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a b s t r a c t 

Effective amygdalar functionality depends on the concerted activity of a complex network of regions. Thus, the 

role of the amygdala cannot be fully understood without identifying the set of brain structures that allow the 

processes performed by the amygdala to emerge. However, this identification has yet to occur, hampering our 

ability to understand both normative and pathological processes that rely on the amygdala. We developed and 

applied novel graph theory methods to diffusion-based anatomical networks in a large sample ( n = 1,052, 54.28% 

female, mean age = 28.75) to identify nodes that critically support amygdalar interactions with the larger brain 

network. We examined three graph properties, each indexing a different emergent aspect of amygdalar network 

communication: current-flow betweenness centrality (amygdalar influence on information flowing between other 

pairs of nodes), node communicability (clarity of communication between the amygdala and other nodes), and 

subgraph centrality (amygdalar influence over local network processing). Findings demonstrate that each of these 

aspects of amygdalar communication is associated with separable sets of regions and, in some cases, these sets 

map onto previously identified sub-circuits. For example, betweenness and communicability were each associated 

with different sub-circuits that have been identified in previous work as supporting distinct aspects of memory- 

guided behavior. Other regions identified span basic (e.g., visual cortex) to higher-order (e.g., insula) sensory 

processing and executive functions (e.g., dorsolateral prefrontal cortex). Present findings expand our current 

understanding of amygdalar function by showing that there is no single ‘amygdala network’, but rather multiple 

networks, each supporting different modes of amygdalar interaction with the larger brain network. Additionally, 

our novel method allowed for the identification of how such regions support the amygdala, which has not been 

previously explored. 
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The amygdala is critically involved in a variety of complex emo-

ional and motivational processes ( Cardinal et al., 2002 ; Lang and

avis, 2006 ), and amygdalar processing is disturbed across a range of

sychological disorders ( Evans et al., 2008 ; He et al., 2019 ; Zhang et al.,

020 ). Decades of research have resulted in the identification of regions

hat show complex interactions with amygdala ( Phelps et al., 2004 ),

nd these regions likely support the capacity for amygdala to efficiently

nd effectively interact with the larger brain network. However, past

ork has been unable to provide insight into the manner in which such

egions support amygdalar functionality. Specifically, the way in which

he amygdala interacts with the larger network depends on a number of

actors, including the extent to which signals pass through (and thus can

e influenced by) the amygdala on their way to other areas, the qual-

ty (i.e., signal-to-noise) of amygdalar communication, and the extent to

hich amygdala is able to influence communication specifically within
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ub-networks. Although past work has identified regions that interact

ith amygdala, it has not specified which of these factors, if any, are

upported by a given region. In fact, it is entirely possible that separate

ets of brain regions support these different factors. 

Unfortunately, extant methods in humans cannot provide insight

nto the factors that modulate amygdala communication, and thus a

ovel approach is needed to address this key gap in the literature. Specif-

cally, past work has largely employed a ‘bivariate’ perspective – exam-

ning the link between a pair of regions (i.e., the amygdala and a region

ith which it is connected) – while ignoring the placement of that link

ithin the context of the larger network that constitutes the brain. For

xample, visual information arrives at the amygdala via multiple routes

 Pessoa and Adolphs, 2010 ). Thus, removal of one route will not prevent

his information from being delivered to the amygdala, a fact that is not

vident when only a single connection is examined. In order to parse the
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(  
ifferent factors mentioned above, it is necessary to examine how the

articular arrangement of (direct and indirect) amygdalar connections fa-

ilitates or impedes amygdalar communication within the broader brain

etwork. This can be done by leveraging graph theory methods that in-

ex emergent properties of brain regions ( Rubinov and Sporns, 2010 ).

here are a number of ways in which the amygdala could influence

rocessing in other brain regions, each of which can be indexed via dif-

erent graph theory metrics. For example, the amygdala could serve as

 bottleneck through which information from one area of the network

ust flow to reach other areas. Such ‘hub’ nodes are critical to integrat-

ng distributed information, and it is the position of a node within the

etwork that confers ‘hubness’ rather than the number/strength of the

ode’s connections per se . As described below, this role can be indexed

ia current-flow (CF) betweenness centrality . A second way that the amyg-

ala could influence processing in other brain regions is if it sends infor-

ation to a given region via multiple (parallel) paths , because this will

educe the impact of noise added along each individual pathway. As de-

cribed below, this role can be indexed via node communicability . These

wo ‘network properties’, as we will refer to them, focus on amygdalar

nfluence on processing across the entire network, but of equal impor-

ance is amygdalar influence within its local network (i.e., nodes that

t is strongly connected to, either directly or indirectly). In particular,

ne of the fundamental organizing principles of networks is segregation ,

n which the presence of clusters of highly connected nodes (i.e., local

etworks) allows for specialized processing to occur within the different

etwork clusters ( Sporns, 2013 ). The amygdala will influence process-

ng in its local network if it has multiple ‘self-loops’ (paths that start and

nd at the amygdala), because such loops allow for recursive processing

hat reincorporates amygdala-related information. As described below,

his role can be indexed via subgraph centrality . 

The network properties introduced above are not competing,

ut rather describe different aspects of how amygdalar interac-

ion/influence can occur. Although typical graph methods allow for the

dentification of how much a node influences the network, they do not

eveal the network that supports this influence . Identifying the regions that

upport each amygdalar network property is crucial for understanding

he precise neural mechanisms that result in amygdala-related psycho-

ogical processes, along with the manner in which such processes go

wry in pathology. 

The present study proposes and applies a novel graph theory tech-

ique for identifying which region(s) support different factors that facil-

tate amygdalar influence within the brain. Graph methods have been

sed previously to assess the impact of a region on global processes via

virtual lesioning’ ( Alstott et al., 2009 ; Owen et al., 2016 ; Pestilli et al.,

014 ; Schmitt et al., 2012 ; Stam, 2014 ). ‘Virtual lesioning’ methods ‘re-

ove’ (e.g., set its links to zero or remove it entirely from the connec-

ivity matrix) a node from the network and examine the impact of this

emoval on a property of the entire brain network. For example, past

ork has examined overall network robustness by (i) computing global

etwork properties (e.g., overall communication efficiency) on the full

etwork, (ii) excluding a node (a ‘virtual lesion’) and re-computing

lobal properties on the reduced network, and (iii) comparing the val-

es from the reduced network against those from the full network to

etermine how easily global processes can be disturbed ( Kaiser et al.,

007 ). This approach is valuable for providing information about the

xtent to which individual brain regions support emergent processes in

he overall network, but it does not allow for examination of how one re-

ion supports the emergent network properties of another region (e.g.,

mygdala), which is the goal of the present work. 

. Novel ‘virtual lesion’ method 

In the present study we developed a novel extension of the ‘virtual

esioning’ methodology (described in detail below) and applied it to

tructural brain networks (derived from diffusion-weighted imaging) to

lucidate the architecture needed to support effective amygdalar inter-
2 
ctions within the larger network. Specifically, we examined how the

xclusion of a (non-amygdala) network node impacts network proper-

ies of the amygdala, rather than how the removal of a given node in-

uences properties of the global network, as done in previous ‘lesion-

ng’ techniques. That is, instead of looking at the impact that a single

ode has on the network as a whole (e.g., Alstott et al., 2009 ), we ex-

mined the impact of single nodes on the ability of the amygdala to

ffectively operate within the network. Consequently, ‘virtual lesioning’

echniques used in past work can provide information about the role of

he ‘lesioned’ region in the global network, whereas our technique pro-

ides information about the contribution of (non-amygdala) regions to

mygdalar communication in the network. Furthermore, by examining

ultiple types of network properties, our method allows us to identify

hich nodes support which aspects of amygdalar communication. 

For clarity, we will refer to the amygdala as the ‘focal’ node and

ll other regions as ‘satellite’ nodes. As illustrated in Fig. 1 , our ‘virtual

esion’ method entails (i) calculating measures of amygdalar centrality

i.e., graph theory properties that assay an aspect of how the amygdala

nteracts within the brain network) in the full network, (ii) iteratively

xcluding each satellite node from the network and recalculating amyg-

alar centrality after each exclusion, and (iii) comparing amygdalar cen-

rality with and without each satellite node. In other words, for each

atellite node, we computed the difference between amygdala central-

ty in the full network (i.e., no nodes removed) and in the ‘reduced’

etwork (i.e., with the current satellite node removed). This difference

ndexes the extent to which that specific satellite node supports a par-

icular mode of amygdala interaction with the network (i.e., amygdalar

entrality in the brain). To be clear, only one satellite node is excluded

t a time to create the ‘reduced’ network. 

In summary, this method identifies nodes that, when ‘lesioned’, de-

rease the centrality of the amygdala, thereby identifying the network of

atellite nodes crucial to supporting each amygdalar network property.

mportantly, the method applied here is an extension of that used in

revious studies, and thus the basic ‘virtual lesioning’ framework (i.e.,

emoving a node and examining the impact of this removal on graph

etrics) has been validated in a number of past studies ( Alstott et al.,

009 ; Kaiser et al., 2007 ; Owen et al., 2016 ; Schmitt et al., 2012 ). We

xtended this basic framework by focusing on graph metrics that are

ode-specific (i.e., indexing an aspect of a particular node) rather than

lobal (i.e., indexing an aspect of the entire network). 

