dysfunction occurring in populations with known
inhibitory difficulties [e.g., attention-deficit/hyperactivity disorder
(ADHD)]. For example, present findings indicate that the global
network reorganizes into a pattern with greater global efficiency,
transitivity, and assortativity to support inhibitory control, and future
research could examine these properties in individuals with ADHD.
If only a subset of properties is disrupted, this finding would provide
insight into the particular mechanisms that are failing. For example,
global efficiency and transitivity might increase with higher demand
for inhibitory control, but assortativity is unaltered. Such a pattern
would suggest that overall communication and specialized processing
are intact, but that there is a failure to create processing redundancy,
leaving the system less resistant to potential disruption (e.g., by dis-
tracting stimuli). In summary, given the crucial role of inhibitory
control in goal-directed behavior, present findings have the potential
to provide key insights into a wide array of difficulties.

Materials and Methods
First-Level Processing. Final sample size was 101 (63% female, mean age =
34.2 y, range 19–51 y). See SI Materials and Methods for details regarding
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the sample, task design, MRI acquisition and preprocessing, and creation of
connectivity matrices.

Identification of Inhibitory Control-Related Network Connections. To identify
network connections that varied with the demand for inhibitory control,
connectivity matrices were entered as repeated-measures dependent vari-
ables into the NBS toolbox, with task condition (e.g., incongruent vs. con-
gruent) as the repeatedmeasure. An individual-connection-level threshold of
t = 3.4 was used with extent-based correction for multiple comparisons,
5,000 permutations, and an overall corrected α < 0.05.

Identification of Inhibitory Control-Related Graph Theory Properties. To
identify topological properties that varied with inhibitory control demands,
connectivity matrices were entered into the GTG toolbox (www.nitrc.org/
projects/metalab_gtg), which computed properties for each condition/par-
ticipant by using the Brain Connectivity Toolbox (29). Seven graph-theory
properties were computed separately for each task condition by using matrices
thresholded to include only positive connections (see SI Materials andMethods
for follow-up analyses to rule out bias due to this threshold and detail on
modularity assignment).

Node-specific properties were examined only for nodes with greater than
or equal to three differential connections. Each graph property was entered
as a repeated-measure dependent variable into the GTG toolbox, with task

condition (e.g., incongruent vs. congruent) as the repeated measure. Sig-
nificance was determined via permutation tests (5,000 permutations). In
addition, permutation-based correction (10,000 permutations) was used to
correct for multiple comparisons across all graph property analyses, which
provided a very high (but valid) bar for significance. Only significant analyses
are reported. One participant’s assortativity value was an outlier (>4 SD) and
winsorized to the 2.5 SD value.

Relationships with Behavior. To elucidate the behavioral impact of network
shifts, significant network measures were correlated with behavioral mea-
sures (mean RT and error rate). Condition difference scores were created, and
partial correlations were computed between network and behavioral mea-
sures, removing the variance associated with age and block counterbalancing
order (see SI Materials and Methods for details).

Regional Task-Activation. To provide context for network analyses, we ran a
typical GLM analysis to determine which regions showed greater regional
task activation in incongruent than congruent (SI Materials and Methods).
Partial correlations were computed with behavior.
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SI Materials and Methods
Participants. A total of 120 participants were recruited from the
community. Exclusion criteria were as follows: claustrophobia, left-
handedness, prior serious brain injury, abnormal hearing/vision,
metal in body, pregnancy, and nonnative English. Data from 19
participants were not used because of movement ≥3.3 mm relative
to the middle volume or ≥2 mm relative to the previous volume,
≥15% task errors, significant signal loss due to susceptibility artifact,
and/or serious motion-related activation patterns. The final sample
size was 101 (63% female, mean age = 34.2 y, range 19–51 y).

Color-Word Stroop Task. A total of 256 trials were presented in
16 blocks (4 congruent, 4 incongruent, and 8 neutral), with a
variable intertrial interval (2,000 ± 225 ms). Additional neutral
trials were intermixed 50:50 in congruent and incongruent blocks
to prevent the development of word-reading strategies. Each
trial consisted of one word presented in one of four ink colors,
with each color occurring equally often with each word type.
Word meaning was the same as ink color in congruent trials (e.g.,
“RED” in red ink), whereas word meaning differed from ink color
in incongruent trials (e.g., “GREEN” in red ink), and the two were
unrelated in neutral trials (e.g., “LOT” in red ink). Task condition
alternated by block, and order was counterbalanced.

