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Abstract 

The structural anisotropy and shear rheology of colloidal gels under startup of shear flow are 

calculated by Brownian Dynamics simulations modified to include particle surface-mediated 

attractions, which is a model for thermoreversible colloidal gels. Shear-induced structural changes are 

analyzed in both real and reciprocal space through computation of the pair distribution function and 

structure factor. A distinct structural anisotropy is evident as alignment along the compressional and 

vorticity axes. A spherical harmonics expansion of pair distribution function is calculated to analyze 

structural anisotropy. In reciprocal space, structural anisotropy is quantified through an alignment 

factor, which shows overshoot behavior similar to the stresses. Based on the microstructure analysis, 

the evolution of the structural anisotropy is explained by the anisotropic rupture of the colloidal gel 

microstructure. This result provides evidence for how shearing creates structural anisotropy. The 

structural anisotropy during flow startup is quantitatively related to rheological behavior via a stress-

SANS rule that is modified to consider the influence of the rupture of the colloidal gel structure. A 

simple structure kinetic equation accounting for bond creation and rupture provides a unifying view of 

the results. This new, modified stress-SANS rule quantitatively links the shear-induced structural 

anisotropy to the non-linear rheology. 

 



Park, Ahn and Wagner 

2 

Ⅰ. Introduction  

 

 Colloidal particles show rich phase behavior and mechanical properties that depend on the 

flow conditions, concentration and particulate interactions. Of interest here, at sufficiently high 

concentrations colloidal particles that interact through attractive forces organize into a space-filling 

network structure termed a “colloidal gel” [1,2]. The colloidal gels are characterized by solid-like 

elastic properties, which results from a stress-bearing network structure. In sufficiently strong flows, 

colloidal gels go through a rupture of the microstructure, which is known as yielding. The yielding 

behavior reveals itself with a variety of microstructural changes. In recent studies using confocal 

microscopy [3] and simulations [4,5], this yielding is related to the structural evolution from rigid 

chains with high coordination number (higher or equal to 4) to soft chains with low coordination 

number (lower than 4). In another study on dense gels at high volume fraction [6], yielding is 

considered as two-step process of bond and cage breakage. These structural changes accompany non-

linear rheological behaviors, such as stress overshoot [7], non-sinusoidal stress response [8], and 

nonlinear creep compliance [9].    

The structural anisotropy in colloidal gels induced by flow has been studied extensively through 

scattering methods including flow-SANS [10] and light scattering [11]. In another work [12], the 

structural anisotropy was probed across a broad range of length scales utilizing small angle light 

scattering (SALS), small angle x-ray scattering (SAXS), and ultra-small angle x-ray scattering 

(USAXS). These results revealed structural anisotropy along the vorticity axis, which is characterized 

by butterfly pattern in the velocity-vorticity plane. Recently, the development of a new sample 

environment for SANS under flow enabled determining the structural anisotropy on a shorter length 

scale corresponding to local microstructure [8,13]. In these works, microstructural changes on the 

particle length scale were measured in both the velocity-vorticity plane and the velocity-gradient 

plane. In addition to the butterfly pattern in the velocity-vorticity plane, colloidal gels under steady 

and dynamic shear flow exhibit structural anisotropy along the compressional axis, which is 

represented by enhanced scattering pattern along the extensional axis. Such structural anisotropy 

under flow is also evident in direct visualization using microscopy [14-16] and numerical simulations 

[4], which make it possible to study structural anisotropy in real space. By correlating structural 

anisotropy dynamics of aggregates, these studies enhance our understanding of how gels flow.  

It has been shown that the microstructural changes, such as the size of aggregates, network bond 

rupture, or cage breakage, have deterministic effects on the rheological behavior [4-6]. In addition to 

these size-related microstructural changes, structural anisotropy is important for determining 
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rheological behavior as directly shown by previous research that studied this specific relationship 

through theory [17] and microscopy [18,19]. The relationship between structural anisotropy and 

rheology for colloidal gels has been established for steady shear flow in terms of an inverse Bingham 

number [13] and quantified in terms of stress-SANS rule [8]. Recent investigations examine transient 

flows. The qualitative relationship among flow-induced structural anisotropy, yielding, and stress 

overshoot was investigated in the velocity-vorticity plane [11]. For a colloidal gel with fractal 

structure, a qualitative correlation was observed between structural anisotropy and rheology [20]. In 

this study using small-angle light scattering, both structural anisotropy in the plane of flow and shear 

stress response showed overshoot behavior and their maxima coincided. In recent work [8], shear 

induced structural anisotropy was studied under large amplitude oscillatory shear (LAOS). This work 

showed how the structural anisotropy is correlated to the non-linear rheological behavior and 

developed the first “structure Lissajous-Bowditch” diagrams to illustrate this for LAOS flows. Such a 

direct correlation is not surprising as studies on the relationship between structural anisotropy and 

rheology are not confined to colloidal gels. Many studies on the colloidal suspension, such as 

colloidal glasses, have focused on the relationship between structural anisotropy and rheology [18,21-

23]. In a recent study, a quantitative relationship between flow-induced anisotropic structure and 

rheological behavior was established via the stress-SANS rule for colloidal suspensions [24]. 

Furthermore, in many studies on soft colloidal dispersions, such as polymer-like micelles [25,26], 

structural anisotropy has been associated with non-linear rheology by computing the stress with the 

stress-SANS rule, which is comparable to the stress-optic rule. However, questions remain when 

applying such relationships to colloidal gels due to the distinct bond-breakage that is characteristic in 

such systems and which is not explicitly incorporated into stress-optical and stress-SANS 

relationships.  

Although structural anisotropy in shearing colloidal gels has been well documented [27,28], there 

still is a lack of understanding on the mechanism leading to structural anisotropy. Especially, when 

compared with the structural anisotropy evident along compressional and extensional directions, there 

is a relatively limited understanding on the origin of structural anisotropy along the vorticity direction. 

Recently, Cheng et al. [29] elucidated the role of hydrodynamic interaction and confinement in 

formation of anisotropic structure along the vorticity direction. However, the influence of surface-

mediated attractive interactions, which dominate many colloidal gel systems, still remains an 

unsolved problem. In addition, the coupling between structural anisotropy and rheology has not been 

quantified.  

As a continuation of our previous work in which the microstructural evolution of colloidal gel 

under startup shear is analyzed from three points of view (cluster length scale, local length scale, 
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anisotropy) [4], the purpose of the present work is to quantitatively investigate the origin of shear-

induced structural anisotropy and its correlation with rheology using the simulation tools developed in 

this prior work. The structural evolution of a model colloidal gel at an intermediate volume fraction 

(20%) is studied under startup of shear flow. In real space, the shear-induced structural anisotropy is 

investigated by computing pair distribution functions. A spherical harmonic expansion of the pair 

distribution function provides quantitative analysis of structural changes. In reciprocal space, we 

compute the structure factor, which can be directly compared to the experimental scattering 

measurements. This structural anisotropy is correlated to the rheological behavior via a stress-SANS 

rule. In this process, by explicitly considering bond rupture and creation within the shearing colloidal 

gel, the stress-SANS rule is modified to accurately relate the structural anisotropy to non-linear 

rheology. 

 

 

Ⅱ. Simulation details 

A.   Particle interaction 

 

A recent study of colloidal micromechanics using laser tweezers quantified the near contact 

interactions of colloidal particles [30]. The importance of non-central forces, such as particle adhesion 

and surface roughness, on gel micromechanics was highlighted. Surface contact interactions between 

particles is manifested as bending rigidity for chains of colloidal aggregates. Such bonds between 

particles can support substantial torque, which is important for gel rheology. This physics cannot be 

described by conventional Brownian dynamics simulation methods, which assume smooth, ideal 

spherical particles with centro-symmetric interactions. We have developed a Brownian dynamics 

simulation method that incorporates a model for surface bonding, which describes the rotational 

motion and restricts the angular reorganization with reversible and flexible bonds between particle 

surfaces, and thereby, includes the non-central interaction physics of colloidal gels. This simulation 

method has successfully reproduced many experimentally observed structural changes and rheological 

behaviors of colloidal gels [4,5,31]. The complete algorithmic details concerning the simulation 

methods are documented in detail elsewhere [4,32] and here, only details specific to this simulation 

and particle interactions are presented for brevity. It is important to recognize that the non-central 

forces included in this model distinguish our simulation method from the majority of published 

studies, which only include central forces. These non-central forces are important to capture gel 
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rheology and structure under flow, as will be shown in the following. 

