
Behavioral/Cognitive

Time Course of Brain Network Reconfiguration Supporting
Inhibitory Control

X Tzvetan Popov,1 Britta U. Westner,1 X Rebecca L. Silton,2 Sarah M. Sass,3 X Jeffrey M. Spielberg,4 Brigitte Rockstroh,1

Wendy Heller,5 and Gregory A. Miller5,6,7

1Department of Psychology, University of Konstanz, 78464 Konstanz, Germany, 2Department of Psychology, Loyola University, Chicago, Illinois 60660,
3Department of Psychology, University of Texas, Tyler, Texas 75799, 4Department of Psychological and Brain Sciences, University of Delaware, Newark,
Delaware 19716, 5Department of Psychology, University of Illinois, Urbana-Champaign, Illinois 61820, 6Department of Psychology, and 7Department of
Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90095

Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI
methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to
characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically
to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest
machine learning tools to human EEG data in two large samples of adults (test sample n � 96, replication sample n � 237, total N � 333,
both sexes) who performed a color–word Stroop task. Time–frequency analysis confirmed that recruitment of inhibitory control accom-
panied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asym-
metric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over
both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal–parietal exchanges
(IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of
predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta
tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a
psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is up-
regulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation.
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Introduction
Interference control during goal-directed behavior is a key cog-
nitive operation. Many aspects of daily life require rapid yet ac-

curate control of an indefinite amount of information by finite
processing resources. Two overlapping lines of research pursuing
such mechanisms are studies of large-scale cerebral connectivity
and of neuronal oscillations. Cognitive operations might be bet-
ter understood by incorporating knowledge of the network of
anatomical connections and of the periodicity of neuronal activity
that structures information to identify mechanisms of processing
and their disruption in psychopathology. However, parameteriza-
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Significance Statement

Hemodynamic neuroimaging research has recently clarified regional structures in brain networks supporting inhibitory control.
However, due to inherent methodological constraints, much of this research has been unable to characterize the temporal dynam-
ics of such networks (e.g., direction of information flow between nodes). Guided by fMRI research identifying the structure of
brain networks supporting inhibitory control, results of EEG source analysis in a test sample (n � 96) and replication sample (n �
237) using effective connectivity and predictive analytics strategies advance a model of inhibitory control by characterizing the
precise temporal dynamics by which this network operates and exemplify an approach by which mechanistic models can be
developed for other key psychological processes.
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tion and interpretation of such data are often difficult due to the
enormously high degrees of freedom inherent in functional brain
data.

In a recent hemodynamic neuroimaging study, our group
used graph theory, a formal description of a network and its emer-
gent properties, to identify a particular network constellation opti-
mized for specialized processing during increased demands for
inhibitory control (Spielberg et al., 2015). This network was char-
acterized by increased connectivity orchestrated primarily by
dorsal ACC (dACC) and inferior frontal regions showing a flex-
ible organization predictive of behavioral outcome. Given the
temporal limits of conventional fMRI, that study could not de-
termine possible causal relationships between nodes within this
network, such as whether dACC has top-down influence on in-
ferior frontal regions in the network.

Two large samples were combined to address these unresolved
issues using recent advances in EEG analysis complemented by
machine-learning techniques. EEG data from 96 participants in
the fMRI study performing the same task during dense-array
EEG recording typically within 2 weeks of the fMRI session were
combined with EEG data from a replication sample of 237 par-
ticipants to develop a mechanistic account of internodal network
communication. Initial analyses characterized the time–frequency
profiles of network constituents and quantified their relationship to
behavioral performance. Spectrally resolved Granger causality (GC)
analyses quantified key parameters of a given relationship, its
directionality and frequency. Distinct frequency bands are theo-
rized to represent coordinated state changes across local net-
works, so the present study evaluated the role of theta (4 – 8 Hz)
and alpha/beta (10 –30 Hz) in networks associated with top-
down control and behavioral performance (reaction time, RT).
Finally, random forest classification analysis was used to identify
the importance of neural activity per network node for predicting
individual brain states characterized by high versus low demand
for inhibitory control.

Evidence suggests that top-down control can be accomplished
via oscillatory activity �30 Hz (Cohen et al., 2012; van Kerkoerle
et al., 2014; Bastos et al., 2015; Chmielewski et al., 2016; Micha-
lareas et al., 2016; Wang et al., 2016; Babapoor-Farrokhran et al.,
2017; Popov et al., 2017; Richter et al., 2017; Schoffelen et al.,
2017). More specifically, theta activity likely reflects the coordi-
nation of a distributed network engaged in inhibitory control
(Chmielewski et al., 2016; Babapoor-Farrokhran et al., 2017) and
memory (Anderson et al., 2010) processes. Accordingly, we pre-
dicted that connectivity between PFC and dACC (per Spielberg et
al., 2015) would be directed and frequency specific via theta
activity.