We focused on graph metrics assaying amygdalar centrality, as these

etrics capture different types of influence that the amygdala has on

ther regions in the network. In particular, we chose the three comple-

entary metrics mentioned above. Current-flow (CF) betweenness cen-

rality ( Brandes and Fleischer, 2005 ; Newman, 2005 ) is the amount of

etwork flow that goes through a node, thus indexing the extent to which

he amygdala influences information flow between all pairs of nodes in the

etwork (i.e., functions as a communication hub/bottleneck). Node com-

unicability ( Benzi and Klymko, 2013 ; Estrada and Hatano, 2008 ) re-

ects the number of different, parallel paths that information can travel

etween the amygdala and each node in the rest of the brain. Thus,

his property indexes the extent to which the amygdala can transmit in-

ormation ‘clearly’ with all nodes in the network, because information

raveling along multiple paths will (on average) increase the amount of

signal’ from the amygdala relative to ‘noise’ from the network. Subgraph

entrality ( Estrada and Rodriguez-Velazquez, 2005 ) reflects the number

f random paths that start from a given node and traverse back to that

ode (i.e., self-loops). Given that these loops allow for recursive pro-

essing that reincorporates amygdala-related information, this property

ndexes the extent to which the amygdala influences local networks. The

riteria used to choose metrics are described more fully in the Methods

ection. 

In order to depict how our ‘lesioning’ procedure operates on each

entrality metric, we provide examples using ‘toy’ networks ( Figs. 2–4 ).

n particular, these figures illustrate how the removal of a satellite node

labeled with an ‘S’) impacts each type of centrality for the focal node
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Fig. 1. Illustration of virtual lesion method. 

Yellow nodes represent focal node of interest. Dark blue nodes represent satellite nodes included in calculation of centrality measures. Light blue nodes represent 

removed (‘virtually lesioned’) satellite nodes not included in recalculation of centrality measures. Panel A shows a ‘full’ network (all nodes included), whereas panels 

B-E show ‘reduced’ networks (one satellite node removed). Centrality is first calculated for the focal node in the full network (A) and then recalculated (for the focal 

node) following the removal of satellite node 1 (B), node 2 (C), node 3 (D), and node 4 (E). Change in focal node centrality is calculated for each removed node by 

subtracting the centrality value of the focal node in the full network (A) from each reduced network (B–E). 
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labeled with an ‘F’) of interest (i.e., amygdala). Detailed descriptions

or each metric are provided in the figure legends. 

We examined diffusion-based structural (as opposed to functional)

rain networks, because a ‘connection’ between two nodes in a func-

ional network (correlated activity between two nodes) reflects sources

ther than those nodes, including the influence of a third node that con-

ects to both of the nodes. Thus, a ‘virtual lesion’ cannot completely

emove the influence of a node in functional data, as that variance re-

ains present in other connections in the network. This is not true of

iffusion-based networks, as they reflect the specific white matter path-

ays between node pairs, and thus the removal of a node (and the

athways leading to it) removes the influence of that node in the or-

anization of the network. Therefore, the interpretation of ‘virtual le-

ioning’ of diffusion networks is significantly clearer than if applied to

unctional networks. To be clear, we are not arguing that the physical

emoval (i.e., surgical lesion) of a node would not (eventually) result

n changes to pathways connected to other nodes (i.e., reorganization).

ather, ‘virtual’ removal of a node allows us to see the manner in which

t’s placement in the network (as it currently stands) influences amyg-

alar capabilities. Moreover, functional networks are constrained by

heir structural underpinnings ( Horn et al., 2014 ), and thus, diffusion-

ased estimates of a network reflect the capability of that network to

ommunicate, rather than actual communication. Given that we are in-

erested in identifying regions that support the amygdala’s capability to

nteract with other brain regions and the clearer interpretation of “lesion-

ng ” diffusion networks, examining diffusion-based networks represents

he logical first step. 

To identify the sets of satellite (i.e., non-amygdala) nodes that are

articularly crucial for each metric, we conducted pairwise comparisons

etween the metrics (for each satellite node). This approach allowed

s to determine whether a satellite node was more important for one

etric than the others. To enhance the robustness and reproducibility of

he findings, the 1052 participants were randomly grouped into ten sets

105 or 106 participants per set), all statistical analyses were carried out
3 
ithin each set, and only findings that were significant (after within-set

orrection for multiple comparisons) across all sets were retained. This

pproach leverages the large sample size in such a way as to maximize

he robustness and replicability of the present findings. 

. Materials and methods 

.1. Participant data 

We used data collected from 1053 healthy participants [ M

ge = 28.75, SD = 3.68; female = 571 (54.28%); White = 798 (75.86%),

lack = 148 (14.06%), Asian/Pacific = 63 (5.98%), American In-

ian/Alaskan = 2 (0.19%), Multiple = 26 (2.47%), Not reported = 15

1.43%), Hispanic/Latino = 88 (8.37%)] as part of the Human Connec-

ome Project (HCP). Briefly, the HCP offers a database of anonymous

tructural, diffusion, and functional MRI for research purposes ( Van Es-

en et al., 2013 ). We conducted secondary analysis on de-identified open

ccess data after agreeing to the HCP Open Access Data Use Terms. In-

ormed consent, including consent to share de-identified data, was ac-

uired by the HCP and approved by the Washington University institu-

ional review board. One subject was excluded because their structural

etwork became disconnected after calculation of graph theory metrics,

eading to a final n = 1052. 

.2. Graph metrics 

Three properties measuring different aspects of centrality were cal-

ulated for each participant, for each hemisphere, for each node. We

elected only a small number of metrics for several reasons, including

o avoid type 1 error and because of the complex (and thus time consum-

ng) computational requirements of metric computation (on top of prob-

bilistic tracking). As mentioned above, we used several criteria to select

rom among the wider array of available properties: (i) We chose graph

roperties based on frameworks appropriate for brain networks . Specifically,
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Fig. 2. Toy network demonstration of the novel virtual lesion method on betweenness centrality. 

The figure above demonstrates the impact of removing (i.e., ‘virtually lesioning’) a satellite node (labeled ‘S’) on the betweenness centrality of the focal node (labeled 

‘F’) of interest (i.e., amygdala). Betweenness centrality reflects the influence that a node has over communication between all pairs of nodes in the network. In other 

words, a node will have high betweenness if information from one part of the network must flow through that node in order to reach another part of the network. 

Although the current-flow version of betweenness centrality was used in the present work, the shortest-path version of betweenness provides a conceptually simpler 

(and thus clearer) demonstration of our method. Therefore, we first demonstrate our method via shortest-path betweenness (Panels A1/A2) and then extend to 

current-flow betweenness (Panels B1/B2). Panel A (shortest path framework) : For ease of demonstration, we focus on the influence of the focal node ‘F’ only on the 

communication between two ‘target’ nodes (labeled ‘T’), as presenting communication between all pairs of nodes in the network would be overly complex. In A1 

and A2, the red lines represent the shortest path between the two target (‘T’) nodes. In A1, we see that the shortest path flows through focal node ‘F’, thus allowing 

node ‘F’ to influence the communication between these nodes. In A2, we see that the shortest path no longer flows through the focal node ‘F’ after the satellite node 

‘S’ has been ‘lesioned’. Thus, satellite node ‘S’ appears to support the betweenness centrality of focal node ‘F’. Panel B (current-flow framework) : In both B1 and B2, 

the width of the black lines represents the amount of communication flowing through each connection (in this case taking into account communication between all 

pairs of nodes, which is why no ‘target’ nodes are present). In B1, we see that a relatively large amount of information will flow into focal node ‘F’ (as indicated 

by the thick connection between nodes ‘S’ and ‘F’), allowing node ‘F’ to influence this communication. In B2, we see that removal of satellite node ‘S’ significantly 

decreases the amount of information flowing though focal node ‘F’ (i.e., by 1.8 standard deviations). Note, the network above is the same as network 2 in Fig. 3 of 

Newman (2005) , the original presentation of Current-Flow Betweenness Centrality. 
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t  
ll graph properties rest on assumptions about the underlying network,

nd several common properties rest on assumptions which are violated

ith brain networks ( Fornito et al., 2016 ). For example, properties that

epend on the ‘shortest paths’ are not appropriate ( Goñi et al., 2013 ),

iven that they assume that only the shortest path is used/relevant. The

hortest path framework would be appropriate in a transportation net-

ork, where a vehicle travels only one route. However, brain networks

unction via parallel transfer (i.e., one neuron can excite multiple neu-

ons; Fornito et al., 2016 ), and thus it is necessary to take multiple paths

nto account, which a shortest path framework does not do. In contrast,

roperties based on either a current flow (CF) model or the matrix expo-

ential (i.e., communicability) are appropriate for the mechanisms by

hich information flows in brain networks, because they incorporate

he influence of all potential paths, weighting this influence by path

ength (i.e., longer paths are down-weighted). Thus, these properties re-

ect the fact that shorter, more direct paths between regions are likely

ore important to communication between brain regions than longer,

ore indirect paths. (ii) We chose properties that are theoretically rele-

ant for brain processing . Specifically, we selected properties that index

he influence of a node over processing in the local and global network

nd the quality of this communication, given that these were the spe-

ific aspects of network communication that were of interest. (iii) We

elected graph properties in which removing a node provides an interpretable
4 
nd interesting impact on the metric . For example, removing node X would

ave an interpretable impact on amygdalar node strength (i.e., sum of

he links attached to a node), but this impact would be uninteresting as

t would simply reflect the weight of the link connecting amygdala to

ode X . Conversely, although the impact of removing a node on amyg-

alar clustering coefficient could potentially be interesting, this impact

s much less amenable to a clear interpretation. Additionally, we se-

ected properties that incorporate both direct and indirect connections.

n particular, many properties are based solely, or principally, on first-

rder connectivity (i.e., direct connections to a node), which would not

llow us to identify nodes that play a crucial supportive role for amyg-

ala but are not directly connected. 

Thus, we examined one current-flow-based measure (CF between-

ess centrality) and two communicability-based measures (node com-

unicability and subgraph centrality). All of these metrics are (i)

ased on appropriate frameworks, (ii) are theoretically relevant for

rain processing, and (iii) have an interpretable and interesting im-

act. CF betweenness measures the extent to which a node influences

nformation flow between other nodes ( Brandes and Fleischer, 2005 ;

ewman, 2005 ). Node communicability measures the extent to which a

ode can transmit information clearly with each other node ( Benzi and

lymko, 2013 ; Estrada and Hatano, 2008 ). Subgraph centrality measures

he extent to which a node influences communication in local networks
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Fig. 3. Toy network demonstration of the novel virtual lesion method on node communicability. (For interpretation of the references to color in this figure, the 

reader is referred to the web version of this article). 