 

Fig. 1. A) Pair interaction potential for a co-linear extension, which consists of core potential ( Cf , for 

2ijr a< ), bonding potential ( Bf , for max2 2ija r a b£ £ + ) and non-bonded long range potential ( Nf , 

for max2 ija b r+ < ). The bonding potential, Bf  and non-bonded long range potential, Nf  are 

supposed to have a DLVO shape potential ( 20 11 m, A 3.2 10 J, Fm , 4mV,0a u   =81e e y- -= = ´ =

7 15 10 mk -= ´ ). The inset shows schematic illustrations of bond formation, translational motion and 

rotational motion of the particles. B) Change of the angle between three particles, which were initially 

placed to form 120°, is demonstrated for standard Brownian dynamics simulations and simulations 

including a surface bond potential. The results represent averages over 20 different simulations with 

different random motion. 

 

This work explores weakly attractive colloidal gel at low volume fraction. The simulation system 

consists of 10,648 particles which are placed in a three dimensional cubic, periodic simulation cell (20% 
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volume fraction). The Lee-Edwards boundary condition is introduced in all three orthogonal 

directions. The dynamics are governed by the Langevin equation [33] according to which, the position 

of each particle is updated. The governing equations are formulated in respect of dimensionless 

parameters. The Brownian motion of the particles is described by stochastic displacement caused by 

the corresponding Gaussian random force.  The length and energy are scaled with the radius (a) of 

the particle and the thermal energy ( Bk T ) respectively. The time is scaled by the characteristic time 

2

B T
a
D

t = , where TD  is the translational diffusion coefficient of the particle in infinitely dilute 

solution. The force of the imposed shear flow acting on a particle pair, 26 aph g , is compared to 

thermal restoring force, /Bk T a , defining the Peclet number as 2Pe / Ta Dg= . Hydrodynamic 

interactions between the particles are not considered and hydrodynamic force is assumed to be the 

Stokesian drag force. It should be noted that Brownian dynamic simulations without hydrodynamic 

interactions have described the equilibrium properties of some colloidal gel systems [3,16].  It is 

important, however, to note that hydrodynamic interactions between particles can affect the 

microstructure of colloidal gels by altering their formation kinetics [34,35]. Therefore, the results 

shown herein should be viewed within the assumption of neglect of hydrodynamic interactions, which 

may play a role in both the gel formation and gel flow under shear.  

In this work, particles interact through three potentials; core potential ( Cf ), bonding potential ( Bf ), 

and non-bonded long-range potential ( Nf ): 

                      
( ) ( )21 2 , 2

2
0 , 2

C ij ij ij

ij

r K a r   r a

                                  r a

f = - <

= ³
                             (1)  

The core potential is given by a steep repulsive potential with the potential energy parameter, K=4000, 

where i jijr = -r r  indicates the inter-particle distance. In the Brownian dynamics simulation with 

surface bonding, a bond is formed on the particle surface when two particles approach each other 

within a critical separation ( )2.15ijr a< . The bond formed on the particle surface induces force and 

torque, which results in translational and rotational relative motion of the particles. We assume that 

the bond has a potential of DLVO type given by:      

( ) ( ) ( )DLVO ij vdW ij el ijr r rj j j= +       (2) 

                     ( )
2 22 2

2 2 2 2

4A 2 2 ln
6 4

ij
vdW ij

ij ij ij

r aa ar
r a r r

j
é ùæ ö-
ê ú= - + + ç ÷ç ÷-ê úè øë û

       (3) 
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( ) ( )( )( )
2

ln 1 exp 2
2el ij ij
ar r ae yj ké ù= + - -ê úë û

    (4)                    

where A, , ,e y  and k  represent the Hamaker constant, the dielectric constant of solvent, the 

surface potential of the particle, and the Debye screening length, respectively. In accordance with the 

bond length between the particle surfaces, ijb , the bonding potential is distinguished into two parts: 

                          
( ) ( )

( )
ij 0 0 ij

ij max ij 0

2 ,  

           2 , 

B DLVO

DLVO

b b a b b

b a b b b

f j

j

= + ³

= + ³ >
                        (5) 

In case the bond length is shorter than 0b , the bonding potential is set to a constant value of 

( )0 2DLVO b aj +  to describe the stable region where there is no attractive force. For the bonds with 

the bond length longer than 0b  and shorter than the maximum bond length, maxb , we assume the 

bonding potential as a spring with a DLVO potential. When the particles get detached from each other, 

the bond length exceeds the maximum bond length and the bond breaks. After breaking, the non-

bonded long range interaction ( )ijN rf  describes the particle interactions in the absence of non-

central surface bonding interactions. This central inter-particle potential is set as the DLVO potential 

as follows:  

                             ( ) ( )ij ijN DLVOr rf j=                     (6) 

  The three potentials come together to create the total interparticle potential, which is a function of 

the inter-particle distance, ijr , and bond length, ijb , as follows:  

                           
( ) ( ) ( ) ( )

( )
ij ij ij ij ij

ij ij ij

,

,

total C B N

total

r b r b r

r b

f f f f

f

= + +

= -ÑF
                       (7) 

By calculating the gradient of the total inter-particle potential, we can get the total inter-particle force 

ijF , which induces the translational and rotational motion of the particles. In Fig. 1 (A), the total 

pair interaction potential is plotted for a collinear extension case, in which the bond length ( ijb ) 

coincides with the surface separation, ij 2r a- .    

Figure. 1 (B) shows the difference between a conventional Brownian dynamics simulation and 

Brownian dynamics simulation with surface bonding concept. It is illustrated in Fig.1 (B) that the 
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angle between three particles, which is initially 120°, changes over time. In both case of conventional 

Brownian dynamics and Brownian dynamics with surface bonding, the angle between the three 

particles converges to 60°, so as to form the thermodynamically stable configuration. However, in the 

case of Brownian dynamics simulation with surface bonding model, it takes longer to reach the most 

stable state than the conventional Brownian dynamics simulation. This difference shows the role of 

the surface bond, which not only acts to bring particles together, but also to restrict the relative 

angular motion. 

 

B. Structure analysis method  

 

 

Fig. 2. Calculation of pair distribution function difference, ( )g , 1gD =r and structure factor 

difference, ( )S , 1gD =q .  