Multiple frequency bands are expected to be implicated in a
given task, modulating task-specific networks (Engel and Fries,
2010), and experimental and theoretical models have suggested
upregulation of the strength of the desired response as a critical
feature of inhibitory control (Munakata et al., 2011). Therefore,
the network configuration was predicted to shift toward increased
influence of PFC. Specifically, this upregulation would be re-
flected in modulation of alpha/beta power in motor regions.
Beta-band activity has been theorized to signal maintenance of a
sensorimotor set to facilitate efficient processing of feedback and
recalibration of the sensorimotor system (Engel and Fries, 2010).
Likely indicating a change in the status quo, decreased beta power
in primary motor cortex has been observed when inhibitory con-
trol is exerted in stop signal tasks (Swann et al., 2009; Wheaton et
al., 2009). Therefore, a decrease in network beta power was an-

ticipated to be related to slower response time, particularly in the
context of incongruent trials.

Materials and Methods
Participants. A total of 333 (208 female, age 26.25 � 10.28 years) partic-
ipants were recruited from the community. Exclusion criteria were as
follows: left handedness determined by the Edinburgh Handedness
Inventory (Oldfield, 1971), head trauma with loss of consciousness, psy-
choactive medication, abnormal color vision, claustrophobia, recent
drug/alcohol use, excessive caffeine intake, and lack of sleep.

Experimental design. Experimental procedures were those reported in
our previous research, with overlapping samples (Silton et al., 2010;
Spielberg et al., 2015). A total of 256 trials were presented in 16 blocks
(four congruent, four incongruent, and eight neutral) with intertrial
intervals of 2000 � 225 ms (onset to onset). Neutral trials were inter-
mixed (50%) in congruent and incongruent blocks to prevent word read-
ing strategies. A trial consisted of one word presented in one of four ink
colors (red, yellow, green, or blue). Congruent (CON) trials were char-
acterized by word meaning matching ink color (e.g., “GREEN” with
green ink), whereas incongruent (INC) trials were characterized by word
meaning differing from ink color (e.g., “GREEN” in red ink). In neutral
(NEU) trials, word meaning and colors were unrelated (e.g., “CENTURY” in
green ink). Control of stimulus order effects was achieved by each partic-
ipant receiving one of eight stimulus orders. Participants were asked to
respond via button press to the color of the word while ignoring the
meaning of the word.

Data acquisition and preprocessing. Data acquisition was performed
while participants were seated in a comfortable chair in a quiet room (for
details, see Silton et al., 2010). EEG was recorded with a custom Falk
Minow 64-channel cap with equidistant Ag/AgCl electrodes. Electrode
digitization followed cap placement for source localization purposes.
The left mastoid served as the online reference for all sites. Impedances
were below 20 k�, which is appropriate given the high input impedance
of the amplifier (James Long). Half-power amplifier band pass was 0.1–
100 Hz with a sampling rate of 250 Hz. Data analyses were performed
with the MATLAB (The MathWorks) FieldTrip toolbox (Oostenveld et
al., 2011) and the scikit-learn toolbox (Pedregosa et al., 2011) comple-
mented by custom-written software. Trials with saccades or muscle arti-
fact were excluded from analysis. On average 30.8 � 1.7 CON trials and
28.3 � 3.2 INC trials per subject entered the analysis. An independent
components analysis (ICA) (Jung et al., 2001) was applied after demean-
ing and removing the linear trend from the data. Components associated
with eye blink and cardiac activity were removed using ICA.

Spectral analysis. Spectral analysis was computed for each trial using a
fast Fourier transformation with a 500 ms sliding window multiplied by
a Hanning taper. The time window advanced in 50 ms increments and
spectral resolution was 2 Hz. Spectral power was calculated for each trial
and then averaged across trials. Average baseline from �500 to �250 ms
before stimulus onset was subtracted and the data converted to units of
decibels change from prestimulus baseline.