The figure above demonstrates the impact of removing (i.e., ‘virtually lesioning’) a satellite node (labeled ‘S’) on the node communicability of the focal node (labeled 

‘F’) of interest (i.e., amygdala). Node communicability indexes a node’s ability to send/receive information clearly (i.e., without interference) to/from other parts of 

the network. Specifically, transmission of information between two nodes will be clearer (i.e., less degradation from noise) when there is a higher number of parallel 

paths between the nodes for information to travel along. Communicability reflects the clarity of communication between one node and a ‘target’ node, and node 

communicability is the sum of all the communicabilities associated with a single node (i.e., average clarity of communication between one node and the rest of the 

network). The networks above reflect communicability between the focal node and only a single ‘target’ node (labeled ‘T’), which was done for ease of illustration, 

as presenting the communicabilities between node ‘F’ and all other nodes would be overly complex. In our novel method, the satellite node ‘S’ is removed to quantify 

the extent to which the ‘S’ node supports the communicability of the ‘F’ node. Panel A above reflects the full network, and Panel B reflects that ‘lesioned’ network. 

Each line color in the panels above represents one of the possible paths between the focal node ‘F’ and the target node ‘T’, and the thickness of the lines reflects the 

length of that path. For example, the two thick light blue lines represent one path between the two nodes, and the lines are thick, because this is a short (two-hop) 

path. The four red lines in panel A represent another path between the two nodes, and these lines are thin, because this is a long (four-hop) path. In panel A, we 

see that there are six possible paths between the two nodes, allowing for significant parallel (and thus clearer) communication. In panel B, we see that the removal 

of the satellite node ‘S’ decreases the possible number of paths between the focal node ‘F’ and the target node ‘T’ to two, thus decreasing the potential clarity of 

communication between these nodes. Overall, the removal of satellite node ‘S’ reduces the node communicability of focal node ‘F’ by 2 standard deviations. 
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 Estrada and Rodriguez-Velazquez, 2005 ). See Supplementary Material

or the formulas used to compute each centrality measure and discussion

f the normalization factors used in the calculation of node communica-

ility and subgraph centrality . 

.3. Data acquisition 

Structural and diffusion-weighted data were acquired on a modified

T Skyra System (Siemens) using a 32-channel coil. A T1-weighted struc-

ural image was acquired (TR = 2400 ms; TE = 2.14 ms; TI = 1000 ms;

ip angle = 8°; voxel size = .7 x. 7 x. 7 mm; U ǧurbil et al., 2013 ). Dif-

usion acquisition involved a spin-echo EPI sequence ( Feinberg et al.,

010 ; Setsompop et al., 2012 ) with multiband EPI ( Moeller et al.,

010 ; Junqian Xu et al., 2012 ) and 270 diffusion-weighted directions

TR = 5520 ms; TE = 89.5 ms; flip angle = 78°; refocusing flip an-

le = 160°; voxel size = 1.25 × 1.25 × 1.25 mm; multiband fac-

or = 3; b-values = 1000, 2000, 3000 s/mm 

2 ; Sotiropoulos et al., 2013 ;

 ǧurbil et al., 2013 ). 

.4. HCP MRI preprocessing 

All imaging data passed HCP quality assurance ( Marcus et al., 2013 )

nd were run (by HCP) through several standardized preprocessing

ipelines. The use of this (standardized) preprocessed data allows for

reater methodological transparency and replicability across studies.

tructural T1-weighted images first underwent gradient distortion and
5 
ias field correction. Next, T1 images were run through FreeSurfer to ob-

ain a participant-specific subcortical segmentation, delineation of the

ortical mantle, and segmentation of a white matter mask ( Fischl, 2012 ).

iffusion data were run through an HCP pipeline in FSL to normalize

 0 image intensity across runs, and to correct for EPI distortion, eddy-

urrent induced distortions, gradient-nonlinearities, and subject motion

 Glasser et al., 2013 ; Jenkinson et al., 2012 ). Next, diffusion data was

nalyzed with FSL’s bedpostx toolbox which creates the files necessary

or performing probabilistic tractography ( Hernandez-Fernandez et al.,

019 ). 

.5. Connectivity atlas 

We used an atlas that included a 182-region (per hemisphere)

ortical parcellation created by HCP using multi-modal imaging

ata ( Glasser et al., 2016 ), in conjunction with a 6-region (per

emisphere) subject-specific subcortical segmentation obtained via

reeSurfer ( Fischl et al., 2002 ). The cortical atlas was warped to each

articipant’s cortical mantle using FreeSurfer transformations, then

rojected into 3d space. The HCP atlas and FreeSurfer segmentation

ach generated hippocampus ROIs, which were combined, thus result-

ng in a total of 186 nodes per hemisphere. Networks were calcu-

ated separately for right and left hemispheres, because the relatively

ew contralateral (vs. ipsilateral) amygdalar connections are known

rom tracing studies to be light and mimic the much denser ipsilateral
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Fig. 4. Toy network demonstration of the novel virtual lesion method on subgraph centrality. 

The figure above demonstrates the impact of removing (i.e., ‘virtually lesioning’) a satellite node (labeled ‘S’) on the subgraph centrality of the focal node (labeled 

‘F’) of interest (i.e., amygdala). Subgraph centrality indexes the level of influence that a node has over processing in the local network. Specifically, a node will have 

more influence in the local network when there are a larger number of paths that leave from and return to that node (i.e., closed walks), given that this allows for 

recursive processing that reincorporates information from the focal node. In our novel method, the satellite node ‘S’ is ‘lesioned’ to quantify the extent to which the 

‘S’ node supports the subgraph centrality of the focal node ‘F’. Panel A above reflects the full network, and Panel B reflects that ‘lesioned’ network. Each line color 

in the panels above represents one of the possible paths that leaves from and returns to the focal node ‘F’, and the thickness of the lines reflects the length of that 

path. For example, the three thick yellow lines represent one closed walk, and the lines are thick, because this is a short (three-hop) path. The five green lines in 

Panel A represent another closed walk, and these lines are thin, because this is a long (five-hop) path. In panel A, we see that there are six total closed walks, which 

allow the focal node ‘F’ to exert a high level of influence in this (local) network. In panel B, we see that only two closed walks remain after the satellite node ‘S’ is 

removed, significantly decreasing the influence of the focal node ‘F’ (i.e., decreasing the subgraph centrality of node ‘F’ by 1.4 standard deviations). 
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onnections ( McDonald, 1998 ). FreeSurfer ROIs representing white mat-

er were combined to create a white matter mask for use in tractography.

.6. Creation of connectivity matrices 

Interregional white matter connectivity was estimated using proba-

ilistic tractography ( Behrens et al., 2007 ; Jbabdi et al., 2012 ) via FSL’s

robtrackx2, which infers the orientation of a tract by repeatedly sam-

ling from the principal diffusion direction calculated in bedpostx. A

istribution of the tract’s path from each voxel using these estimates

s then built. Multiple tracts are sampled from each voxel, and each

ropagation step is based on a randomly chosen orientation from the

robability map. The estimated connectivity between two regions is

qual to the probability of a tract starting at the seed region and going

hrough the target region ( Behrens et al., 2003 ). To obtain connectivity

stimates from each ROI to every other ROI in the atlas, tractography

as performed using the GPU version of probtrackx2 with the following

ptions (in addition to the compulsory arguments): ‘network’ (use net-

ork mode, which only retains paths that meet a different seed mask),

loopcheck’ (stop if path loops back on itself), ‘opd’ (output path dis-

ribution), ‘onewaycondition’ (apply waypoint condition to each half of

ract separately), ‘waypoints = < white matter mask > ’ (paths must pass

hrough white matter), ‘cthr = 0.2 ′ (curvature threshold), ‘nsteps = 2000 ′

number of steps per sample), ‘steplength = 0.5 ′ (length of each step),

nsamples = 5000 ′ (total number of samples), ‘fibthresh = 0.01 ′ (threshold

olume fraction to consider other fiber orientations), ‘distthresh = 0.0 ′

discard samples shorter than 0.0 mm), and ‘sampvox = 0.0 ′ (sample ran-

om points within a sphere with this radius in mm from the center of the

eed voxel). These parameters ensured that 5000 sample tracts were gen-

rated from the center of each voxel of each ROI and only tracts that (i)

eached a target ROI and (ii) passed through white matter were retained.
6 
ote that no termination mask was used, because use of a termination

ask when using the “network ” flag (which is necessary to compute

onnectivity matrices between all pairs of ROIs) results in an empty ma-

rix. This would occur because a termination mask would force stream-

ines to terminate when they reach any of the seed masks, including the

ask it originates from. Thus, the use of termination masks would re-

ult in the streamlines never leaving the seed voxel. This resulted in a

86 × 186 connectivity matrix (per hemisphere) for each participant,

here each entry represented the streamline count between each pair

f nodes. Importantly, streamline count covaries with both the number

f axons connecting two regions and the microstructural integrity of

hose axons ( Donahue et al., 2016 ; Jbabdi and Johansen-Berg, 2011 ).

he diagonal elements of the matrices represent self-connections and

ere excluded from analyses. To account for variability related to dif-

erences in ROI size within and across individuals and differences in the

bility of tractography to reconstruct different white matter pathways

 Brown et al., 2017 ), the retained (i.e., not rejected by inclusion and ex-

lusion criteria) streamline counts originating from each seed ROI were

ivided by the total number of tracts that were retained for that ROI

 Warrington et al., 2020 ). Thus, each of the resulting values reflects

he proportion of streamlines originating from the seed ROI that con-

ects to each of the other ROIs. Due to the tracking algorithm, the upper

nd lower diagonals of the initial connectivity matrix are not symmet-

ic. However, because dMRI cannot detect directionality, the number of

racts from seed region A to target region B should be equivalent to that

rom seed region B to target region A. To correct for this, the matrix

as symmetrized by averaging the number of tracts of the two matrix

lements representing the same connection. 