 

 Structural changes in the colloidal gel are studied by analyzing the pair distribution function, 

( )g ,gr , and structure factor, ( )S ,gq . The pair distribution function and the structure factor measure 

the normalized probability of finding a particle center at relative position of r  in real space and q  

in reciprocal space at strain g . Here, the pair distribution function and the structure factor are given 

by: 

             ( ) ( )i j2
i j i

g , V
N

g d
¹

= -åår r r   at strain 𝛾                      (8) 
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    ( ) ( )i j
i j i

S , 1 expV i
N

g
¹

= + - ×ååq q r at strain 𝛾            (9)  

where , ,N V q  represent the number of the particles, the volume of the simulation box and the wave 

vector, respectively. To quantify the structural change during startup shear flow quantitatively, we 

examine both the pair distribution function and the structure factor as differences between a transient 

state ( )0g ¹  and quiescent state ( )0g = . Figure. 2 demonstrates the calculation of the pair 

distribution function difference and the structure factor difference. The second figures in Fig. 2(A) 

and Fig. 2(B) demonstrate the pair distribution function ( )g ,0r  and the structure factor ( )S ,0q  in 

the quiescent state. In the quiescent state, both the pair distribution function and structure factor are 

isotropic as expected for liquid or a gel quenched from a liquid structure, but not necessarily for a gel 

formed by shearing, such as typical for depletion gels. The first figures of Fig. 2(A) and Fig. 2(B) 

display pair distribution function, ( )g ,gr , and structure factor, ( )S ,gq , calculated for a transient 

state ( )1g = . In this transient state, distortions and intensity changes are evident that can be 

attributed to the shear-induced structural change. The last figures of Fig. 2(A) and Fig. 2(B) 

demonstrate the pair distribution function difference, ( )g ,gD r , and structure factor difference, 

( )S ,gD q , which are defined as:  

( ) ( ) ( )g , g , g ,0g gD = -r r r     (10) 

( ) ( ) ( )S , S , S ,0g gD = -q q q     (11) 

The differences, ( )g ,gD r  and ( )S ,gD q , effectively capture the structural changes relative to the 

initial, quiescent state, making it easier to distinguish shear-induced structure formation and breakup.  

 In Fig. 2, it is shown that the pair distribution function and the structure factor, which are 

isotropic at quiescent state, demonstrate anisotropy under shear flow due to shear-induced non-

equilibrium structure. To quantify this structural anisotropy, we follow the literature and expanded the 

pair distribution function ( )g ,gr  in spherical harmonics [36,37]. The pair distribution function can 

be expanded in terms of spherical harmonics ( )ˆlmY r  as:  

( ) ( ) ( )ˆg g g
l

S lm lm
l m l

r Y
¥

=-

= +åår r                             (12) 



Park, Ahn and Wagner 

10 

The scalar contribution ( )gS r  is: ` 

 ( ) ( )1 ˆg g
4S r d
p

= ò r r                (13) 

The expansion coefficients are given by: 

( ) ( ) ( )ˆ ˆg glm lmr Y d= ò r r r        (14) 

Here, r̂ denotes ˆ / rr . 

For a fluid subjected to plane Couette flow, using Cartesian irreducible tensors, this spherical 

harmonic expansion can be further simplified as follows: [38,39]  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 4 4 4 4
0 0 1 1 2 2 0 0 1 1

ˆg g g

       g g g g g g

l l
S k k

l k

S

r X

r X X X X X

= +

= + + + + + +

åår r
           (15) 

where ( ) ( )ˆl
kX r  is given as:  

                 ( ) ( ) ( ) ( )2 2 22 2 2
0 1 2

1 1ˆ ˆ ˆ ˆ ˆz , x y , x y
3 2

X X X= - = - = 	
  	
                         (16) 

for structure up to rank 2. In Eq. 16, ˆ ˆ ˆx, y, z are the components of r̂ . The ( )l
kX  terms are closely 

connected to the spherical harmonics terms lmY . In the case of even k, ( )l
kX  is proportional to Im lkY  

and for odd k, ( )l
kX  is proportional to 1Re lkY + . For zero k, ( )l

kX  is proportional to 0lY . The 

expansion coefficient ( )g lk  is:  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 ˆ ˆg g
4

l l l
k l k kr C X dx

p
æ ö= ç ÷
è ø ò r r r                       (17)  

where lx  and ( )l
kC  are:  

( ){ }
( ) ( ) ( )

1/ 2

2 2 2
0 1 2

2 1 !!/ !

3 , 2
2

l l l

C C C

x = +

= = =
           (18) 

Here the double factorial (!!) is: 
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                      ( ) ( ) ( )( )( )
( )1

1

2 1 !! 2 1 2 1 2 1 2 3 1
l

k

l k l l l
+

=

+ = - = + - -Õ                   (19) 

By comparing the expansion coefficients ( )g lk ,  which indicates the degree of the structural 

anisotropy related to each Cartesian irreducible tensor terms ( )l
kX , the shear-induced anisotropic 

structure of the colloidal gel under startup shear can be quantified.  

 For the structure factor, ( )S ,gq , the degree of structural anisotropy is also characterized by the 

alignment factor, fA  [40,41] defined as: 

                        
( ) ( )( )

( )

2 *
00

2 *

0

, , cos 2

, ,
f

I q d
A

I q d

p

p

f g f f f

f g f

-
= ò

ò
                        (20) 

where ( )*, ,I q f g  denotes the angular scattering intensity averaged over a q-range of 

( )* 1 12.8 3.6q a q a- -£ £  corresponding to the local structure of length scale ~2a, i.e., nearest 

neighbors, . Here, f  and 0f  are the azimuthal angle relative to x-axis and the average orientation 

of the local structure, which is given by the minimum of ( )*, ,I q f g . The alignment factor fA , 

which is commonly used in scattering data analysis, indicates the degree of alignment of the structure 

about 0f , and has been typically used for studying polymers and polymer-like micelles, but has more 

recently been adopted for studying colloidal gels [8,13]. In a simplified scattering analysis, the 

scattering intensity 𝐼 𝐪, 𝛾  is given by:  

( ) ( ) ( ), S ,I pg g= ´q q q                              (21) 

where p  is the form factor of the particles. For gels of nonbreaking colloidal spheres, such as 

considered here, the particle form factor remains unchanged by the shear flow and structure factor 

( )S ,gq  is used to calculate the alignment factor, fA , instead of the scattering intensity ( ),I gq . 
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Ⅲ. Results and discussion  

A.   Rheology and structural change under shear flow  

 

Fig. 3. (A) Gel structure in the quiescent state. The image shows particles at the center of the 

simulation box in a slice with a thickness of 4a. The color indicates the size of cluster to which the 

particles belong. (B) Angular averaged pair distribution function ( )
,

g , ,r
q j

q j  (radial distribution 

function) of the colloidal gel in a quiescent state, transient state, and steady state under steady shear 

flow of Pe 200. (C) Stress-overshoot behavior of the colloidal gel. In this work, Pe 200 case (thick 

black curve) is mainly studied. (D) Flow curve of the colloidal gel. Inset shows the result on a linear 
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scale. (E) Average bond number at steady state at various Pe values. Dashed line denotes the average 

bond number in the quiescent state. (F) Particle number distribution according to the cluster size at 

steady state of Pe 200. 

 

Figure. 3 displays rheological and structural information on the model colloidal gel system. Figure. 

3(A) shows the initial gel structure in the quiescent state, where the gel is quenched from a liquid 

structure. Initially, 99% of the total particles aggregated to yield a percolated, network structure.  

Note that the presence of non-central forces, i.e., surface bonds, prevents large-scale phase separation 

(on the time scales of interest) as is typically observed in BD simulation of colloids with depletion 

interactions. This enables us to use a reasonable simulation size to study our system, whereas or order 

10^6 particle are required for the depletion systems [42]. Under startup of shear flow, the colloidal gel 

experiences various structural changes. The angular averaged pair distribution function 

( )
,

g , ,r
q j

q j  in Fig. 3(B), demonstrates some of these structural changes. Under shear flow, as 

strain increases the first maximum peak in ( )
,

g , ,r
q j

q j  decreases. Considering that the first 

maximum peak, which is called as the nearest neighbor peak, corresponds to a length scale of a 

particle size, this angular averaged pair distribution function change under shear flow can be 

recognized as a shear-induced reduction in the local organization in the microstructure. This shear-

induced structural change is also evident as a decrease in second maximum peak, which is referred to 

as the second nearest neighbor peak.  

This apparently monotonic structural change manifests itself as a non-linear rheological response. 