Source analysis. Anatomical MRI and EEG data were coregistered to a
common coordinate system (Montreal Neurological Institute, MNI) by
applying an initial coarse registration between the fiducial locations
(nasion, left and right pre-auricular points) and subsequent refined
matching between the scalp surface extracted from the MRI and digitized
electrode positions. A three-compartment (skin, skull, and brain) pseu-
dorealistic boundary element forward solution was constructed on the
basis of a standard MRI (MNI152 linear template). Scalp EEG time series
were projected into brain source space by applying a time-domain spatial
filtering algorithm (linearly constrained minimum variance; Van Veen et
al., 1997). This algorithm uses the covariance matrix of the EEG data to
construct a spatial filter for a given location (voxel). These spatial filters
were estimated for each participant on the basis of all trials and for the
1000 ms interval after stimulus onset. Subsequently, these filters were
applied to the data to estimate the time series for each of the 11 network
node locations previously reported as a network exhibiting greater
hemodynamic coupling during high demands for inhibitory control
(Spielberg et al., 2015). The other 237 participants completed the same
protocol in the same laboratory at another time, providing a large repli-
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cation sample. MNI coordinates (x y z) and labels for these locations were
as follows: right posterior middle frontal gyrus (MFG)/precentral, (44 10
40); right anterior insula, (38 19 6); right IFS, (47 35 20); right posterior
middle temporal gyrus/superior temporal gyrus, (57 �24 �3); left pos-
terior MFG/precentral, (�48 8 37); left inferior frontal gyrus (IFG) pars
opercularis, (�52 21 18); right IFG pars opercularis, (53 14 20); medial
precuneus, (1 �61 55); right amygdala/hippocampus, (23 �10 �15); left
posterior superior frontal gyrus (SFG), (�17 14 65); and medial dACC,
(0 26 34).

GC analysis. Spectrally resolved GC analysis (Granger, 1969; Ding et
al., 2006) was used to identify potential directionality in internodal com-
munication. Briefly, GC analyses represent the result of a comparison
between two models: a univariate autoregressive model, in which the
future behavior of time series x is predicted from past values of time series
x, and a bivariate autoregressive model, in which the prospective values
of x are predicted from the past values of time series x and another time
series y. Initially formulated in the time domain, GC can also be
estimated in the frequency domain (Kamiński et al., 2001; Chen et al.,
2006; Bastos and Schoffelen, 2015; for detailed review, see Bastos and
Schoffelen, 2015), which requires the estimation of the spectral transfer
matrix between a set of signals. The total interdependence fx,y(f ) between
two signals x and y is computed by their power spectral functions Sxx(f )
and Syy(f ) and the corresponding crossspectral function Sxx(f ) as follows:

fx,y� f � � ln�Sxx� f �Syy� f �

� S� f � � �
The natural logarithm is denoted by ln and S(f) � Sxx(f)Syy(f) � Sxy(f)Syx(f)
using the coherence Cxy(f ) between the two signals defined as follows:

Cxy� f � �
�Sxy� f ��2

�Sxx� f �Syy� f ��

the total interdependence can be expressed as follows:

fx,y� f � � � ln�1 � Cxy� f ��

Subsequently, the total interdependence can be decomposed into three
causality terms as follows:

fx,y� f � � fx¡y � fy¡x � fx � y

The first two terms denote the directed influence (over time) from x to y
and y to x, respectively, and the third term denotes the instantaneous
dependence. The latter is often a consequence of, for example, common
input from a third signal, nonlinear interactions between x and y, and
shared noise.

The time series were resegmented to include 500 –1500 ms after stim-
ulus onset to circumvent the presence of transient evoked activity at
stimulus onset. For each trial, the Fourier coefficients were computed for
the entire spectrum up to the Nyquist frequency after padding the data
with zeros for 3 s at the beginning and the end of each trial to provide
improved frequency resolution. A nonparametric matrix factorization of
the crossspectral density matrix (Wilson, 1972; Dhamala et al., 2008) was
applied to estimate the spectral transfer matrix.

It has been demonstrated that:

fx¡y� f � � �ln� Sxx� f �

H̃xx 	2 H̃xx
� �

and

fy¡x� f � � �ln� Syy� f �

H̃yy 
2 H̃yy
� �

where 	2 and 
2 are the variance of the noise term in the bivariate model
of signal x and y, H̃xx is the spectral transfer function of the signal x, and
* is the conjugate (Ding et al., 2006). Therefore, the instantaneous cau-
sality is represented by the difference in total interdependence of x and y
and the sum of the causality terms fx¡y and fy¡x. For a given pair of
locations, GC was computed conditional on the presence of the remain-