Given that probabilistic tractography tends to overestimate con-

ectivity ( Sotiropoulos and Zalesky, 2019 ), matrices were thresh-

lded at 0.00005 to remove spurious connections. The use of such a
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onservative threshold ensures that genuine connections are not re-

oved, while still allowing for the removal of many spurious values. 

.7. Data analysis 

.7.1. Identification of direct amygdala connections 

Direct network connections of amygdala were determined by creat-

ng a cross-sample network within hemisphere in order to classify nodes

dentified in later analyses as directly vs. indirectly connected. As men-

ioned above, probabilistic tractography tends to overestimate connec-

ivity, and thus several steps were taken to maximize overall accuracy.

irst, connections that were not present across 80% of participants were

xcluded - the 80% threshold was chosen in light of research indicating

hat this threshold minimizes overall error (i.e., false positive + false

egatives; Buchanan et al., 2020 ; de Reus and van den Heuvel, 2013 ).

econd, the edge weight for each of the retained connections was aver-

ged across participants to create a mean connectivity matrix, and the

esultant matrix was used to create a minimum spanning tree (MST). An

ST is a subgraph that connects all nodes using the minimum number

f edges, thus ensuring overall connectivity. Finally, to remove the re-

aining spurious, noisy, and weak connections, the network was thresh-

lded to achieve an overall density of 25%. We examined a range of

ensity thresholds, and 25% was chosen as being the most consistent

ith known neuroanatomy. However, given that the choice of a 25%

hreshold was somewhat arbitrary, we have indicated when the results

iffered at a more conservative (i.e., 20%) or liberal (i.e., 30%) thresh-

ld. Density thresholding was carried out by adding edges to the MST

ackbone in order of decreasing edge weight. That is, edges with the

argest weights were added to the backbone first until a network den-

ity of 25% was reached. In contrast to simply deleting edges with the

owest weights until a network density of 25% is reached, this method

nsures that the network remains connected ( Alexander-Bloch et al.,

010 ). 

.7.2. Identification of nodes vital to amygdala function 

To identify nodes that are crucial for amygdala to function effi-

iently, we employed a novel ‘virtual lesion’ method using the matrices

btained after the initial 0.00005 threshold (note that these matrices

id not undergo the MST procedure, nor the 25% density thresholding).

s discussed above (and see Fig. 1 ), this method entails (i) calculat-

ng measures of amygdalar centrality in the full network, (ii) iteratively

xcluding each satellite node from the network and recalculating amyg-

alar centrality after each exclusion, and (iii) comparing amygdalar cen-

rality with and without each satellite node. This process was repeated

85 times (once per satellite node) per participant, per hemisphere, per

etric, per focal node. This was computed for all nodes in the network,

ather than only the two nodes of interest – left and right amygdala – as

hese values were needed for normalization (discussed below). Rather

han actually removing a satellite node from the network (which would

eave the full and reduced networks at different sizes, which may bias

roperty computation), we left the satellite node in the network and set

ll links that were greater than 0 for that node to the smallest floating-

oint number available in MATLAB (2.2251 × 10 − 308 ). Setting links to

his small number, rather than 0, was done, because setting them to

 would leave the satellite node (and thus the network) disconnected,

eaving the matrix without a unique inverse, which is needed for the

omputation of several properties. To ensure that the use of 2.2251 ×
0 − 308 did not introduce inaccuracies during matrix inversions, we re-

omputed using 10 × 10 − 200 and 10 × 10 − 100 . Difference values were

dentical out to rounding error, indicating that our specific choice of

umber did not cause biased results. In summary, this method identi-

es nodes that, when ‘lesioned’, decrease the centrality of the amygdala,

hereby identifying the network of satellite nodes crucial to supporting

ach amygdalar network property. 

Two a priori normalizations were then applied within each partic-

pant to the centrality change values in order to facilitate valid inter-
7 
retations of findings and comparisons across metrics. First, centrality

hange values were each divided by the (absolute value of the) mean

across focal nodes) for the removed (satellite) node and then values

ere mean centered (across focal nodes). Thus, this normalization was

pplied within each satellite node and across focal nodes. For example,

he value for left amygdala (as the focal node) associated with remov-

ng left hippocampus (as the satellite node) was divided by the mean

across all focal nodes) of the change values associated with removing

eft hippocampus. This down-weighted the impact of satellite nodes that

ad a sizable impact on a large number of focal nodes across the brain,

ut whom are not specifically impactful on amygdala (i.e., their removal

oes not have a greater impact on amygdala than on most other nodes).

iven that the goal of this study was to identify the network of regions

rucial for amygdalar function, this normalization was carried out to en-

ure that the satellite nodes identified were specifically important for

mygdala. 

The second normalization consisted of dividing by the (absolute

alue of the) mean (across satellite nodes) value for the focal node and

hen mean (across satellite nodes) centering. Thus, the second normal-

zation was applied within each focal node and across satellite nodes. For

xample, the value for left amygdala (as the focal node) associated with

emoving left hippocampus (as the satellite node) was divided by the

ean (across all satellite nodes) of the change values. This was done to

educe the dependence of the metric change on changes in basic net-

ork properties. Specifically, before this normalization, change values

ere correlated with the simple reduction in mean link strength for the

emoved satellite node. In other words, satellite nodes that had over-

ll stronger connections also tended to have larger reductions in the

etric under investigation. This made it impossible to know whether

ndings were driven by aspects of the specific metrics or were sim-

ly due to the satellite node being strongly connected. Importantly,

ormalization reduced these correlations to near 0, thus allowing us

o make interpretations about the actual properties investigated. Al-

hough perhaps not obvious, reducing these correlations to near 0 is

articularly important for valid comparisons among properties. Specif-

cally, each of the three graph properties may be more or less related

o node strength. Thus, without normalization, comparisons between

roperties may be driven by the differential relationships with node

trength itself. As an extreme example, pretend that subgraph values

re highly related to node strength, but betweenness has no relation-

hip with node strength. In this case, subgraph may be at an advantage

or disadvantage) in comparisons between the two, given that these

alues are driven by both the variance related to node strength and

ariance that is specific to subgraph, whereas betweenness values are

riven only by the property itself. In addition, the final mean center-

ng adjusted the values such that deviations from zero reflected shifts

rom the average impact of removing that node on all focal nodes. In-

erpretively, negative change values indicate that the removed node

ecreases the centrality of the focal node more than the average net-

ork node. Both normalizations also reduced the impact of partici-

ants with extreme values by standardizing their overall change val-

es. 

Perhaps most importantly, both normalizations also placed the three

roperties on the same scale to facilitate comparisons among them. As

entioned above, both normalizations were applied within each par-

icipant, and there are two reasons why this strategy is more advan-

ageous than typical methods for placing variables on the same scale

e.g., z -scoring). First, it uses a greater amount of information (i.e., the

hange values for other focal/satellite node pairs, which are all on the

ame scale as the variable being normalized), leading to a more sensi-

ive standardization. Second, the standardization is performed within

ach participant (rather than across participants, as done in z -scoring),

nd thus the impact of normalization is not dependent on the impact of

he particular sample. For example, the value for a specific participant

fter z -scoring will change depending on the other participants used in

he z -scoring, which is not true for our normalization procedure. Thus,
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f z -scoring was used instead, comparisons between properties would be

ore dependent on the particular sample examined. 

Normalized change values were then recursively winsorized (across

articipants) for each metric to ± 3 standard deviations in order to rein-

n outliers. This treatment of outliers was carried out a priori . Addition-

lly, all regions identified in the main analyses remained the same re-

ardless of whether or not data was first winsorized. 

To conduct a stringent test of regions critical to supporting amyg-

alar functionalities, participants were randomly grouped into ten sets

ith 105 or 106 participants in each set. For each set, change values

ere entered as dependent variables in robust two-sided t -tests in the

raph Theory GLM (GTG) toolbox ( Spielberg et al., 2015 ) to determine

hether the differences between the properties calculated with the full

nd reduced matrices were significant. In addition, for each set, change

alues were entered pairwise (e.g., node communicability and subgraph

entrality ) as dependent variables in F -tests, as described above, to deter-

ine whether changes in two metrics were significantly different from

ach other. Significance was determined via permutation tests (7500

epetitions), and false discovery rate (FDR) was used to correct for mul-

iple comparisons across nodes ( Benjamini and Hochberg, 1995 ). Ad-

usted p -values were considered significant if less than the q -value of

.05. Critical p -values for each statistical test are reported in Supple-

entary Table 5. 

Scripts for computation of graph properties and ‘virtual lesion-

ng’ are available on the last author’s website ( https://sites.udel.edu/

msp/tools_data/ ) and by request, and will be part of a future

elease of the GTG toolbox ( www.nitrc.org/projects/metalab_gtg ).

ata included in this manuscript were obtained from the Hu-

an Connectome Project (Young Adult), publicly available at

ttps://www.humanconnectome.org/study/hcp-young-adult . Connec-

ivity matrices derived from the HCP data are available on the last au-

hor’s website ( https://sites.udel.edu/jmsp/tools_data/ ). 