In Fig. 3(C), the stress growth under startup shear is shown as a function of strain. As the strain 

increases, the stress increases up to a maximum and then decreases to a steady value, signifying 

attainment of a rheological steady state flow. This stress overshoot increases with Pe while the strain 

at maximum stress is invariant. This stress-overshoot behavior has been studied in terms of structural 

rupture of colloidal gels [4], which is represented by the decrease in the maximum peaks of 

( )
,

g , ,r
q j

q j  in this work. In the beginning of startup shear, the colloidal gel experiences 

deformation but maintains the network structure. During this initial deformation, the stress 

accumulates in the network structure, which corresponds to linear rheological behavior. However, as 

strain increases further, the stress-bearing network structure is ruptured and the colloidal gel shows a 

commensurate decrease in stress.  

In Fig. 3(D), steady shear measurements demonstrate the shear thinning behavior of the colloidal 

gel. At low Pe, where the Brownian motion can relax shear-induced deformation, the colloidal gel 
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maintains its structure. Therefore, the colloidal gel shows high viscosity. However, as Pe is increased, 

shear flow more strongly influences the colloidal gel structure. Faster shear flow hinders the 

relaxation of the colloidal gel structure by bond elasticity and Brownian motion, and induces rupture 

of the colloidal gel structure. This leads to a decrease of the viscosity. Fig. 3(D) shows the flow curve 

on a log scale. This result is in qualitative agreement with the prediction of models such as the soft 

glassy material rheology (SGR) model [43-45], which has been proposed to model soft materials, 

such as colloidal glasses [46,47] and a colloidal gel [48]. In Fig. 3(D), the steady shear stress and Pe 

demonstrate power-law behavior with exponent 0.48, which corresponds to the theoretical prediction 

of the SGR model, 0.5. 

Figure. 3(E) shows change in average bond number at steady state over Pe. At low Pe, shear flow 

densifies the colloidal gel structure, which is represented by slight increase in average bond number. 

This result corresponds to previous works [16] where shear flow makes clusters more dense at low Pe. 

In Fig. 3(F), particle number distribution according to the cluster size at steady state of Pe 200 is 

displayed. At the shear flow condition that corresponds to inverse Bingham number M’ [13] or Pedep 

[16] of 1, the network structure of colloidal gel is ruptured to small clusters and individual particles.  
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B.   Structural anisotropy under startup shear 

 

 

Fig. 4. Diagrams of 3D colloidal gel structure under flow startup. The simulated colloidal gel 

configurations are analyzed through pair distribution function (large plane with majority blue color) 

and structure factor (small plane with majority green color). The pair distribution function and 

structure factor are projected for the three perpendicular planes of velocity-gradient ( )-Ñv v , 

velocity-vorticity ( )-Ñ´v v , and gradient-vorticity ( )Ñ -Ñ´v v . 

 

 Next, we investigate the structural anisotropy induced by shear startup by considering the 

anisotropy in the pair distribution function and the structure factor. Figure. 4 shows representative 

plots of the structural anisotropy evident in the real and scattering space representations, along with a 

representative snapshot of the simulation itself. From the simulation particle coordinates, the pair 

distribution function and the structure factor were calculated in three orthogonal planes of velocity-

gradient, velocity-vorticity, and gradient-vorticity. By investigating changes in the pair distribution 

function change and the structure factor in the transient state, the development of the structural 

anisotropy of the colloidal gel under startup shear has been analyzed and correlated to the relevant 

stress responses.  

 



Park, Ahn and Wagner 

16 

1)   Velocity-gradient (𝐯 − 𝛁𝐯) plane 

 

 

Fig. 5. Pair distribution function difference ( ) ( ) ( )( )g , g , g ,0g gD = -r r r  (top row) and structure 

factor difference ( ) ( ) ( )( )S , S , S ,0g gD = -q q q  (middle row) in the velocity ( )v – gradient 

( )Ñv  plane. Snapshots of the particle configuration (bottom row). The images show the particles in 

the velocity-gradient plane sliced with a thickness of 4a. The color indicates the size of the cluster to 

which the particles belong. The black circles in the structure factor difference indicate the q range ( *q ) 

corresponding to the nearest neighbor structure.  

 

 The top row in the Fig. 5 shows the pair distribution function difference, gD , in the 

velocity ( )v –gradient ( )Ñv  plane during the startup shear. As strain increases, the innermost ring 

of the pair distribution function difference, which corresponds to nearest neighbor structure, shows a 

strong decrease along the extensional axis of shear. In contrast, along the compressional axis of shear, 

a relatively minor perturbation of the pair distribution function is observed. The structure factor shows 

this structural anisotropy along the compressional axis as well, as evident from the middle row of Fig. 

5, which plots the structure factor difference SD  in velocity ( )v –gradient ( )Ñv  plane. Between 
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the black circles, which delineate q range corresponding to the nearest neighbor structure, the 

structure factor shows an increase along the extensional axis and a decrease along the compressional 

axis. Considering the inherent inverse relationship between reciprocal space and real space, the 

structure factor, which analyzes the microstructure in reciprocal space, shows patterns that 

corresponds to 90˚ rotation of the pair distribution function. Therefore, the increase in the structure 

factor along the extensional axis can be correlated to the microstructure increasing along the 

compressional axis in real space. These simulation results are qualitatively consistent with 

experimental observations on colloidal gels under shear flow [13].  

 

 

Fig. 6. Angular variation of the pair distribution function ( )12g ,r q  and the structure factor 

( )12S , 90q j +  over the entire contact surface ( )*2,r q q= =  in the velocity ( )v -gradient ( )Ñv  

plane.     

 The structural anisotropy can be analyzed quantitatively by investigating angular variation of 

the pair distribution function and the structure factor over specific radial slices in the 2D projections 

of the structure ( )*2,r q q= = . Figure. 6 shows the angular variation of these pair distribution 

function ( )12g 2,q  and the structure factor ( )*
12S , 90q j + . Here, the abscissa of the structure 

factor is given as a function of 12 90j +  to account for the inverse relationship between reciprocal 

space and real space. This corresponds to the rotated scattering patterns as presented in this 

manuscript. (The analysis of angular variation in the velocity ( )v –vorticity ( )Ñ´v  plane and 

gradient ( )Ñv –vorticity ( )Ñ´v  plane employ the same notation.) At the equilibrium state of strain 0, 
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both the pair distribution function and the structure factor demonstrate an isotropic structure, which is 

described by flat curves with no angular dependence. As the strain increase from strain 0 to strain 0.2 

the pair distribution function becomes anisotropic and angular dependence on the length scale of the 

nearest neighbor are evident. The angular variation at strain 0.2 shows an increase in the pair 

distribution function and the structure factor along the compressional axis direction 

( )12 12 90 135q j= + = . On the other hand, no significant change is observed along the extensional 

axis direction ( )12 12 90 45q j= + = . As strain increases to 0.5, a rapid decrease in the pair 

distribution function and the structure factor is observed in the extensional axis direction 

( )12 12 90 45q j= + = . Meanwhile, the pair distribution function and the structure factor in the 

compressional axis do not change.  

   As strain increases further and steady state flow is achieved (strain 5), the colloidal gel shows an 

overall decrease in the pair distribution function and the structure factor, as shown in Fig 3. 

Importantly, the pair distribution function and the structure factor show strong anisotropy on length 

scales corresponding to nearest neighbors. This structural anisotropy is a critically important aspect of 

the evolution of colloidal gels under startup shear [4]. Initially, when shear flow is imposed, the 

colloidal gel deformation is largely affine. The slight increase in the pair distribution function and the 

structure factor along the compressional axis direction at strain 0.2 indicates that the initial structural 

change of the colloidal gel takes the form of compression. With increasing strain, the colloidal gel 

structure undergoes a break-up along the extensional axis. This break-up leads to a reduction in the 

number of neighboring particles along the extensional direction, while the microstructure along the 

compressional axis is maintained (strain 0.5). As strain increases further, the colloidal gel network 

structure undergoes rotational motion toward the flow direction and ruptures into several clusters and 

flocs as shown in Fig. 5 (strain 5). The rotation and breakup of the overall colloidal gel structure bring 

about the overall decrease in the pair distribution function and the structure factor. By this process, 

despite the overall decrease of the pair distribution function and the structure factor, the break-up 

along the extensional axis and the shear-induced aggregation along the compressional axis generate 

significant structural anisotropy.  