Acquisition. fMRI data were 370 EPI images (duration = 12.33
min, repetition time = 2,000 ms, echo time = 25 ms, flip angle =
80°, field of view = 220 cm), each consisting of 38 axial slices
(slice thickness = 3 mm, 0.3 mm gap, resolution = 3.4375 ×
3.4375 mm), acquired on a Siemens 3T Trio scanner, along with
a 1-mm3 anatomical acquisition.

Preprocessing. Data were preprocessed primarily via the GTG
toolbox. Data were motion-corrected, field map-corrected (via
FSL’s Fugue), despiked (via AFNI’s 3dDespike), and second-
order detrended, and each participant’s mean global, ventricular,
and white-matter signals were partialled out, along with esti-
mated motion parameters. To ensure that task effects were not
artificially inflating connectivity estimates, analyses were re-
computed after first partialling condition-related responses from
the full time series (after preprocessing, but before deconvolu-
tion). The resultant connectivity estimates were virtually identi-
cal, and all findings remained significant.

Creation of Connectivity Matrices. A 130 ROI atlas was used
[created by Craddock et al. (45) via two-level spatially constrained
spectral clustering]. ROIs in cerebellum (n = 16) were removed,
due to inconsistent spatial coverage of cerebellum during ac-
quisition. Time series for each ROI were extracted by calculating
the mean (across voxels) signal per time point. Each time series
was deconvolved for the HDR via SPM’s method. Time series
were divided by block; blocks were concatenated by condition;
and a 114 × 114 Pearson correlation matrix was created for each
participant separately for each condition.

Follow-Up Analyses to Rule Out Bias due to Atlas Choice. To ensure
that our choice of atlas did not bias findings, analyses were
recomputed by using a Craddock et al. atlas with 50%more ROIs
(total number of ROIs = 171 after cerebellum removal). A
similar network was observed in the NBS analyses (Fig. S1). In
addition, all graph property findings were significant using this
new atlas.

Follow-Up Analyses to Rule Out Bias due to Thresholding to Include
Only Positive Weights. To ensure that the use of only a single
threshold (to include only positive weights) did not bias findings,
graph properties were recomputed across a series of density
thresholds by using the GTG toolbox. A minimum density of 0.23
was chosen, because this value was the lowest threshold at which
all nodes remained (at least indirectly) connected in a set of
mean matrices (mean across participants within each condition
and mean across conditions). A maximum density of 0.60 was
used along with a step size between densities of 0.01, resulting
in 38 density thresholds examined. Graph properties were cal-
culated for each threshold, and the area under the curve was
computed to create one value per property. This procedure
(using series of densities) was used to ensure that findings were
not biased by the choice of a single, arbitrary threshold. Im-
portantly, all analyses remained significant when using this al-
ternate set of graph properties.

Modularity Assignment. Modularity was computed on the mean
network by using the Louvain algorithm followed by the Kernighan–
Lin fine-tuning algorithm (10,000 repetitions, modularization
with the highest modularity chosen; see Table S1 for module
structure). Given that a condition with higher overall connectivity
(e.g., incongruent) could bias module assignment, we computed
modularity using data from the neutral condition.

Relationships with Behavior. For RT and error rate, difference
scores were divided by the sum of incongruent and congruent to
remove individual differences in mean RT/errors. To ensure that
outliers did not drive findings, data were winsorized to 2.5 SDs
from the mean.
Exploratory analyses were also conducted by using drift rate

and boundary distance derived from a variant of the EZ-Diffusion
model (46). Drift rate is thought to reflect the ability of the
participant to exhibit inhibitory control, whereas boundary dis-
tance is thought to reflect the conservativeness of the response
criterion (the amount of information/confidence needed before
responding). For this model, mean starting point, z, was assumed
to be 0.25 instead of 0.5 to account for the fact that four response
options were possible, only one of which (i.e., 0.25) was correct
on a given trial. Findings revealed negative correlations between
several network parameters and (incongruent vs. congruent)
boundary distance: mean NBS network connection strength (r =
−0.205, P = 0.048), global efficiency (r = −0.227, P = 0.029),
transitivity (r = −0.227, P = 0.028), right IFS node strength (r =
−0.290, P = 0.005), right AI node strength (r = −0.257, P =
0.013), right IFS local efficiency (r = −0.265, P = 0.010), and
right IFS participation coefficient (r = −0.236, P = 0.023). No
network parameters correlated with drift rate. See Fig. S2 for
scatterplots of all relationships.