. Results 

.1. Identification of direct amygdalar connections 

In order to classify satellite nodes as directly (vs. indirectly) con-

ected to the amygdala, we created within-hemisphere networks. Only

hose connections that were present in at least 80% of subjects were re-

ained. Thus, ‘direct connections’ are those that retained connectivity

ith the amygdala after this 80% thresholding, and nodes not iden-

ified in this analysis were assumed to be indirectly connected to the

mygdala. The left amygdala was directly connected to 42 nodes (black

ines in Supplementary Fig. 1), including Brodmann areas 13l, 45, 47l,

7 s, 7PL, and a47r; anterior agranular insular, entorhinal, perirhinal-

ctorhinal, orbitofrontal (OFC), parahippocampal, piriform, retrosple-

ial, temporopolar, and visual cortices 1, 2, 3, 3A, 4, 6, 6A, and 7; nu-

leus accumbens, caudate, pallidum, putamen, thalamus, hippocampus,

orsal visual transition area, anterior inferior frontal junction, lateral

ccipital area 3, angular gyrus, supramarginal, posterior OFC, posterior

nsula, parieto-occipital sulcus, presubiculum, and prostriate area. The

ight amygdala as directly connected to 54 nodes (black lines in Sup-

lementary Fig. 2), including Brodmann areas 10pp, 10v, 25, 33pr, 47l,

7 s, 7Am, 7PL, 7Pm, a10p, a24, a47r, and s32; entorhinal, perirhinal-

ctorhinal, parahippocampal, piriform, retrospenial, temporopolar, and

isual cortices 1, 2, 3, 3A, 4, 4t, 6, 6A, 7; nucleus accumbens, cau-

ate, pallidum, putamen, thalamus, hippocampus, dorsal visual transi-

ion area, anterior inferior frontal junction, lateral occipital area 2, OFC,

remotor eye field, angular gyrus, supramarginal, posterior inferotem-

oral complex, posterior OFC, parieto-occipital sulcus, presubiculum,

rostriate area, temporal fusiform, ventral intraparietal complex, and

entromedial visual area. Satellite nodes that were found to be vital to

mygdalar network properties are classified as directly (vs. indirectly)

onnected to the amygdala (see Tables 1–3 ). 
8 
.2. Identification of nodes vital to amygdalar network properties 

Using our novel ‘virtual lesioning’ procedure described above, we

easured the extent to which a node supports amygdalar network prop-

rties. In particular, we examined amygdalar centrality with (full net-

ork) and without (reduced network) that node. The relative change

n amygdalar centrality (full vs. reduced) reflects the importance of the

emoved satellite node for that amygdalar network property. We found

hat amygdalar CF betweenness was significantly reduced (across all 10

ets of participants) after removal of 59 (left) and 64 (right) of the 186

atellite nodes examined. Similarly, removal of 9 (left) and 11 (right)

egions were associated with significant reductions in amygdalar node

ommunicability across all sets, and removal of 104 (left) and 105 (right)

egions were associated with significant reductions in amygdalar sub-

raph centrality across all sets (all p’ s < 0.05 after multiple comparisons

orrection; see Supplementary Tables 1 and 2). 

.3. Between-metric comparison of identified nodes 

To determine whether a satellite node was more important for one

entrality metric than others, we compared the impact of each node

dentified by a given metric to the impact of that node for the other two

etrics via F -tests. For example, for those nodes identified in earlier

nalyses as supporting amygdalar CF betweenness (i.e., a significant re-

uction in amygdala betweenness was observed after removing the node),

e tested whether the reduction in amygdalar CF betweenness (after re-

oving the node) was greater than the reductions in node communica-

ility and subgraph centrality (after removing that same node). In other

ords, these tests allowed us to identify the set of regions that were

pecifically important for supporting each type of amygdala influence

xamined. These tests were again conducted within each of the 10 sets

f participants, and only regions that were significant across all sets were

etained. 

The sets of regions evidencing significant between-metric tests are

isted in Tables 1–3 and Figs. 5 and 6 . Across all sets, 13 (left) and 12

right) regions showed greater reductions for CF betweenness ( Table 1 ;

ll p’ s < 0.05 after correction for multiple comparisons) than the other

wo metrics, indicating that these regions are particularly crucial for

upporting this aspect of amygdalar processing. These regions included

isual cortex (V2, V3, V6), insula (parainsular cortex, posterior in-

ula, anterior agranular insula complex), putamen, medial temporal

obe (parahippocampus, retrosplenial cortex), prostriate area, tempo-

al fusiform, parietal-occipital sulcus, BA 7Pm, anterior superior tem-

oral gyrus, and inferior frontal cortex (lateral BA 47, posterior BA

7r, anterior inferior frontal sulcus). Similarly, 7 (left) and 7 (right)

egions showed greater reductions for node communicability ( Table 2 )

han the other two metrics. These regions included thalamus, striatum

pallidum, nucleus accumbens), piriform cortex, thalamus, and medial

emporal cortex (perirhinal-ectorhinal cortex, entorhinal cortex, tem-

oropolar cortex). 

Lastly, 82 (left) and 83 (right) regions showed greater reductions for

ubgraph centrality (Supplementary Tables 3 and 4) than the other two

etrics. Given that discussion of the large number of regions found for

ubgraph centrality would be unwieldy, we focus on only the nodes that

ad one of the top 25% (satellite nodes analyzed) highest F-values for

ubgraph centrality in the analyses comparing change in subgraph cen-

rality for a given satellite node to 0 (e.g., Supplementary Tables 1 and

). This approach allowed us to identify nodes that showed consistently

trong impacts on amygdalar subgraph centrality across sets, which re-

ulted in 12 (left) and 11 (right) regions ( Table 1 ). Note that the choice

f the top 25% is arbitrary – this value was chosen as it resulted in a

umber of nodes that was similar to the other two metrics and thus

anageable to discuss. These regions included somatosensory cortex,

uditory areas (A4, A5), visual areas (V4), superior temporal sulcus,

ntraparietal area, posterior insula, frontal operculum, inferior supra-

arginal gyrus, temporo-occipital and posterior middle temporal gyrus,

https://sites.udel.edu/jmsp/tools_data/
http://www.nitrc.org/projects/metalab_gtg
https://www.humanconnectome.org/study/hcp-young-adult
https://sites.udel.edu/jmsp/tools_data/
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Table 1 

Set of satellite nodes showing differentially stronger impact for amygdala current-flow betweenness 

centrality. 

Satellite (Removed) Node ΔMetric v 0 BC v NC BC v SC 

Descriptive Name HCP Name Direct? Avg. t Avg. F Avg. F 

Left Posterior insula PoI2 Y 75.2 ∗∗∗ 445.2 ∗∗∗ 42.3 ∗∗∗ 

Left Putamen – Y 67.6 ∗∗∗ 6.0 ∗ 1001.5 ∗∗∗ 

Left Anterior agranular insular cortex AAIC Y 34.1 ∗∗∗ 63.8 ∗∗∗ 10.7 ∗∗∗ 

Left Posterior-medial BA7 7Pm N b 33.0 ∗∗∗ 393.7 ∗∗∗ 56.3 ∗∗∗ 

Left Parainsular cortex PI N 32.1 ∗∗∗ 18.7 ∗∗∗ 29.6 ∗∗∗ 

Left Parieto-occipital sulcus POS2 Y 24.4 ∗∗∗ 8.1 ∗∗∗ 10.6 ∗∗∗ 

Left Lateral BA47 47l Y a 20.5 ∗∗∗ 7.9 ∗∗∗ 26.0 ∗∗∗ 

Left Visual area 3 V3 Y 10.4 ∗∗∗ 23.1 ∗∗∗ 47.4 ∗∗∗ 

Left Para-hippocamal area PHA1 Y 8.5 ∗∗∗ 281 ∗∗∗ 27.2 ∗∗∗ 

Left Prostriate area ProS Y 7.8 ∗∗∗ 13.7 ∗∗∗ 34.4 ∗∗∗ 

Left Visual area 2 V2 Y 7.5 ∗∗∗ 261.1 ∗∗∗ 97.4 ∗∗∗ 

Left Para-hippocampal area PHA3 Y a 4.8 ∗∗∗ 359.6 ∗∗∗ 15.2 ∗∗∗ 

Left BAp47r p47r N 3.5 ∗ 46.4 ∗∗∗ 32.5 ∗∗∗ 

Right Parainsular cortex PI N 26.0 ∗∗∗ 15.9 ∗∗∗ 7.8 ∗ 

Right Posterior-medial BA7 7Pm Y a 25.3 ∗∗∗ 34.5 ∗∗∗ 24.5 ∗∗∗ 

Right Lateral BA47 47l Y a 17.3 ∗∗∗ 14.7 ∗∗∗ 11.1 ∗∗∗ 

Right Posterior BA47r p47r N a 16.9 ∗∗∗ 114.4 ∗∗∗ 163.5 ∗∗∗ 

Right Anterior superior temporal gyrus STGa N b 13.6 ∗∗∗ 24.9 ∗∗∗ 12.1 ∗∗∗ 

Right Visual area 3 V3 Y 12.2 ∗∗∗ 12.3 ∗∗∗ 22.3 ∗∗∗ 

Right Parahippocampal area PHA1 Y 9.5 ∗∗∗ 281.5 ∗∗∗ 94.6 ∗∗∗ 

Right Anterior inferior frontal sulcus IFSa N b 8.1 ∗∗∗ 69.5 ∗∗∗ 17.5 ∗∗∗ 

Right Parahippocampal area PHA3 Y 8.0 ∗∗∗ 516.1 ∗∗∗ 17.1 ∗∗∗ 

Right Retrosplenial cortex RSC Y 6.4 ∗∗ 21.4 ∗∗∗ 17.7 ∗∗∗ 

Right Visual area 2 V2 Y 5.7 ∗∗ 261.7 ∗∗∗ 103.0 ∗∗∗ 

Right Temporal fusiform TF Y a 4.7 ∗ 18.4 ∗∗∗ 10.8 ∗∗∗ 

Right Visual area 6 V6 Y a 3.3 ∗ 66.1 ∗∗∗ 82.6 ∗∗∗ 

Note. ΔMetric v 0 = test that change in metric (reduced vs. full) is different from 0; BC v NC = test 

that change in CF betweenness is different from change in node communicability; BC v SC = test that 

change in CF betweenness is different from change in subgraph centrality; ∗ p < .05, ∗ ∗ p < .01, ∗ ∗ ∗ p 

< .001; all reported p s are the maximum across all 10 sets after false discovery rate correction; Connect 

Directly = region identified as directly connected to amygdala with MST density = 25%; a with MST 

density = 20% region is indirect; b with MST density = 30% region is direct; HCP Name = label from 

Human Connectome Project atlas; Avg. t = average t statistic across all 10 sets; Avg. F = average F 

statistic across all 10 sets; BA = Brodmann’s area. 