At steady state flow (strain 5), where the colloidal gel is ruptured into several clusters and flocs, 

the colloidal gel shows the structural anisotropy qualitatively similar to that reported for hard sphere 

colloidal suspensions [17,24]. In addition to the structural anisotropy along the compressional axis, 

the ruptured colloidal gel shows some propensity for “string-like” organization along the flow 

direction, which is represented by the increase of the structure factor along the gradient axis in Fig. 5 

(strain 5). The alignment along the flow direction has been observed in previous theoretical [17,49] 
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and experimental works with hard sphere system [24,50]. Besides the alignment along the flow 

direction, the overall angular distribution of the ruptured colloidal gel in Fig. 6 (strain 5) shows 

similarities to the hard sphere system.  

The spherical harmonics expansion of the pair distribution function ( )g r  provides more 

quantitative metrics for the structural anisotropy. In Fig. 7(A), the spherical harmonic coefficient 
( ) ( )2
2g r , which denotes the intensity of spherical harmonic term ( )2

2X , is displayed for various 

strains. Initially, at strain 0, ( ) ( )2
2g r  is described by a flat curve, which corresponds with the 

isotropic colloidal gel structure at equilibrium state. As strain increases, the result shows two peaks at 

2r @  and in between 2 and 2.15. At 2r @ , the peak shows minima of negative value. Because 
( )2
2X  describes an anisotropic structure with symmetries along the extensional and compressional 

axes as shown in the inset of the Fig. 7(A), the negative value of ( ) ( )2
2g r  can be interpreted as a 

result of anisotropic structure buildup along the compressional direction. On the other hand, in 

between 2 and 2.15, ( ) ( )2
2g r  demonstrates maxima with positive value, which indicates an 

anisotropic increase in structure along the extensional axis. These different structural anisotropies 

with varying particle separation distance 𝑟 are associated with specifics of particle motion in the gel 

under shear flow. Under shear flow, particles approach to each other along the compressional axis. At 

the same time, particles are convected away along the extensional axis. Therefore, at 2r @ , where 

particle surfaces are convected into contact, the colloidal gel shows structural anisotropy along the 

compressional axis with negative ( ) ( )2
2g r . On the other hand, in between 2 and 2.15, structural 

anisotropy along the extensional axis is observed. This is because the particle bonds are stretched to a 

value in between 2 (particle surface contact) and 2.15 (maximum stretching) by shear flow. As strain 

increases, lower peak values are observed, which is ascribed to the rupture of the colloidal gel 

structure, such that fewer neighboring particles are evident at this separation distance along the 

extensional axis.   
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Fig. 7. A) Spherical harmonic function ( )2
2X  (inset) and coefficient ( )2

2g . Dotted lines denote the 

compression part and the extension part. B) Absolute value of ( )2
2g  coefficient averaged over 

compressional part (blue down triangle) and extensional part (green square) and sum (red circle) as a 

function of strain (g ). Black solid line shows shear stress response 12t  of the colloidal gel.    

 

 Unlike the overall averaged microstructure, the structural anisotropy in velocity ( )v -gradient

( )Ñv  plane shows a strong correlation to the shear stress responses. In previous work [36], it has 

been shown that the shear stress 12t  for molecular systems interacting with a simple centro-

symmetric potential can be given as:     

( )22 3
12 20

2 g
15

dr dr
dr
ft pr

¥ æ ö= - ç ÷
è øò                         (22) 

where 𝜌 is the particle number density and 
d
dr
fæ ö

ç ÷
è ø

 is the derivative of interparticle potential, which 

is equivalent to inter-particle force. Even though Eq. 22 provides a quantitative relationship between 
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( )2
2g  and the shear stress 12t , it is not automatically applicable to our work, where the interparticle 

potential is given by a function of the bond length between the particle surfaces (b) as well as the 

interparticle distance (r). To test this relationship, we compared the ( )2
2g  coefficient to the shear 

stress 12t . To compare ( )2
2g  to 12t , ( )2

2g  was averaged in compressional part and extensional part, 

separately. Because both of compressional part (negative ( )2
2g  and positive 

d
dr
fæ ö

ç ÷
è ø

 due to repulsive 

force by surface potential) and extensional part (positive ( )2
2g  and negative 

d
dr
fæ ö

ç ÷
è ø

 due to attractive 

force by bonding potential) contribute positively to 12t , we compared the sum of ( )2
2g avg

 in the 

compressional part and extensional part to 12t . Fig. 7(B) shows the evolution of ( )2
2g avg

 and shear 

stress ( 12t ) as a function of strain (g ). In addition to the stress overshoot behavior, ( )2
2g avg

 of the 

compressional part, the extensional part, and sum of them all show overshoot behavior with strain. 

The overshoot behavior of the sum of ( )2
2g avg

 corresponds well with that of the stress curve, 

importantly showing the coincidence of the maxima of ( )2
2g avg

 and 12t . 

 

2)   Velocity-vorticity ( )-Ñ´v v  plane 

 

The top row of Fig. 8 shows the pair distribution function difference, gD , in the velocity ( )v –

vorticity ( )Ñ´v  plane under the startup shear. As strain increases, the innermost ring of the pair 

distribution function shows a strong decrease along the velocity direction and a relatively slight 

decrease along the vorticity direction. The pair distribution function difference shows the expected 

structural anisotropy along the vorticity axis. The structural anisotropy along the vorticity axis is also 

observed in the structure factor difference, SD , in the middle row of Fig. 5. As strain increases, the 

structure factor difference shows the intensity increasing along the velocity axis, which is represented 

by the butterfly pattern. The butterfly pattern has been observed in many experimental works by 

scattering [8,11,13]. Considering that the structure factor analyzes the microstructure in the reciprocal 

space, which has an inverse relationship with the real space, the butterfly pattern indicates a 
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preferential alignment of particles along the vorticity direction. 

 

 

Fig. 8. Pair distribution function difference ( ) ( ) ( )( )g , g , g ,0g gD = -r r r  (top row) and structure 

factor difference ( ) ( ) ( )( )S , S , S ,0g gD = -q q q  (middle row) in the velocity ( )v –vorticity ( )Ñ´v  

plane. Snapshots of the particle configuration (bottom row). The images show the particles in the 

velocity ( )v –vorticity ( )Ñ´v  plane sliced with a thickness of 4a. The color indicates the size of 

the cluster to which the particles belong. The black circles in the structure factor difference indicate 

the regime corresponding to the nearest neighbor structure. 
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Fig. 9. Angular variation of pair distribution function ( )13g 2,q  and structure factor 

( )*
13S , 90q j +  in velocity ( )v -vorticity ( )Ñ´v  plane.     

 

Particle alignment along the vorticity axis has been observed in experiments on near-hard 

sphere colloidal suspensions as well [24]. In case of hard sphere colloidal suspensions, the structural 

anisotropy along the vorticity has been considered to be induced by the hydrodynamic interactions 

between particles [29]. However, in our study, the structural anisotropy along the vorticity direction 

cannot be credited to the hydrodynamic interaction, because the hydrodynamic interaction between 

particles is ignored. The quantitative analysis through the angular variation of the pair distribution 

function ( )13g 2,q  and the structure factor ( )*
13S , 90q j +  in Fig. 9 suggests an explanation. At 

equilibrium state of strain 0, as in the velocity ( )v -gradient ( )Ñv  plane, both the pair distribution 

function and the structure factor are isotropic, which is represented by flat curves. At strain 0.2, the 

pair distribution function and the structure factor are still largely isotropic. Initially, the imposed shear 

flow induces no structural anisotropy along the vorticity direction. However, as strain increases 

further, the colloidal gel shows structural anisotropy along the vorticity axis. At strain 0.5, near the 

velocity axis ( )13 13 90 0  or 180q j= + = , the pair distribution function and structure factor 

decrease. Whereas, near the vorticity axis ( )13 13 90 90q j= + = , the pair distribution function 

maintains its initial value at strain 0 and some increase in structure factor is observed. As shear flow 

can be considered as a linear combination of rotation field and extension field, [51] the convection of 

the flow competes with the attractive inter-particle force to induce structural rupture in the direction of 

the velocity ( )v  axis. In contrast, lacking any vorticity direction component in the shear flow, only an 
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attractive interparticle force acts on the network structure along the vorticity direction. Thus, the 

network structure in the vorticity direction undergoes relatively less microstructural change and 

maintains structure with increasing shear strain as opposed to the structure along the velocity direction. 