Incongruent vs. Neutral. To ascertain whether a similar pattern of
findings emerged when the neutral condition was used as a
baseline instead of congruent, NBS and GTG analyses were
recomputed, substituting in the neutral condition.

SI Results
Higher demand for inhibitory control (i.e., incongruent >
neutral) was associated with stronger coupling in a network
(order 21, size 31; Fig. S3) that overlapped the network found
when congruent was used as a baseline. Node-specific topolog-
ical properties were tested for the three regions examined for
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incongruent vs. congruent, along with right IFGpo, given that
this region exhibited the largest number of differential connec-
tions when using neutral as a baseline. Similar to the analyses
using congruent as a baseline, higher demand for inhibitory
control (i.e., incongruent > neutral) was associated with in-
creases in transitivity (P < 0.001 [< 0.001]) and global efficiency
(P < 0.001 [< 0.001]); greater node strength for medial dACC
(P < 0.001 [< 0.001]), right IFS (P < 0.001 [<. 001]), and right
AI (P < 0.001 [< 0.001]); greater local efficiency for medial dACC
(P < 0.001 [< 0.001]), right IFS (P < 0.001 [< 0.001]), and right AI
(P < 0.001 [< 0.001]); stronger within-module degree Z-score for
medial dACC (P = 0.002 [0.024]); and increased participation
coefficient for right AI (P = 0.034 [0.347]), although this last effect
did not survive correction for multiple comparisons. The only
effects not present when using neutral as a baseline were higher
assortativity and participation coefficient for right IFS.
An additional effect emerged that was not present when using

congruent as a baseline. Specifically, higher demand for inhibitory
control was associated with stronger within-module degree Z-score
for right IFS (P = 0.002 [0.016]). Several effects also emerged for
the additional node examined, right IFGpo: greater node strength
(P < 0.001 [< 0.001]) and local efficiency (P < 0.001 [< 0.001]) and
weaker within-module degree Z-score (P = 0.003 [0.024]).

Regional Task Activation Methods.
Preprocessing. Image processing and statistical analysis was im-
plemented primarily via FSL’s FEAT. Functional data for each
participant were motion-corrected, intensity-normalized, tem-
porally high-pass filtered, and spatially smoothed (FWHM =
5 mm). Temporal low-pass filtering was carried out by using
AFNI’s 3dDespike.
First-Level Data Processing. Regression analyses were performed
voxel-wise on the processed functional time series. Four HDR-
convolved predictors, one for each word type block (congruent,
incongruent, and neutral) and one modeling the rest condition,
were included. The comparison of interest was the contrast of the
incongruent with the congruent condition. Functional data were
nonlinearly warped into the MNI152 nonlinear template via
FNIRT.
Group-Level Processing. Group inferential statistical analyses were
carried out by using FLAME. The mean incongruent > congruent
response across the sample was calculated via voxel-wise one-
sample t tests. Gaussian-random-field correction for multiple
comparisons was computed via FSL’s Cluster, with voxel-level
threshold of z = 4.

Regional Task Activation Results. Findings from the incongruent >
congruent regional task activation analyses are provided in Table

S2 and Fig. S4. Nodes present in both network and regional task
activation analyses were medial dACC/paracingulate, right AI, bi-
lateral IFGpo, left posterior MFG, right precentral, and medial
precuneous. Nodes present in network, but not regional task acti-
vation, analyses were right IFS (although a nearby region of MFG
is present, and activation extends into IFS at lower thresholds), left
precentral, right posterior superior/middle temporal gyrus, left
posterior superior frontal gyrus (SFG), right posterior MFG/pre-
central gyrus, and right amygdala/hippocampus. Nodes present in
regional task activation, but not in network, analyses were left in-
ferior frontal pole, bilateral angular gyrus, left posterior supra-
marginal gyrus, left AI, bilateral posterior orbitofrontal cortex,
medial thalamus, bilateral superior parietal lobule, left inferior
temporal gyrus temporooccipital part, bilateral superior lateral
occipital cortex, and bilateral intracalcarine gyrus. See Fig. S5 for a
depiction of overlap.
Activation in no regions correlated with incongruent vs. congruent