ing locations similar to the procedures applied previously (Wen et al.,
2013; Bastos et al., 2015). Significant differences in GC between locations
were determined on the basis of nonparametric cluster permutation tests
(see next section). In addition, GC influences were computed twice: on
the original and on the time-reversed time series. The latter strategy,
proposed previously (Haufe et al., 2013; Winkler et al., 2015), accounts
for the presence of so-called weak asymmetries as a possible interpreta-
tional confound, contributing to an apparent dominant directional drive
between two areas. Briefly, as opposed to strong asymmetries, which are
caused by actual time-lagged relations between signals, weak asymme-
tries are the consequence of differences in univariate signal properties
(e.g., the local signal-to-noise ratio). Time reversal of the signals does not
affect these univariate signal properties, whereas it should reverse the
dominant direction of interaction. In other words, if the direction of the
GC asymmetry is unchanged after the time reversal, then the GC is most
likely artificial, whereas a reversal of the direction of the asymmetry
implies a true time-lagged, and thus directed, relationship. Original ver-
sus time-reversed GC analysis outputs were compared statistically using
the nonparametric permutation technique described above.

Statistical analysis. Statistical evaluation of the neuronal data from the
sample described above was performed by a cluster-based approach
based on permutations (Maris and Oostenveld, 2007). This approach
identifies clusters of activity on the basis of whether the null hypothesis
can be rejected while controlling for multiple comparisons. The test sta-
tistic for comparing condition A and condition B was built on the basis of
relative changes defined as follows: test statistic � [A � B]/[(A � B)].
Behavioral performance (RT) was expressed as a difference score, �RT �
RTIC � RTC. Relationships between neuronal and behavioral data were
assessed by means of Spearman’s rank-order correlations (�). Effect sizes
and exact p-values are reported when appropriate (i.e., parametric statis-
tical tests).

Classification analysis. Classification with random forest models (Breiman,
2001) was used to distinguish the predictive strength of different vari-
ables, such as network characteristics and RT, on inhibitory control
demands.

The random forest approach is able to handle highly correlated features
notably well (Cutler et al., 2009). This specialty makes random forests
well suited for the analysis of MEEG data, in which highly correlated
variables are an often encountered problem (Lehmann et al., 2007; Do-
nos et al., 2015; Westner et al., 2018). Furthermore, it provides a ranking
of the informational value that each predictor had for the model
(Breiman et al., 1984; Cutler et al., 2009), thereby enabling the direct
comparison of predictor variables.

The random forest algorithm is an ensemble method aggregating the
predictions of a large number of decision-tree classifiers (Breiman et al.,
1984). Each decision tree partitions the data by adopting binary splits,
aiming to reduce the impurity in the resulting subsets; that is, as many
observations of a class as possible should be concentrated in one subset.
To yield stable results even with outliers or highly correlated predictor
variables, the random forest model introduces randomness at two levels.
First, each tree in the ensemble is fit on a bootstrap sample of the data.
Second, at each split within a tree, only a random subset of all predictors
is searched to find the best predictor and split point to minimize the
impurity in the resulting subsets. The high variance among a large num-
ber of such classification trees converges to a robust prediction when
aggregating them across the ensemble.

Random forest classification was done using the scikit-learn toolbox
(Pedregosa et al., 2011) in Python. Every model incorporated 5000 trees
and considered �Npredictors randomly drawn predictors at each split. Clas-
sifier performance was evaluated by using prediction accuracy within a
fivefold cross-validation framework. Cross-validation prevents biased
accuracy estimates because the model is always tested on data it was not
trained on. Accuracy estimates were tested against chance level using a
binomial test (Combrisson and Jerbi, 2015). To obtain a measure of the
relative importance of each variable within the classification model, the Gini
index was computed (Breiman et al., 1984; Cutler et al., 2009). This
measure is based on the impurity reduction generated across all trees by
a predictor and reflects the importance of this variable for the classifier’s
prediction.
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The first classification model was fit to predict congruent and incon-
gruent class membership using theta-power values at network nodes as
predictors. For each participant, baseline-adjusted theta power (averaged
over 4 – 8 Hz and 500 – 800 ms) was averaged within conditions and these
averages were provided to the classifier, yielding 666 observations in total
(333 participants  2 conditions).

In addition to the theta-power model, random forest classifiers were com-
puted using baseline-adjusted beta power (averaged over 15–25 Hz and
800–1200 ms), RT, and all possible combinations of these entities as
predictors.

This approach was chosen over linear correlation analyses to compare
different models (theta, beta, beta � RT, etc.). These comparisons are
difficult to achieve via pure correlations between predictors. Moreover,
linear models are not suitable for the aforementioned comparison be-
cause of the highly correlated nature of the predictors of interest.