The net effect is a comparatively higher value of the pair distribution function and the structure factor 

along the vorticity axis as compared to the velocity direction.      

As strain increases more, at strain 1, the structural anisotropy along the vorticity axis 

intensifies. Near the vorticity axis, where the colloidal gel has a low probability of rupture, the 

colloidal gel maintains its structure and only slight decrease in the pair distribution function is 

observed. On the other hand, near the velocity axis, where the colloidal gel has a high probability of 

rupture, rapid decrease in the pair distribution function is observed. As the strain increases further, 

however, the shearing disrupts the overall gel structure, even in the vorticity axis direction. Therefore, 

at strain 5, the pair distribution function decreases in all directions including the vorticity axis. 

However, the colloidal gel still shows preferred structural anisotropy along the vorticity axis, even 

though it is weakened. 

The anisotropic structure in the velocity ( )v - vorticity ( )Ñ´v  plane can be related to a 

linear combination of spherical harmonic terms, ( ) ( )2 2
0 12X X- , which is shown in the inset of Fig. 

10(A). In the Fig. 10(A), a linear combination of spherical harmonic coefficients, ( ) ( )2 2
0 12g g- , which 

is related to the intensity of ( ) ( )2 2
0 12X X- , is exhibited. Initially, at strain 0, ( ) ( )2 2

0 12g g-  shows flat 

curve consistent with an isotropic structure. As strain increases, two peaks are observed at 𝑟 ≅ 1.95 

and in between 2 and 2.15. At 𝑟 ≅ 1.95, the peak shows minima of negative value and in between 2 

and 2.15, the peak shows maxima with positive value. Considering that ( ) ( )2 2
0 12X X-  describes 

anisotropic structure aligned preferentially along the vorticity axis, as shown in the inset of the Fig. 10 

(A), the positive and negative value of ( ) ( )2 2
0 12g g-  indicate the anisotropic structure along the 

vorticity axis and velocity axis, respectively. Therefore, the small negative peaks at 1.95r @  can be 

interpreted as a weak structural anisotropy in the velocity direction. On the other hand, the large 

positive peaks in in between 2 and 2.15 can be associated with the anisotropic structure along the 

vorticity direction.  
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Fig. 10. A) A combination of spherical harmonic functions ( ) ( )2 2
0 12X X-  (Inset) and coefficients

( ) ( )2 2
0 12g g- , which correspond to the structural anisotropy along vorticity direction in the velocity ( )v

- vorticity ( )Ñ´v  plane. Dotted lines denote the compression part and the extension part. B) 

Absolute value of ( ) ( )2 2
0 12g g-  averaged over compressional part (blue down triangle) and 

extensional part (green square) and sum (red circle) as a function of strain (g ). Black solid line 

displays normal stress difference 11 33t t-  (N1+N2). 

 

As in the velocity ( )v -gradient ( )Ñv  plane, where the structural anisotropy exhibits a 

strong correlation to the shear stress 𝜏34, the structural anisotropy in the velocity ( )v -vorticity 

( )Ñ´v  plane is also closely correlated to the rheological response defined by the difference between 

the normal stresses 𝜏33 and 𝜏55. The relationship between ( ) ( )2 2
0 12g g- , which describes the degree 

of the structural anisotropy in the velocity ( )v -vorticity ( )Ñ´v  plane, and the normal stress 
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difference, 11 33t t- , is given as: [36]          

( ) ( )( )2 22 3
11 33 0 10

2 2g g
15

dr dr
dr
ft t pr

¥ æ ö- = - ç ÷
è øò                          (23) 

As mentioned in the previous part, because of the bond length dependent inter-particle potential, the 

above equation is not automatically applicable to our work. Therefore, we compared ( ) ( )2 2
0 12g g-  to 

11 33t t-  to assess this relationship. To compare ( ) ( )2 2
0 12g g-  to 11 33t t- , ( ) ( )2 2

0 12g g-  was averaged 

in compressional part and extensional part, which are denoted by dotted lines in Fig. 10 (A). Because 

both of compressional part (negative ( ) ( )2 2
0 12g g-  and positive 

d
dr
fæ ö

ç ÷
è ø

 due to repulsive force by 

surface potential) and extensional part (positive ( ) ( )2 2
0 12g g-  and negative 

d
dr
fæ ö

ç ÷
è ø

 due to attractive 

force by bonding potential) contribute negatively to 11 33t t- , we compared the sum of 

( ) ( )2 2
0 12g g

avg
- -  in the compression part and extension part to 11 33t t- . Figure. 10 (B) shows the 

evolution of ( ) ( )2 2
0 12g g

avg
- -  and 11 33t t-  as a function of strain (g ). ( ) ( )2 2

0 12g g
avg

- -  in the 

compression part, where ( ) ( )2 2
0 12g g-  describes the structure along the velocity axis, shows 

undershoot behavior. The undershoot of ( ) ( )2 2
0 12g g

avg
- -  in the compression part can be understood 

as the structural rupture along the velocity axis. On the other hand, ( ) ( )2 2
0 12g g

avg
- - in the extension 

part does not exhibit clear undershoot behavior. Given that the ( ) ( )2 2
0 12g g-  in the extension part 

describes the structure along the vorticity direction, the lack of an undershoot behavior can be 

understood as a result of a constant structure along the vorticity axis. The undershoot evident in the 

sum of ( ) ( )2 2
0 12g g

avg
- -  qualitatively corresponds to the undershoot of the normal stress difference

11 33t t- , signifying strong correlation between structural anisotropy and the rheological response.  

 

3)   Gradient-vorticity ( )Ñ -Ñ´v v  plane 

 The pair distribution function difference, gD , structure factor difference SD , and particle 

configuration of the colloidal gel in the gradient 𝛁𝒗 –vorticity 𝛁×𝒗  plane are shown in Fig. 11. 
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The result in the gradient ( )Ñv –vorticity ( )Ñ´v  plane has much in common with the result in the 

velocity ( )v -vorticity ( )Ñ´v  plane. As strain increases, the innermost ring of the pair distribution 

function difference in the top row shows a decrease along the gradient direction. Whereas, in the 

vorticity direction, the innermost ring exhibits a comparatively slight decrease in the pair distribution 

function. The partial structural change, which results in structural anisotropy along the vorticity axis, 

is demonstrated in the structure factor difference as well. In the middle row of Fig. 11, as strain 

increases, the structure factor difference displays an increase in intensity along the gradient axis, 

which is described by butterfly pattern. The butterfly pattern is similar to that of the velocity ( )v  -

vorticity ( )Ñ´v  plane and can again be interpreted as the structural anisotropy with preference along 

the vorticity axis.    