RT. Activation in several regions correlated with incongruent vs.
congruent error rate: left frontal pole (r = 0.214, P = 0.039), right
angular gyrus (r = 0.303, P = 0.003), left intracalcarine cortex (r =
0.299, P = 0.004), IFGpo/precentral gyrus (r = 0.226, P = 0.029),
right AI/posterior orbitofrontal cortex (r = 0.313, P = 0.002), medial
dACC/posterior paracingulate (r = 0.257, P = 0.013), left AI/pos-
terior orbitofrontal cortex/IFGpo/posterior MFG (r = 0.259, P =
0.012), left lateral occipital cortex/angular gyrus (r = 0.223, P =
0.032), and medial thalamus (r = 0.239, P = 0.021).
Several regions correlated with drift rate: left intracalcarine

cortex (r = −0.213, P = 0.040), right AI/posterior orbitofrontal
cortex (r = −0.305, P = 0.003), medial dACC/posterior para-
cingulate (r = −0.292, P = 0.005), and left AI/posterior orbito-
frontal cortex/IFGpo/posterior MFG (r = −0.261, P = 0.011).
Two regions correlated with boundary distance: right angular
gyrus (r = −0.249, P = 0.016) and right insula/posterior orbito-
frontal cortex (r = −0.207, P = 0.047).

Age Analyses. Supplementary analyses investigated whether age
moderated task effects in behavior, brain networks (i.e., via the
NBS toolbox), or graph properties (i.e., via the GTG toolbox).
Specifically, the correlation between age and the incongruent vs.
congruent difference score for mean RT/errors was computed.
In addition, NBS and GTG analyses were recomputed, with
the addition of age as a between-subject predictor. As well, the
correlation between age and mean connection weight in the task-
related network identified previously via NBS was computed. No
significant effects were observed.
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Fig. S1. Network that emerged for the 171 node atlas. Circle color represents module membership, and circle size reflects node strength (across conditions).
This network representation was created by using the Kamada–Kawai spring embedder algorithm. Only links (and the corresponding nodes) that were
identified in the NBS analyses as differing significantly by condition are shown above. M, medial; R, right; L, left; LOC, lateral occipital cortex.

Fig. S2. Scatterplots of brain–behavior relationships. All variables are difference scores (incongruent – congruent) and have been residualized with respect to
counterbalancing order and age. R, right.

Fig. S3. Network exhibiting greater coupling for incongruent than neutral. (A) Sphere color represents module membership, and sphere size reflects node
strength (across task conditions). Upper is a 3D axial view from above the brain; Lower is a 3D coronal view from anterior to the brain (to maintain the right
side of the brain on the right side of the image for both views, posterior is positioned on top for the axial view). Sphere placement in the brain reflects the
center of mass location of that node. (B) Circle color represents module membership and circle size reflects node strength. This network representation was
created using the Kamada–Kawai spring embedder algorithm. Only links (and the corresponding nodes) that were identified in the NBS analyses as differing
significantly by condition are shown above. FEF, frontal eye field; L, left; LOC, lateral occipital cortex; M, medial; OFC, orbitofrontal cortex; PCC, posterior
cingulate cortex; R, right.
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Fig. S4. Incongruent > congruent within-region task activation. Axial (Upper; z = −21 to 59, slices every 8 mm) and sagittal (Lower, x = −50 to 50, slices every
10 mm) views of the within-region findings for the incongruent > congruent contrast.