Results
As expected, RT was longer on INC trials, with higher demand for
inhibitory control, than on CON and NEU trials (M/SD INC �

831.5/146.5, CON � 636.8/103.2, NEU �
645.2/92.5; F(2,996) � 297.7, p � 0.001,
Huynh–Feldt � � 0.7; INC vs NEU
t(332) � 33.1, p � 0.001, Cohen’s d � �1.52�;
INC vs CON t(332) �32.3, p�0.001, Cohen’s
d � �1.53�; CON vs NEU t(332) � �2.9, p �
0.003, Cohen’s d � �0.086�).

Global network configuration of
inhibitory control is dominated by
theta and alpha/beta neural oscillations
Using the same participants (n � 96) and
a replication sample of 237 participants
(see Materials and Methods) to evaluate
the oscillatory dynamics in the cerebral
subnetwork (Fig. 1A) identified via fMRI
(Spielberg et al., 2015), EEG data (same
task recorded in a separate session; see Sil-
ton et al., 2010) were back-projected to
the brain locations identified in that net-
work. Time–frequency analysis of each
EEG source revealed reliable modulations
of theta (4 –7 Hz) and alpha/beta (10 –30
Hz) oscillations (Fig. 1B), which is consis-
tent with previous reports (Hanslmayr et
al., 2008; Cavanagh and Frank, 2014; Co-
hen, 2014; Popov et al., 2015). Theta ac-
tivity was higher in the INC condition
than in the CON condition, starting �300
to 400 ms after word onset and lasting sev-

eral hundred milliseconds. This increase was accompanied by a
condition-specific (INC � CON) decrease in alpha/beta activity
starting around 500 ms after word onset and lasting for �1000 ms.
Whole-brain source analysis revealed that theta generators were pre-
dominantly confined to frontal regions (Fig. 2A), whereas beta ac-
tivity was most pronounced in parietal areas (Fig. 2B).

Inhibitory demands drive theta and alpha/beta oscillations
Initial contrasts were performed with the n � 96 sample reported
previously (Spielberg et al., 2015) and shown in the top row of
Figure 3. Figure 3A illustrates significant (INC � CON) condi-
tion differences in alpha/beta power (p � 0.01, nonparametric
cluster permutation approach, see Materials and Methods). As
predicted, higher demand for inhibitory control was associated
with an alpha/beta power decrease from prestimulus baseline.
This decrease was inversely related to behavioral performance
(Fig. 3B): slower responses were related to greater decrease in

Figure 1. Neuronal dynamics in the hemodynamically informed cerebral network of inhibitory control (n �333). A, The network reported to exhibit greater hemodynamic coupling with increase
in inhibitory control demands (reprinted with permission from Spielberg et al., 2015). Circle color represents module membership; circle size reflects node strength. B, Time–frequency represen-
tation of power at locations corresponding to the topology in A. Inset at right enlarges the time–frequency plot for a single exemplar node. Word onset was at 0 ms. Warm and cold colors reflect
power changes from prestimulus baseline expressed in decibels.

Figure 2. Whole-brain distribution of condition differences in theta and beta power (n � 333). A, Left, Time–frequency
representation of power for a representative node (SFG). Right, Difference in source-reconstructed theta power between INC and
CON conditions for the time and frequency tile highlighted by the dashed rectangle in A. B, Left, Same as in A, with the rectangle
highlighting a different time–frequency combination. Right, Differences in source-reconstructed beta power between the INC and
CON conditions for the time and frequency tile highlighted by the dashed rectangle in A. Warm and cold colors (thresholded at p �
0.05, corrected in right panels) reflect the range of t-values in both A and B.
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alpha/beta power (Fig. 2C). The n � 237
sample replicated these effects (bottom
row of Fig. 3). This much larger sample
also showed more theta power in the high-
demand INC condition (p � 0.01) (this
effect was evident in the first sample but
did not reach significance).

In summary, high demand for inhibi-
tory control was related to reliable
changes in theta and alpha/beta power.
The latter in turn related to slower re-
sponses. The general consistency across
the panels of Figure 1B suggests that
power changes were distributed through-
out the entire network, precluding infer-
ences about internodal communication
from these initial analyses.