Table 2 

Set of satellite nodes showing differentially stronger impact for amygdala node communicabil- 

ity. 

Satellite (Removed) Node ΔMetric v 0 BC v NC BC v SC 

Descriptive Name HCP Name Direct? Avg . t Avg . F Avg . F 

Left Thalamus – Y 15.8 ∗∗∗ 58.4 ∗∗∗ 70.8 ∗∗∗ 

Left Perirhinal ectorhinal cortex PeEc Y 10.5 ∗∗∗ 23.0 ∗∗∗ 35.3 ∗∗∗ 

Left Dorsal temporal pole TGd Y 9.0 ∗∗∗ 14.6 ∗∗∗ 16.9 ∗∗∗ 

Left Piriform cortex Pir Y 6.9 ∗∗∗ 14.3 ∗∗∗ 17.8 ∗∗∗ 

Left Nucleus accumbens – Y 6.4 ∗∗∗ 23.6 ∗∗ 27.9 ∗∗∗ 

Left Entorhinal cortex EC Y 5.9 ∗∗∗ 8.7 ∗∗∗ 11.4 ∗∗∗ 

Left Ventral temporal pole TGv Y 5.1 ∗∗∗ 9.1 ∗ 16.4 ∗∗∗ 

Right Thalamus – Y 18.5 ∗∗∗ 140.8 ∗∗∗ 176.7 ∗∗∗ 

Right Dorsal temporal pole TGd Y 12.3 ∗∗∗ 29.0 ∗∗∗ 31.2 ∗∗∗ 

Right Perirhinal-ectorhinal cortex PeEc Y 11.7 ∗∗∗ 27.2 ∗∗∗ 26.0 ∗∗∗ 

Right Entorhinal cortex EC Y 8.2 ∗∗∗ 13.8 ∗∗ 16.2 ∗∗ 

Right Pallidum – Y 8.1 ∗∗∗ 15.6 ∗∗∗ 18.1 ∗∗∗ 

Right Ventral temporal pole TGv Y 6.8 ∗∗∗ 16.4 ∗∗∗ 17.3 ∗∗∗ 

Right Nucleus accumbens – Y 5.3 ∗∗∗ 10.2 ∗∗∗ 9.3 ∗∗∗ 

Note. ΔMetric v 0 = test that change in metric (reduced vs. full) is different from 0; BC v 

NC = test that change in CF betweenness is different from change in node communicability; 

NC v SC = test that change in node communicability is different from change in subgraph 

centrality; ∗ p < .05, ∗ ∗ p < .01, ∗ ∗ ∗ p < .001; all reported p s are the maximum across all 10 sets 

after false discovery rate correction; Connect Directly = region identified as directly connected 

to amygdala with MST density = 25%; HCP Name = label from Human Connectome Project 

atlas; Avg. t = average t statistic across all 10 sets; Avg. F = average F statistic across all 10 

sets; BA = Brodmann’s area. 

9 
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Table 3 

Set of satellite nodes showing differentially stronger impact for amygdala subgraph centrality. 

Satellite (Removed) Node ΔMetric v 0 BC v NC BC v SC 

Descriptive Name HCP Name Direct? Avg . t Avg . F Avg . F 

Left Auditory area 4 A4 N 68.2 ∗∗∗ 397.4 ∗∗∗ 40.3 ∗∗∗ 

Left Ventral BA8A 8Av N 49.1 ∗∗∗ 126.1 ∗∗∗ 97.3 ∗∗∗ 

Left Auditory area 5 A5 N 38.7 ∗∗∗ 121.5 ∗∗∗ 31.1 ∗∗∗ 

Left Temporo-occipital medial temporal gyrus PHT N 38.2 ∗∗∗ 192.4 ∗∗∗ 41.9 ∗∗∗ 

Left Inferior supramarginal gyrus PFm N 36.1 ∗∗∗ 75.7 ∗∗∗ 19.2 ∗∗∗ 

Left Middle BA9 9m N 30.7 ∗∗∗ 80.4 ∗∗∗ 13.8 ∗∗∗ 

Left Posterior middle temporal gyrus TE1p N 26.8 ∗∗∗ 38.4 ∗∗∗ 42.2 ∗∗∗ 

Left BA1 1 N 21.1 ∗∗∗ 25.3 ∗∗ 28.4 ∗∗∗ 

Left BA44 44 N 15.9 ∗∗∗ 20.6 ∗∗∗ 29.3 ∗∗∗ 

Left BA10d 10d N b 15.6 ∗∗∗ 43.3 ∗∗∗ 18.4 ∗∗∗ 

Left Visual area 4 V4 Y 15.1 ∗∗∗ 57.0 ∗∗∗ 47.8 ∗∗∗ 

Left Frontal opercular area FOP2 N 11.3 ∗∗∗ 55.7 ∗∗∗ 23.8 ∗∗∗ 

Right Auditory area 4 A4 N 56.9 ∗∗∗ 364.7 ∗∗∗ 50.6 ∗∗∗ 

Right Posterior insula PoI2 N 49.5 ∗∗∗ 47.4 ∗∗∗ 519.1 ∗∗∗ 

Right Auditory area 5 A5 N 39.7 ∗∗∗ 155.3 ∗∗∗ 40.5 ∗∗∗ 

Right BA1 1 N 37.7 ∗∗∗ 175.6 ∗∗∗ 17.1 ∗∗∗ 

Right BA44 44 N 26.2 ∗∗∗ 37.8 ∗∗ 21.3 ∗∗∗ 

Right Medial BA9 9m N 23.8 ∗∗∗ 80.3 ∗∗∗ 14.4 ∗∗∗ 

Right BA4 4 N 19.5 ∗∗∗ 56.3 ∗∗∗ 12.8 ∗∗∗ 

Right Posterior BA24 p24 N b 14.9 ∗∗∗ 96.2 ∗∗∗ 30.7 ∗∗∗ 

Right Intraparietal area IP1 N b 14.2 ∗∗∗ 41.8 ∗∗∗ 14.6 ∗∗∗ 

Right Dorsal posterior superior temporal sulcus STSdp N 12.3 ∗∗∗ 720.2 ∗∗∗ 19.4 ∗∗∗ 

Right Posterior inferior frontal junction IFJp N 10.1 ∗∗∗ 684.4 ∗∗∗ 19.3 ∗∗∗ 

Note. ΔMetric v 0 = test that change in metric (reduced vs. full) is different from 0; BC v NC = test that 

change in CF betweenness is different from change in node communicability; NC v SC = test that change in 

node communicability is different from change in subgraph centrality; ∗ p < .05, ∗ ∗ p < .01, ∗ ∗ ∗ p < .001; all 

reported p s are the maximum across all 10 sets after false discovery rate correction; Connect Directly = re- 

gion identified as directly connected to amygdala with MST density = 25%; a with MST density = 20% 

region is indirect; b with MST density = 30% region is direct; HCP Name = label from Human Connectome 

Project atlas; Avg. t = average t statistic across all 10 sets; Avg. F = average F statistic across all 10 sets; 

BA = Brodmann’s area. 

Fig. 5. Between-metric comparison of identified nodes in left hemisphere. 

Regions supporting amygdalar current-flow betweenness centrality shown in blue, node communicability shown in red, subgraph centrality shown in yellow. (A–F) 

cortical regions, (G–I) subcortical regions. (A) medial view, (B) lateral view, (C) posterior view, (D) anterior view, (E) superior view, (F) inferior view, (G) axial view, 

(H) coronal view, (I) sagittal view. 
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Fig. 6. Between-metric comparison of identified nodes in right hemisphere. 

Regions supporting amygdalar current-flow betweenness centrality shown in blue, node communicability shown in red, subgraph centrality shown in yellow. (A–F) 

cortical regions, (G–I) subcortical regions. (A) lateral view, (B) medial view, (C) anterior view, (D) posterior view, (E) inferior view, (F) superior view, (G) axial view, 

(H) coronal view, (I) sagittal view. 
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nd posterior prefrontal cortex (BA 9 m, BA 8Av, BA 44, BA 10d), and

regenual ACC. All other results available in Supplementary Tables 1–4.

. Discussion 

Networks are the chief organizational principle of the brain. Conse-

uently, the capability of a specific region cannot be understood with-

ut first identifying the set of structures that allow these capabilities to

merge. The goal of the present work was to identify brain structures

hat support the amygdala’s ability to effectively influence the larger

rain network via three different modes of communication. Present find-

ngs were derived from the application of a novel technique wherein

e compared graph theory metrics assaying different types of amyg-

alar network communication (i.e., centrality) that were derived from

he full network to those same metrics after removing a ‘satellite’ (i.e.,

on-amygdala) network node. This allowed us to identify nodes whose

emoval caused large drops in amygdalar centrality, and thus, appear to

e critical to the amygdala’s ability to influence (or be influenced by) the

etwork. This approach is in contrast to conventional methods, which

ocus on either (i) connectivity between regions or (ii) the importance

f a specific region. Even past ‘virtual lesion’ methods provide insight

nly into how a single region impacts the global network. The technique

ntroduced herein provides information not available with these meth-

ds – namely, insight into the specific (sets of) regions that allow the

mygdala to function effectively . In other words, this method identifies

he ’support network(s)’, as it were, that provide the amygdala with the

ramework needed to carry out its different functions. Moreover, this

ovel method can be used to identify separate ‘support networks’ as-

ociated with different aspects of amygdalar communication, including

he quality (i.e., signal-to-noise) and level of influence of these signals.

verall, present findings show that there is no single ‘amygdalar net-

ork’. Rather, our findings indicate, for the first time, that there are sev-

ral ‘amygdala networks’, each of which is critical for a unique aspect

f network communication by which the amygdala interacts with the

reater network. For example, regions supporting amygdalar between-

ess and communicability were associated with the anterior and posterior
11 
ystems, respectively, identified in previous work as supporting distinct

spects of memory-guided behavior ( Ranganath and Ritchey, 2012 ). 