 

 

Fig. 11. Pair distribution function difference ( ) ( ) ( )( )g , g , g ,0g gD = -r r r  (top row) and structure 

factor difference ( ) ( ) ( )( )S , S , S ,0g gD = -q q q  (middle row) in gradient ( )Ñv –vorticity ( )Ñ´v  

plane. Snapshots of the particle configuration. (bottom row) The images show the particles in the 

velocity-gradient plane sliced with a thickness of 4a. The color indicates the size of the cluster to 

which the particles belong. The black circles in the structure factor difference indicate the regime 

corresponding to the nearest neighbor structure. 
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Figure. 12 shows the angular variation of the pair distribution function ( )23g 2,q  and the 

structure factor, ( )*
23S , 90q j + . At equilibrium state of strain 0, the pair distribution function and 

the structure factor show flat curves, which indicates a relatively isotropic structure. At strain 0.2, the 

pair distribution function and the structure factor do not show any remarkable changes. As strain 

increases further, a decrease in the pair distribution function is observed near the gradient axis 

( )23 23 90 0  or 180q j= + = . On the other hand, near the vorticity axis ( )23 23 90 90q j= + = , 

the pair distribution function undergoes a comparatively small decrease and shows a maximum value, 

which indicates the structural anisotropy along the vorticity axis. In addition, the structure factor 

shows a similar change, which shows the maximum value near the vorticity axis. This evolution of the 

structural anisotropy along the vorticity axis in the gradient ( )Ñv –vorticity ( )Ñ´v  plane is similar to 

that of the velocity ( )v -vorticity ( )Ñ´v  plane. Because the shear flow has a component in the 

gradient direction, the colloidal gel experiences structural rupture in the gradient direction. However, 

due to the absence of vorticity direction component in shear flow, the shear flow has comparatively 

less effect on the structure in the vorticity direction. Again, the attractive particle interaction 

dominates the structure along the vorticity direction, leading to the butterfly-like patterns.  

 

Fig. 12. Angular variation of pair distribution function ( )( )23g 2,q  and structure factor 

( )*
23S , 90q j +  in the gradient ( )Ñv –vorticity ( )Ñ´v  plane.         

 The anisotropic structure in the gradient ( )Ñv –vorticity ( )Ñ´v  plane can be described by 

the linear combination of spherical harmonic terms, ( ) ( )2 2
0 12X X+ , which is shown in the inset of Fig. 

13(A). In Fig. 13(A), ( ) ( )2 2
0 12g g+ , which denotes the intensity of ( ) ( )2 2

0 12X X+ , is shown as a 
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function of distance, r. At strain 0, ( ) ( )2 2
0 12g g+  exhibits a flat curve, due to the isotropic structure at 

equilibrium state. As strain increases, at 2r @  and in between 2 and 2.15, two peaks are observed. 

At 2r @ , the peak shows negative minima, which describes the structure along the gradient axis. As 

strain increased, the peak around 2r @  gradually disappears. This disappearance indicates that the 

structure along the gradient direction is ruptured. In between 2 and 2.15, the peak shows positive 

maxima, which demonstrates the structure along the vorticity direction. In contrast to the peak at 

2r @ , which exhibits gradual decrease due to the structure rupture along the gradient axis, the peak 

between 2 and 2.15 maintains its value except for a small, initial decrease. This signifies that the 

structure along the vorticity direction experiences less microstructural change.    

 

Fig. 13. A) A combination of spherical harmonic functions ( ) ( )2 2
0 12X X+  (Inset) and coefficients

( ) ( )2 2
0 12g g+ , which correspond to the structural anisotropy along vorticity direction in gradient ( )Ñv –

vorticity ( )Ñ´v  plane. Dotted lines denote the compression part and the extension part. B) 

Absolute value of ( ) ( )2 2
0 12g g+  averaged over compressional part (blue down triangle) and 

extensional part (green square) and sum (red circle) as a function of strain (g ). Black solid line 

displays normal stress difference, 22 33t t-  (N2). 
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 The analysis of the spherical harmonic expansion of the pair distribution function signifies 

that the structural anisotropy in the gradient ( )Ñv -vorticity ( )Ñ´v  plane is closely linked to the 

second normal stress difference, 22 33t t- . Theoretically, the relationship between ( ) ( )2 2
0 12g g+  and 

22 33t t-  is given as follows [36]:          

                     ( ) ( )( )2 22 3
22 33 0 10

2 2g g
15

dr dr
dr
ft t pr

¥ æ ö- = + ç ÷
è øò                     (24) 

As the above equation is not automatically applicable to our work, we analyzed the correlation 

between the anisotropic structure and the second normal stress difference by comparing ( ) ( )2 2
0 12g g+  

to 22 33t t- . To compare ( ) ( )2 2
0 12g g+  to 22 33t t- , ( ) ( )2 2

0 12g g+ 	
  was averaged in compressional part 

and extensional part, individually. Because both of the compression part (negative ( ) ( )2 2
0 12g g+  and 

positive 
d
dr
fæ ö

ç ÷
è ø

 due to repulsive force by surface potential) and the extension part (positive 

( ) ( )2 2
0 12g g+  and negative 

d
dr
fæ ö

ç ÷
è ø

 due to attractive force by bonding potential) contribute negatively 

to 22 33t t- , we compared the sum of ( ) ( )2 2
0 12g g

avg
- +  in the compression part and the extension part 

to 22 33t t- . Figure. 13 (B) shows the evolution of ( ) ( )2 2
0 12g g

avg
- +  and 22 33t t-  as a function of 

strain. In the case of compression part, where negative ( ) ( )2 2
0 12g g+  describes the anisotropic 

structure along the gradient axis, ( ) ( )2 2
0 12g g

avg
- +  shows an undershoot that can be attributed to the 

structural rupture along the gradient axis. On the other hand, in the extension part, where positive 

( ) ( )2 2
0 12g g+  is related to the anisotropic structure along the vorticity axis, ( ) ( )2 2

0 12g g
avg

- +  shows 

little undershoot. As in the velocity ( )v -vorticity ( )Ñ´v  plane, the absence of undershoot can be 

correlated to the maintenance of the structure along the vorticity axis. The sum of ( ) ( )2 2
0 12g g

avg
- +  

in the compression part and the extension part demonstrates undershoot behavior, which corresponds 

to the undershoot of 22 33t t- .  
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C.   Overshoot of alignment factor 𝑨𝒇 and modified stress-SANS rule 

 

Fig. 14. A) Normalized shear stress ( 12 12,max/t t  (black solid line)), average bond number ( max/z z  

(red dashed line)), and alignment factors ( 12 12,max/f fA A (blue circle), 13 13,max/f fA A  (pink diamond), 

23 23,max/f fA A  (green triangle)) at Pe 200. B) Particle number distribution according to the cluster 

size at each strain at Pe 200.  

 So far, the shear-induced anisotropic structure of the colloidal gel has been quantitatively 

analyzed through the pair distribution function and the structure factor. The analysis through the pair 

distribution function is intuitive and easily understandable. In particular, the spherical harmonic 

expansion of the pair distribution function shows a close connection between the structural anisotropy 

and rheological behavior. However, a simplified analysis of shear-induced structural anisotropy is 

often performed in experiments. In experimental studies, the structural anisotropy is usually 

quantified through an order parameter that is a weighted average of the scattering pattern, which 

corresponds to the structure factor in this study. In this section, the alignment factor will be further 

analyzed and correlated to the stress response, which is expected to provide especially useful 
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information for comparison to experiments.   