SFG and dACC are primary nodes of
prefrontal inhibitory control
Internodal communication was assessed
in the combined sample via spectrally re-
solved GC analysis (see Materials and Methods). Conditional
GC was computed on original and reversed time series (Chen et
al., 2006; Wen et al., 2013). Robust connectivity relationships are
illustrated in Figure 4A. There were directionally asymmetric
connections, especially in the theta range between SFG and dACC
and between SFG and IFG, revealing a strong top-down influence
of SFG over both dACC and IFG (GC spectra, p � 0.001; Fig. 4B).
Moreover, there was an exchange between frontal and parietal
brain areas from precuneus to IFG and MFG in low theta-alpha
frequency range (7–10 Hz; p � 0.01, nonparametric cluster per-
mutation; Fig. 4B, middle). Finally, dACC exerted control over
MFG at a range of frequencies, although this was particularly
pronounced in the theta range (p � 0.001; Fig. 4B, right). These
corticocortical relationships were reversed after time reversal of
the original time series (Fig. 4C), which confirms that the re-
ported lagged relationships between any two brain regions likely
reflect unbiased directed effective influence of A on B beyond
mere correlation. In summary, there was a dynamic exchange
within frontal and between frontal and parietal brain areas: pre-
frontal control manifested in theta and parietal to frontal com-
munication evident at higher frequencies overlapping with
common posterior alpha oscillations (8–13 Hz).

Inhibitory control is best predicted by combination of brain
and behavioral variables
The analyses presented above indicate that theta and beta oscil-
lations reliably differed in high- and low-demand conditions and
revealed effective connectivity patterns within the inhibitory con-
trol network. These results raise the question of the extent to
which theta and beta power dynamics reflect high versus low
demands for inhibitory control and perhaps mediate effects of
these demands on overt performance.

The random forest machine learning algorithm was used to
evaluate the predictive strength of theta, beta, and behavioral
performance and their combinations for predicting the condition
membership (INC or CON) of averaged data at the single-subject
level. Random forest is an ensemble technique that aggregates the
results of many decision trees into one classifier. These trees par-
tition the data by implementing binary splits (Breiman, 2001).
Every decision tree is built on random samples of observations
and predictors. This ensemble approach makes random forest a

robust technique able to handle data with highly correlated pre-
dictors particularly well. Figure 5A provides the classification re-
sults. Condition could be predicted above chance on the basis of
any subset of the three variables, with all three in combination
achieving 77% accuracy. Figure 1B shows that both theta and beta
oscillatory activity were distributed across the entire network, with
some variability in amplitude. The information value of a particular
node for prediction of inhibitory control demands was estimated by
random forest models (Fig. 4B). Estimates of theta oscillatory activ-
ity derived from SFG were most important for accurate classifi-
cation of condition membership (Fig. 5B, left). In the beta power
model, parietal oscillations (precuneus; Fig. 5B, right) were the
most important.

Figure 5A suggested an interesting pattern: although theta by
itself provided the lowest accuracy, the combination of theta and
RT had higher classification accuracy than the combination of
beta and RT. This suggests more variance shared by beta and RT.
This post hoc hypothesis was addressed by first extracting the
envelope of beta and theta activity as a function of time for each
participant. These individual time courses were sorted according
to mean RT across trials of each participant. The shift from beta
decrease to increase coincident with button press in Figure 5C
suggests a close coupling of beta activity immediately preceding
button press, whereas the time courses of theta and button press
were more loosely associated, consistent with more variance
shared by beta activity and RT.

In summary, the application of predictive analytics to neuro-
imaging data revealed the following: (1) neither behavioral nor
brain-derived variables, but rather, a combination of both is the
best predictor of cognitive state; (2) SFG and not dACC theta
provides numerically higher feature importance during classifi-
cation of low versus high demand for inhibitory control; and
(3) posterior beta has the highest classification value and reliably
tracks the onset of a behavioral outcome (RT).

Discussion
The present study evaluated the effective connectivity within a
previously reported (Spielberg et al., 2015) network of inhibitory
control during a color–word Stroop task. In a sample of 333
human volunteers, network nodes exhibiting greater intercon-
nectivity during periods of higher demands for inhibitory control
(Spielberg et al., 2015) are dominated by oscillatory activity in the

Figure 3. Task demand modulation of theta and alpha/beta power (top, n � 96; bottom, n � 237). A, Time–frequency
representation of power for a representative node (SFG). Color scale indicates condition difference (INC � CON) as change from
baseline power in decibels. Highlighted areas indicate time–frequency tiles allowing the rejection of the null hypothesis.
B, Time–frequency representation of correlations between difference in spectral power (INC � CON) and in RT (INC � CON). Color
scale indicates Spearman correlation. Highlighted areas indicate time–frequency tiles allowing the rejection of the null hypothesis.
C, Scatterplots illustrating each participant’s mean value over the respective outlined areas in B and �RT.
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beta- and theta-frequency bands (Fig. 1). A broad frequency
range around beta was related to RT (Fig. 3), whereas internodal
effective connectivity was most pronounced around theta (Fig.
4), although the full dissociation was not tested. Participant brain
state during conditions with high versus low demand for inhibi-
tory control can be predicted by incorporating knowledge of both
brain and behavior better than either alone (Fig. 5). Frontal
(SFG) and parietal (precuneus) nodes were found to be most

informative for inferences about inhibitory control, underscor-
ing the functional specificity of network nodes in time, frequency,
and space.