.1. Novel contribution of the new method 

Although some of the regions identified herein have long been

nown to interact with the amygdala in significant ways, the present

ork provides independent evidence for the importance of these re-

ions, because the techniques employed herein determine importance

olely based on the positions of these regions (relative to the amygdala)

ithin the larger brain network. Moreover, the present findings provide

nique insights into why these regions are important to amygdalar func-

ioning. Our method helps to answer this question by identifying the

odes of network communication that are disturbed when a given region

s virtually lesioned. Thus, the fact that the proposed method identi-

ed many regions known from past work to interact with the amyg-

ala in significant ways is supportive of the validity of our method.

urthermore, the present work integrates the roles of both direct and

ndirect (i.e., physically connected to amygdala via another node(s))

onnections, affording an exponentially more complex understanding

f amygdalar networks relative to direct connectivity only or bivari-

te approaches. Hence, present findings enrich our understanding of

he amygdala’s capability to interact with other brain regions, through

hich complex psychological processes emerge. 

To illustrate the new insights that our method provides, we high-

ight a few results for each graph property. As the majority of regions

dentified herein have been linked to multiple types of psychological

rocesses, we cannot know which of these processes is important for

upporting amygdalar network processes. However, to provide context

or the new insights of present findings, we speculate below regarding

he potential ways in which these regions support different aspects of

mygdalar processing, and further research is needed to support/refute

hese ideas. Note that we limit discussion to those ‘satellite’ nodes that

merged as significantly more important for a given property compared

o the other two. The HCP atlas name for each node is given in paren-

heses/brackets when regions are first mentioned. 
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.2. Current-flow (CF) betweenness centrality 

CF betweenness centrality reflects the extent to which a node influ-

nces information flow between all pairs of nodes in the network. Thus,

eductions in amygdalar CF betweenness centrality after a satellite node

s removed indicate that the removed node functions as a bottleneck for

nformation flowing to or away from the amygdala, reducing the amyg-

ala’s ability to serve as a global network hub of information flow in

he brain. For a region to function as a bottleneck, alternate paths for

nformation flow to the amygdala must be limited. 

Amygdalar CF betweenness was associated with parahippocampal

PHA1, PHA3, TF) and retrosplenial (RSC, POS2) cortices, which form

he Posterior Medial Memory System, one of two separable systems sup-

orting memory-guided behavior. The Posterior Medial Memory System

ediates information flow to the entorhinal cortex and hippocampus

o support functions such as episodic memory and spatial navigation,

hereas the Anterior Temporal Memory System is associated with af-

ective aspects of memory ( Ranganath and Ritchey, 2012 ). Our finding

hat the parahippocampal and retrospenial cortices support amygdalar

F betweenness suggests that these regions promote amygdalar influ-

nce over global network communication. For example, amygdala may

xert influence over the encoding and retrieval of episodic memories

ia its influence over network communication flowing through parahip-

ocampal and retrospenial cortices, despite amygdala lacking direct as-

ociations with the Posterior Medial Memory System ( Ranganath and

itchey, 2012 ). Interestingly, as discussed below, node communicabil-

ty was associated with regions in the Anterior Medial Memory System,

uggesting that these systems support separable aspects of amygdalar

nteractions with the network. 

Additionally, several regions of the orbital inferior frontal cortex

IFC) emerged as crucial for supporting amygdalar CF betweenness . As

entioned above, reductions in amygdalar CF betweenness after a node

n IFC is removed indicate that these IFC regions support amygdalar in-

uence over network communication by facilitating information flow

etween the amygdala and the larger network. This is consistent with

he known connectivity profile of the orbital inferior frontal gyrus ( pars

rbitalis : lateral BA 47 [47l], posterior BA 47r [p47r]; anterior infe-

ior frontal sulcus [IFSa]), which is directly connected to the amyg-

ala via uncinate fasciculus ( Catani et al., 2002 ) and is thought to be a

neural hub’ where semantic and emotion expression networks intersect

 Belyk et al., 2017 ). Present findings extend previous work by suggesting

hat the orbital IFC facilitates amygdalar influence over communication

ith the rest of the network, particularly other regions of prefrontal

ortex (PFC). Specifically, the orbital IFC may support the influence of

mygdalar signals within the global network by mediating the flow of

mygdalar information regarding the perception of semantic and emo-

ional content to other PFC regions. 

.3. Node communicability 

Changes in amygdalar node communicability after a satellite node is

emoved indicate that the removed node impacts the amygdala’s abil-

ty to send and receive information clearly (i.e., without interference)

o/from other parts of the network. In particular, node communicability

ndexes the number of different (parallel) paths that information can

ravel between the amygdala and other nodes. Having multiple paths

hrough which to transmit information improves signal clarity, because

nformation traveling along multiple paths will, on average, reduce

he impact of noise added along each individual pathway ( Benzi and

lymko, 2013 ; Estrada and Hatano, 2008 ). Thus, if a satellite node is

dentified as critical for supporting amygdalar communicability , it likely

erves as a gateway through which amygdala accesses multiple paths. A

imitation of this interpretation is that the existence of more paths may

ot lead to clearer information transfer under all conditions (e.g., when

here are similar sources of noise across multiple paths). 
12 
The thalamus was found to facilitate amygdalar node communicabil-

ty , suggesting that the thalamus serves as a gateway through which

any types of information must pass to reach the amygdala and/or as

 key output pathway for the amygdala to influence the network. Al-

hough previous studies have shown that the thalamus projects to the

mygdala ( Vertes et al., 2015 ), present findings provide novel insights

nto the manner in which the thalamus is important to the amygdala.

pecifically, our findings suggest that information sent to the thalamus

y the amygdala is retransmitted widely, increasing the clarity of infor-

ation sent by the amygdala through other routes (i.e., same informa-

ion arriving via multiple paths). This is consistent with the wealth of

rior evidence indicating that the thalamus is connected to a wide array

f inputs ( Kumar et al., 2015 ), along with work suggesting that the tha-

amus and amygdala interact during emotion processing ( LeDoux, 2000 ;

amietto and De Gelder, 2010 ). Present findings extend this understand-

ng by indicating that the thalamus interacts with amygdala by pro-

oting the clear communication of amygdalar signals via parallel com-

unication pathways. Additionally, the thalamus is critical to the re-

rganization of sensory information from the environment before such

nformation reaches the cortex ( Tyll et al., 2011 ). Given present find-

ngs, input from the amygdala encoding the salience of environmental

nformation may, via the thalamus, modulate sensory information that

s sent to the cortex, and thus, boost the transmission of amygdalar sig-

als. 

Amygdalar communicability was also found to be supported by the

erirhinal-ectorhinal (PeEc), entorhinal (EC), and temporopolar (TGd;

Gv) cortices. These regions form the Anterior Temporal Memory Sys-

em, which is associated with guiding behavior based on affective as-

ects of memory ( Ranganath and Ritchey, 2012 ). This system is thought

o directly interact with amygdala via strong direct anatomical con-

ections with PeEc and EC ( McDonald, 1998 ; Stefanacci et al., 1996 )

hich support the assignment of salience to situations and objects

 Ranganath and Ritchey, 2012 ). Present findings using our ‘virtual le-

ion’ method provide deeper insights into established associations be-

ween the amygdala and the Anterior Temporal Memory System. In

articular, our findings suggest that the PeEc, EC, TGd, and TGv sup-

ort amygdalar influence on memory systems by promoting the clarity

f amygdalar signals within that network. Present findings also provide

dditional insights into how the Anterior Temporal and Posterior Medial

emory Systems operate as separate entities, with regard to amygdala,

n addition to how amygdala and these systems interact with each other

s a circuit. In particular, present findings extend previous work by indi-

ating that the Anterior Temporal Memory System promotes amygdalar

ommunication via high-quality information flow ( communicability ) and

he Posterior Medial Memory System promotes the influence of amyg-

alar signals over global network processing ( CF betweenness ). 

.4. Subgraph centrality 

Changes in amygdalar subgraph centrality after a satellite node is re-

oved indicate that the removed node impacts the extent to which

mygdala influences communication in local networks via recurrent pro-

essing that reincorporates amygdala-related information. In particular,

ubgraph centrality indexes the number of different self-loops (paths that

tart and end at amygdala). The more self-loops in the local network,

he more paths there are by which amygdala can influence that net-

ork. Thus, nodes whose removal results in a reduction in subgraph cen-

rality are likely to be important hubs for creating amygdalar self-loops

nd serve as a gateway through which the amygdala influences local

etworks. 

Several regions of PFC, including dorsomedial (9 m) and dorsolat-

ral (8AV) PFC, were identified as critical to supporting amygdalar

ubgraph centrality , suggesting that they are important hubs for creat-

ng amygdalar self-loops. Although these regions are known to interact

ith the amygdala to support emotion conceptualization and regulation

 Lindquist et al., 2012 ; Morawetz et al., 2017 ), previous research has not
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dentified the manner in which this interaction occurs within the net-

ork context. Thus, present findings extend previous work by indicat-

ng that these PFC regions promote the influence of amygdalar signals

ithin local networks. For example, in the context of past work indicat-

ng that 9 m interacts with both amygdala and hippocampus during the

ncoding of salient experiences ( Lindquist et al., 2012 ), present findings

uggest that 9 m serves to funnel amygdalar signals back into this local

etwork, potentially facilitating amygdalar modulation of memory en-

oding. Similarly, given that 8Av interacts with amygdala during emo-

ion regulation ( Morawetz et al., 2017 ), this region may reflect amyg-

alar signals back into local networks, based on contextual needs. It is

mportant to recall that we are examining white matter networks, which

rovide insight into the possible ways in which networks may communi-

ate, rather than how they do so in a particular context (which is likely

etter reflected in functional networks). Thus, our findings do not in-

icate that 8Av will always reflect back amygdalar signals, but rather

ill likely modulate the return (and thus amplification) of these signals

ased on regulatory needs. 