Fig. S5. Overlap of nodes in incongruent > congruent network and within-region task activation. Red spheres are those identified in the network analysis,
and yellow spheres are those identified in the within-region task activation analysis. Sphere placement in the brain reflects the center of mass location of that
ROI. Upper Left is a 3D axial view from above the brain. Lower Left is a 3D coronal view from anterior to the brain (to maintain the right side of the brain on
the right side of the image for both views, posterior is positioned on top for the axial view). Upper Right is a 3D sagittal view from right of the brain. Lower
Right is a 3D sagittal view from left of the brain.
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Table S1. Module membership

Module Constituent nodes

1 R IFGpo; L & R frontal eye field; L posterior insula/putamen; M mid-cingulate; L & R precentral; R postcentral/precentral; L precentral/
superior temporal gyrus; L & R postcentral/superior parietal lobule (×2); R superior temporal gyrus/posterior insula L & R mid-
supramarginal; M precuneus; M posterior SFG/MFG; L & R AI; R putamen/globus pallidum; M paracentral (×2); L & R precentral/
postcentral; L postcentral; R postcentral/precentral/superior temporal gyrus; L postcentral/inferior parietal lobule; L & R superior
temporal gyrus; L & R parietal operculum

2 M anterior paracingulate/medial orbitofrontal cortex; L posterior middle orbitofrontal cortex; L superior temporal gyrus/posterior
insula; L & R uncus/temporal pole; R mid-superior temporal gyrus; L mid-middle temporal gyrus; L & R posterior temporal fusiform;
L & R hippocampus/amygdala; M subgenual anterior cingulate cortex/medial orbitofrontal cortex; R posterior orbitofrontal cortex/
AI; L & R temporal pole/superior temporal gyrus; L & R posterior middle temporal gyrus/superior temporal gyrus; L posterior middle
temporal gyrus/superior temporal gyrus; L middle temporal gyrus/superior; temporal gyrus; L lingual

3 L anterior middle orbitofrontal cortex; L & R lateral orbitofrontal cortex/IFG; L & R inferior frontal pole; M anterior SFG; L & R anterior
MFG; L & R IFS; L & R mid-SFG/MFG; L posterior SFG/MFG; M pregenual anterior cingulate cortex; M mid-cingulate/posterior
cingulate cortex; R superior temporal gyrus/angular; R inferior parietal lobule; L & R superior lateral occipital cortex; R middle
orbitofrontal cortex; M frontal pole; R inferior frontal pole; L & R anterior SFG/MFG; M anterior paracingulate gyrus/SFG; L IFGpo;
L & R posterior SFG; L & R posterior MFG/precentral; M dACC/paracingulate; M posterior cingulate cortex/precuneus; L angular/
superior temporal gyrus/middle temporal gyrus; L inferior parietal lobule/superior parietal lobule; L & R caudate

4 R posterior cingulate cortex/precuneus; M precuneus; R posterior middle temporal gyrus/inferior temporal gyrus; L & R superior lateral
occipital cortex (×2); L & R inferior lateral occipital cortex (×2); M cuneus/occipital pole; L occipital pole; L precuneus; R superior
lateral occipital cortex/precuneus; L temporal-occipital inferior temporal gyrus; L superior lateral occipital cortex; R lingual; L & R
occipital pole/lingual

5 M thalamus/brainstem; M thalamus; L & R ventral striatum; L & R thalamus

L, left; M, medial; R, right; x2, there are two ROIs within the same anatomical area.

Table S2. Incongruent > congruent within-region task activation

Region Volume, mm3 Max z x y z

Medial thalamus 23,640 6.61 −2 −12 4
Left angular gyrus/superior lateral occipital cortex/posterior

supramarginal gyrus/superior parietal lobule/*medial precuneus
20,344 6.89 −29 −60 44

Left AI/posterior orbitofrontal cortex/*IFGpo/*posterior MFG 18,878 7.21 −42 13 20
Medial *dorsal anterior cingulate/*paracingulate 12,760 6.65 −1 20 42
Right *AI/posterior orbitofrontal cortex 5,320 6.40 40 17 −8
Right *IFGpo/*precentral gyrus 1,465 5.11 44 9 34
Left inferior temporal gyrus, temporooccipital part 1,296 5.38 −55 −54 −19
Right superior parietal lobule/superior lateral occipital cortex 973 5.24 28 −54 48
Right intracalcarine cortex 826 5.62 11 −72 10
Left intracalcarine cortex 507 4.61 −9 −72 10
Right angular gyrus 362 4.67 53 −50 32
Left inferior frontal pole 359 4.92 −43 52 3

Region names correspond to the ROIs used in the network analyses.
*Regions that were also present in the network analyses. x, y, z = coordinates for center of mass.
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