Spectrotemporal dynamics of the inhibitory control network
The present study used the color–word Stroop task to evaluate
the temporal course of critical nodes associated with inhibitory
control processes. In addition to recruiting top-down inhibitory

Figure 4. Effective connectivity patterns in the inhibitory control network (n � 333). A, GC effects are illustrated in the brain models with arrows indicating the directionality of the respective
connection. Arrows use the color scheme of the GC spectra illustrated in B, where GC magnitude is depicted on the ordinate (log of ratio of F-values of the two models). Light-colored regions around
spectra represent 1 SE. Higher values indicate stronger GC. Yellow shading indicates contiguous frequencies showing significant GC directionality differences. Bonferroni-corrected p-values ( p �
0.01) are reported above the respective clusters. C, Same as in B but for time-reversed time series (see Materials and Methods).

Figure 5. Classification performance of theta, beta, and RT (n � 333). A, Classification accuracy differentiating condition membership (INC vs CON). B, Brain models illustrating the importance
of a given node for accurate classification of condition membership based on theta (left) and beta (right) activity. Importance is indicated by color and dot size. C, Time course of individual subjects’
beta (left) and theta (right) activity change from prestimulus baseline. Each row represents a single participant, with participants sorted according to mean RT across trials (indicated by the black
sigmoids). Color denotes amplitude change from baseline, with cold colors indicating decrease and hot colors indicating increase.
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control mechanisms, the task required motor output (button
press) to respond to the color of the word while ignoring the
meaning of the word. Therefore, sensorimotor regions (e.g., pre-
motor, primary motor, supplementary motor, and somatosen-
sory cortices) were presumably recruited after conflict resolution
and response selection to implement a behavioral response. Based
on a large body of evidence (Cavanagh and Frank, 2014), we hy-
pothesized that inhibitory control demands would be reflected in
an increase in theta (4 – 8 Hz) oscillatory activity (Chmielewski et
al., 2016), whereas behavioral performance (RT) would be pre-
dominantly associated with power modulations in alpha/beta
(10 –30 Hz) activity (Engel and Fries, 2010).

Present analyses (Figs. 1, 2) are consistent with the literature
linking theta oscillatory activity to inhibitory control (Cohen et
al., 2008; Cavanagh et al., 2009; Hanslmayr et al., 2012; Cohen
and Donner, 2013; Pastötter et al., 2013; Cavanagh and Frank,
2014; Cohen, 2014; Oehrn et al., 2014; Zavala et al., 2014;
Chmielewski et al., 2016) and beta activity to conflict resolution
(Fan et al., 2007; Cohen et al., 2008; Engel and Fries, 2010; Brit-
tain et al., 2012; Pastötter et al., 2013). Replicating previous find-
ings, theta activity was greater during higher inhibitory demand.
This activity was spatially distributed, involving both frontal and
parietal brain regions and not confined to a particular node (e.g.,
dACC). Paralleling theta findings, power decrease in the alpha/
beta range was greater during higher inhibitory demand and had
similar spatial distribution because both were reliably present in
each of the nodes displayed in the network in Figure 1B. In addi-
tion, a larger condition difference in alpha/beta power decrease
was correlated with a larger RT condition difference. Typically,
power decreases in the alpha/beta range are considered reflective
of efficient cognitive performance (Hanslmayr et al., 2012; Frey et
al., 2015), in which “efficiency” is typically operationalized be-
haviorally by higher accuracy and/or response speed (i.e., shorter
RT). Present results extend these findings by demonstrating that
RT could be a potentially misleading parameter in the context of
inhibitory control tasks. Rather than response speed, reduction
of alpha/beta activity was a better index of task engagement and
effort. Despite being characterized by a clear midfrontal (theta)
and posterior (alpha/beta) topography, both rhythms were evi-
dent throughout the entire network. The present study aimed to
identify whether these rhythms fostered effective internodal in-
formation exchange.