.5. Overall between-metric comparisons 

In general, removal of satellite nodes had larger impacts (i.e., larger,

ore consistent effect sizes) on amygdalar subgraph centrality than on CF

etweenness and node communicability (see Tables 1–3 ). One potential ex-

lanation is that, because local networks are smaller (i.e., fewer nodes),

emoval of nodes within such networks may have an outsized impact

n local processing because it accounts for a larger share of network

onnections. Across the three amygdalar functions examined, groups

f regions were identified that support memory functions ( betweenness :

arahippocampal and retrosplenial cortices; communicability : perirhinal,

ntorhinal and temporopolar cortices), a range of sensory-related re-

ions that support relatively basic sensory processing ( betweenness : vi-

ual cortex, communicability : piriform; subgraph : somatosensory cortex,

uditory association areas) to higher-order sensory integration processes

 betweenness : insula; subgraph : superior temporal sulcus, intraparietal

rea), and distinct frontal areas involved in various aspects of execu-

ive functions ( betweenness : inferior frontal cortex; subgraph : dorsal PFC,

nferior frontal gyrus, ACC). Thus, although the regions identified dif-

ered depending on the specific amygdalar function examined, together

he three metrics identified regions that are consistent with known di-

ect and indirect connections, providing independent evidence for the

mportance of these regions with known interactions with the amygdala

nd providing insights into which aspects of amygdalar communication

hey support. 

.6. Implications and potential extensions of the novel method 

The current study demonstrated the utility of a novel method that

i) identifies nodes critical to the functionality of a brain region of in-

erest (e.g., amygdala) and (ii), perhaps more importantly, provides in-

ights into the manner in which these nodes support the function of that re-

ion . For example, it is well-established that dorsolateral PFC interacts

ith amygdala, likely in support of emotion regulation ( Morawetz et al.,

017 ). Present findings, gained from our novel method, extend our un-

erstanding by indicating that the dorsolateral PFC contributes to the

mygdala’s ability to influence communication in local networks ( sub-

raph centrality ). Similarly, our finding that the orbital IFC is critical to

he amygdala’s ability to exert influence over global network commu-

ication ( CF betweenness ) adds to our existing understanding that the

rbital IFC interacts with the amygdala to support emotion perception

 Frank et al., 2019 ) by identifying the manner in which the orbital IFC

ontributes to amygdalar functionality. 

The potential utility of this method is not restricted to diffusion-

ased structural networks but can be applied to any network in which

asic assumptions are met (i.e., where there is a theoretically inter-

retable effect of removing a node from the network), including those
13 
erived from functional MRI. Furthermore, this method can be extended

o the examination of individual differences. For example, past work us-

ng traditional methods support the existence of disturbed amygdalar

unction among those with pathological anxiety ( Xu et al., 2019 ), but

he source of this disturbance remains unclear. Our method could be

mployed to identify (i) which brain regions contribute to this distur-

ance and (ii) the specific methods of amygdalar network communi-

ation which are disturbed by these regions. Specifically, our method

ould be applied with the amygdala again as the focal node, but instead

f examining mean centrality changes (due to node removal) across the

ample, as done in the present study, one could test whether the extent

f centrality change correlates with anxiety (or differs between anxious

atients and healthy controls). Similar analyses could be undertaken to

xamine normative individual differences. For example, the proposed

ethod could provide insight into inhibitory control capacity by identi-

ying the nodes that support different types of dorsal anterior cingulate

etwork communication. In summary, the proposed method has a wide

rray of potential uses that span multiple imaging modalities and areas

f psychology, psychiatry, and neuroscience. 

.7. Strengths & limitations 

The present study benefited from a number of strengths, including

n extremely large sample size ( n = 1052), multi-shell diffusion acquisi-

ion with a large number of directions ( n = 270) which provided unpar-

lleled accuracy in tractography, the use of an ROI atlas created using

ultiple imaging modalities, which is likely more accurate, and the use

f cutting-edge, novel graph-theory methodology. Several limitations

ust also be considered. Although we used the best methods currently

vailable, present findings are dependent on the connectivity algorithms

sed, and thus, it is possible that systematic biases remain. For exam-

le, the normalization that we applied to streamline counts (i.e., divid-

ng retained streamline counts from each seed ROI by the total retained

treamlines for that ROI) differentially impacts ROIs according to their

ize and thus may have introduced some bias. We used this procedure

iven that (i) it is the standard used in FSL and (ii) it removed vari-

bility within and among participants that is unrelated to current study

oals and could confound differences of interest. However, future work

ould investigate the impact of such normalization on this method. An-

ther potential limitation is the fact that we examined only three nodal

raph metrics. Other metrics might provide important insights, and fu-

ure research should expand beyond those used herein. A third potential

imitation is the fact that we used streamline count as our index of con-

ectivity strength, which are only indirect measures of such strength

nd not the only such measure available (e.g., fractional anisotropy).

hus, it is possible that a different index of connectivity strength would

rovide different findings. We chose to use streamlines, because past

ork has linked streamlines to connection strength values derived from

ract tracing in monkeys ( Donahue et al., 2016 ; van den Heuvel et al.,

015 ). In addition, networks based on streamlines appear to have higher

eproducibility than those based on fractional anisotropy ( Roine et al.,

019 ). A fourth potential limitation is the fact that, because directional-

ty cannot be inferred from dMRI, the interpretations of the metrics must

e assumed to be bidirectional. However, this assumption is not com-

letely accurate as there are connections between brain regions that are

ot reciprocal. A fifth potential limitation is that, because tractography

as performed between all ROI pairs, we were unable to use a termina-

ion mask. Thus, it is possible, although unlikely, that a given streamline

ould start at one region, travel through another region, and continue on

o a third region. A sixth potential limitation is the resolution of the sub-

ortical segmentation used (e.g., treating thalamus as a single structure).

t is possible that the use of a different atlas with more subcortical di-

isions would produce different findings. However, we chose to use the

tandard FreeSurfer segmentation, because this is based on each partic-

pant’s anatomy and thus likely to have a more accurate placement. Ad-

itionally, in a subsample ( n = 106), we compared our method against a



M.A. Matyi, S.M. Cioaba, M.T. Banich et al. NeuroImage 000 (2021) 118614 

d  

s  

g  

p  

a  

m  

t  

t  

m  

t  

t  

t  

t  

p  

b  

g

5

 

p  

g  

c  

t  

e  

c  

t  

c  

e  

t  

c  

o  

fi  

i  

d  

b  

w

 

u  

t  

I  

t  

t  

d  

w  

e  

a  

s  

o

D

C

 

s  

w  

b  

e

A

 

t  

t  

w  

s  

1  

p  

C

S

 

t

R

A  

 

 

A  

 

B  

 

B  

 

B  

 

B  

 

B  

B  

B  

 

 

 

B  

 

 

C  

 

C  

 

d  

D  

 

 

 

E  

E  

E  

 

F  

 

 

F  

F  

 

 

 

F  

 

ifferent (registration-based) subcortical segmentation (along with the

tandard FreeSurfer cortical parcellation). We found that results for sub-

raph and communicability were extremely consistent, suggesting that

resent findings are not highly dependent on the choice of subcortical

tlas. However, the results for betweenness using these two atlases were

ore variable (see Supplemental Material). Similarly, betweenness was

he only metric that, in supplemental analysis, was found to vary by the

hreshold applied to connectivity matrices before calculation of graph

etrics (see Supplemental Material). Together, these findings suggest

hat betweenness may be less robust to methodological differences, and

hus, should be interpreted with some caution. A final potential limi-

ation is the fact that the sample used was psychiatrically healthy, and

hus present findings may not reflect organization within pathological

opulations (e.g., anxiety). However, the methods introduced herein can

e used to examine the impact of individual differences on network or-

anization. 

. Conclusion 

The current study is the first delineation of the architecture sup-

orting amygdalar network properties in the human brain. Using novel

raph theory methods, we identified, for specific emergent communi-

ation properties of the amygdala, a network of nodes that are related

o the amygdala’s role in emotional and motivational processes such as

valuating the salience of stimuli, moderating attention to stimuli, and

oordinating behavioral responses to stimuli. The specific regions iden-

ified herein are consistent with known direct and indirect amygdalar

onnections and differed depending on the specific amygdalar function

xamined (i.e., amygdalar influence over local networks [ subgraph cen-

rality ], clarity of amygdalar communication with network nodes [ node

ommunicability ], amygdalar influence over information flow between

ther nodes [ betweenness centrality ]), supporting the specificity of these

ndings. In particular, present findings expand our current understand-

ng by identifying the manner in which regions are important to amyg-

ala, in addition to showing that there is no single ‘amygdalar network’,

ut rather several networks, each of which supports a different way in

hich the amygdala exerts influence over the brain network. 

The methodology developed for the present study leveraged the

nique position each satellite node occupied in the network to determine

heir contribution to supporting amygdalar influence over the network.

n turn, this provides a normative framework of amygdalar networks

hat open several lines of inquiry. For example, as discussed above, fu-

ure research could examine the manner in which pathological amyg-

alar processes arise (e.g., by identifying deviations from this frame-

ork). In summary, the findings presented herein (i) advance our knowl-

dge of how amygdalar function depends upon the concerted activity of

 complex network of directly and indirectly connected nodes and (ii)

upport the validity of a novel method that allows for the investigation

f how brain regions support a region of interest. 
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