Effective network communication: a mechanism of
upregulation of the desired response
A number of connections exhibited significant effective connec-
tivity even after controlling for spurious connections (see Mate-
rials and Methods). Theta evidenced a directed relationship from
SFG to dACC and IFG (Fig. 4), whereas left hemisphere MFG was
under dACC control via theta. These findings provide a novel
view of the role of dACC in inhibitory control: that theta carries
the information fed forward from SFG to dACC, perhaps com-
municating information about the interference itself; for exam-
ple, the mismatch between the task-relevant verbal content and
the interfering color. dACC appears to signal the need for main-
tenance of verbal information to left MFG, fostering response
accuracy at the expense of speed. It is worth noting that commu-
nication within the frontal portion of this inhibitory control
network was dominated primarily by theta activity despite the
presence of alpha/beta activity. A directed parietofrontal influ-
ence was evident from precuneus to the middle and inferior por-
tions of the frontal gyrus at theta frequencies (Fig. 4B, middle).

A potential alternative explanation for the present corticocor-
tical interactions could be prolonged motor inhibition. A control
analysis subsampling trials in INC and CON conditions to elim-
inate the difference in RT yielded largely similar corticocortical
interactions, evidence against that nonspecific explanation. The
present results are consistent with a recent proposal based on
animal and human evidence arguing that cerebral communica-
tion feedback operates at alpha/beta frequencies, whereas feed-
forward exchange is propagated via theta- and gamma-frequency
ranges (Bastos et al., 2015). According to this view, sensory infor-
mation regarding both task-relevant and interfering information
is initially propagated from parietal to frontal cortex. Within the
frontal module, information about the desired response is actively
propagated within a loop comprising SFG-dACC and MFG. GC
analyses were performed for the entire spectrum from 0 to the
Nyquist frequency of 125 Hz and no effects were observed for
frequencies above 40 Hz.

At a behavioral level, this processing is achieved at the expense
of RT, in support of theories highlighting the selection and up-
regulation of the desired response rather than mere suppression
of interfering input (Munakata et al., 2011). The present findings
in the alpha/beta range provide further evidence for this view.
First, accurate yet slower responses during high inhibitory de-
mand were associated with greater decrease of alpha/beta activity.
Although not part of the model evaluated here, it is well docu-
mented that decreases in alpha/beta activity before motor output
originate mainly from primary motor regions (Davis et al., 2012;
Pape and Siegel, 2016). Second, this motor cortex beta modula-
tion is prolonged (Fig. 5C), nicely tracking the behavioral out-
come (RT) on a subject-by-subject basis. Therefore, in addition
to theta-mediated selection within the frontal subcircuit, a fur-
ther upregulation of the desired response is reflected in deliber-
ate, accuracy-directed, motor activation manifested in alpha/beta
activity.

Prediction of inhibitory control demands based on
neural oscillations
A further focus of the present study was the predictability of
inhibitory demand on the basis of neural activity. Such a research
question is often hampered by low sample size, but the large
sample size of the present study enabled state-of-the-art predic-
tive analyses. Both theta and beta activity were informative
enough to classify high versus low levels of inhibitory demand
above chance (Fig. 5). Classification performance was lowest for
theta followed by beta and reached almost the level of RT alone
when the two bands were combined. However, although beta-
based classification was better than theta-based classification, the
combination of beta and RT was less accurate than the combina-
tion of theta and RT (Fig. 5A). This frequency-dependent classi-
fication specificity is further supported by the fact that theta in
SFG and alpha/beta in precuneus were the most important brain
regions for accurate classification. Therefore, combining three
(theta, beta, and RT) out of, in principle, an infinite number of
psychological and biological variables that can be associated with
a given individual allows for accurate prediction of need for in-
hibitory control in at least three out of four trial averages (Fig.
5A).

Conclusions
In the present study, a large sample of healthy human partici-
pants facilitated identification of mechanisms within a recently
identified brain network supporting inhibitory control. Combin-
ing two imaging modalities, fMRI and EEG, led to several con-
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clusions. Information flow during demand for inhibitory control
is performed primarily by theta and alpha/beta oscillations. Theta
activity establishes directed frontoparietal communication. Ex-
tending common views of the role of dACC as a key structure in
inhibitory control, the present results indicate that dACC is not
simply a control region; it exerts control, yet is itself subject to
control within a prefrontal subcircuit connecting with SFG and
directing information to MFG. Inhibitory control thus involves a
dynamic routing process during which the desired response is
upregulated via theta-mediated effective connectivity within key
nodes of the PFC and beta-mediated motor preparation. The
present findings provide mechanistic insights into the biological
implementation of a psychological phenomenon.
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