 A scalar order parameter of the structural anisotropy can be quantified using the alignment 

factor ( fA ) given as the Eq. 20. Figure. 14(A) shows normalized shear stress ( 12 12,max/t t ), alignment 

factor ( ,max/f fA A ), and average bond number ( max/z z ) under startup of shear at Pe 200. The 

alignment factors in all three planes show overshoot behavior that is similar to the shear stress. In the 

velocity ( )v -gradient ( )Ñv  plane, where the structural anisotropy in the compressional axis direction 

is observed, the alignment factor 12fA  increases as soon as the shear flow is applied. However, in the 

velocity ( )v -vorticity ( )Ñ´v  plane and the gradient ( )Ñv -vorticity ( )Ñ´v  plane where the 

colloidal gel shows the structural anisotropy along the vorticity direction, the alignment factor does 

not increase instantly and displays a delayed response. This can be attributed to the difference in the 

mechanism inducing structural anisotropy. In the velocity ( )v -gradient ( )Ñv  plane, the structural 

anisotropy can be caused not only by the structural breakup that depletes the particles along the 

extensional axis but also by the structural deformation that convects the particles together along the 

compressional axis. Therefore, the initial strain increase without significant bond breaking leads to an 

increase in 12fA . Indeed, as shown in Fig. 14(A), while the average bond number does not show any 

remarkable change in the beginning of shear startup, the alignment factor in the velocity-gradient 

plane 12fA  demonstrates a clear increase. In contrast, according to the angular variation of the pair 

distribution function and the structure factor, it has been shown that the structural anisotropy along the 

vorticity axis is induced by structural rupture, which prefers the velocity and gradient direction. Thus, 

the initial structural deformation without bond breaking does not increase the alignment factor in the 

velocity-vorticity plane and the gradient-vorticity plane. As shown in the Fig. 14(A), the delayed 

increase in alignment factors 13fA  and 23fA  accompanies a rupture of colloidal gel structure, 

which is represented by the decrease in the average bond number.  

 As strain increases further, the colloidal gel shows a decrease in the alignment factors in all 

three planes. The decrease in the alignment factor is linked to the structural change from the 

percolated network to small gel fragments. Fig. 14(B) shows the particle number distributions 

according to the cluster size. Here, abscissa represents the size of the cluster, to which the particles 

belong, and ordinate indicates the number of the particles belonging to each cluster size, which is the 

product of cluster size and the number of clusters. At strain 0, the particle number distribution shows a 

significant peak around 10,000, which describes the percolated network chain. Under the startup shear 

flow, the peak is maintained until strain 1 and this indicates that the colloidal gel maintains the 
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network structure. However, at higher strain, this peak shrinks and moves to smaller sizes. In addition, 

there appears several peaks in the cluster size of dozens to hundreds. This indicates a structural 

change from percolated network to several clusters and flocs. As the anisotropic gel structure turns 

into smaller, isotropic fragments, the alignment factors in the velocity ( )v -vorticity ( )Ñ´v  plane and 

the gradient ( )Ñv -vorticity ( )Ñ´v  plane decrease. This result corresponds with the change of the 

angular variation of the pair distribution function and the structure factor, which shows the decrease in 

the structural anisotropy with the overall decrease of the pair distribution function and the structure 

factor. The colloidal gel shows similar overshoot behavior in the alignment factor at various Pe values 

(Alignment factor changes and principal axis angle changes at various Pe values are given in 

Appendix A). 

 

Fig. 15. Measured and predicted stress responses of the colloidal gel at Pe 200. Stress responses are 

predicted using stress-SANS rule and modified stress-SANS rule. “stress-SANS (Linear)” indicates 

the use of the stress SANS coefficients defined on the basis of linear rheological behaviors. In the case 

of “stress-SANS (steady)”, steady shear measurements are used to define the stress SANS coefficients. 

“Modification (bond number)” signifies the modified stress-SANS rule in which structure parameter 

λ  is replaced with normalized average bond number ( )
init

z
z
gæ ö

ç ÷
è ø

. 

 The overshoot of the alignment factor can be linked to the stress response by the stress-

SANS rule: [26]  

                        ( ) ( )1/ 2

0 12 12,0sin 2fG C As g jé ù= ë û .                         (25) 

Here, 0G  and ( )C g  are shear modulus and the stress-SANS coefficient which is defined from 

steady shear measurement. The stress-SANS rule has been applied to systems such as micellar 
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solution [25,52], which is assumed to have the polymeric contribution to rheological behavior. In this 

work, assuming that the network structure of the colloidal gel also has a similar “polymeric” (elastic 

springs) contribution to rheological property, we applied the stress-SANS rule to quantitatively 

associate the structural anisotropy to rheological behavior. Fig. 15, compares the measured shear 

stress and the shear stress prediction by the stress-SANS rule at Pe 200. (Results for various Pe values 

are available in Appendix B). The red solid line denotes the measured stress and pink triangle 

indicates the stress-SANS calculation with ( )C g  defined from the steady shear measurement. Here, 

( )C g  was determined to a value that minimizes the deviation from the steady measurement using 

least square method. This manifestation of the stress-SANS rule qualitatively captures the stress 

response of the colloidal gel, however it underpredicts the stress response at small strain. In addition, 

the stress overshoot is not properly described. The underprediction at low to moderate strains is a 

result of using ( )C g  derived from the steady shear measurement, where the structure is at its most 

broken state. One can also define ( )C g  from the onset of shear flow using the linear response at 

low strains. The green stars denote the stress-SANS calculation with ( )C g  defined on the basis of 

the linear rheological behavior. Not surprisingly, as this definition is based on the maximum 

structured state, this definition overpredicts the stress at higher strain values. This exercise 

demonstrates that bond breakage and formation must be included in the stress-SANS rule for colloidal 

gels.   

 This failure of the naïve stress-SANS rules can be corrected by accounting for the bond 

number during the startup shear flow. As opposed to the stress-SANS rule, the comparison of stress to 

structure using the pair distribution function shows a quantitative connection between the structural 

anisotropy and rheological behavior. This difference arises from the definition of the alignment factor. 

The pair distribution function and its spherical harmonic expansion involve the information on not 

only the structural anisotropy, but also size-related structural change, such as breakup of the structure. 

On the other hand, as it is divided by angular averaged intensity as given in Eq. 20, the alignment 

factor does not include the information on the size-related structural change. As size-related structural 

changes play an important role in determining the strength of the material, the naïve stress-SANS 

rules cannot quantitatively predict nonlinear rheological behaviors, such as stress overshoot, which 

accompanies rupture of the colloidal gel structure [3,4]. As an alternative, we introduce a method to 

account for structural rupture through adding the structure kinetics model to the stress-SANS rule and 

suggest a modified stress-SANS rule. The structure kinetics model is commonly used in theoretical 

studies to describe the thixotropic materials [53-55]. For example, constitutive equations, which link a 

stress response to a microstructure, employ a structure kinetics model to include the influence of the 



Structure-Rheology Relationships for Colloidal Gels 

35 

microstructural change [54]. In the structure kinetics model, the instantaneous structure is represented 

by a dimensionless scalar parameter, l , which is called structure parameter. The time dependence of 

l  is described by a differential evolution equation. The evolution equation links the time rate of 

change of the structure (l ) to the instantaneous flow conditions and structure.  

 The modified stress-SANS rule can be proposed in the form of:        

                     ( )1/ 2 1/ 2
12 12,0sin 2 .fS As l g jé ùé ù= ë û ë û                        (26) 

In the Eq. 26, the material constant S  represents the strength of the colloidal gel network structure at 

equilibrium. The first term on the right-hand side, Sl , corresponds to 0G  in original stress-SANS 

rule. In the original stress-SANS rule, 0G , which represents the structural strength, is given as a 

constant and independent of strain and shear rate. In the modified rule, the effect of structural change 

on the fraction of the gel network that is connected and contributing to the elastic stress is described 

by product of a material constant S  and the structure parameter, l . The structure parameter is 

given as the solution of the following evolution equation,  

( )0.5
1 2 1 .d k k

dt
l g l g l= - + -                          (27) 

Here, the first term on the right-hand side describes the shear-induced breakup and the second term on 

the right-hand side expresses shear-induced structure buildup [54]. The analytic solution of the Eq. 27 

is given by:  

        ( ){ }
0.5

0.52 1
1 20.5 0.5

1 2 1 2

exp
k k

k k t
k k k k

g g
l g g

g g g g

æ ö æ ö
= ç ÷+ ç ÷´ - + ´
ç ÷ ç ÷+ +è ø è ø

            (28) 

The modified stress-SANS rule introduces three material constants 1 2, ,S k k  which need to be 

determined empirically. In this work, the three constants were determined through fitting the result in 

Fig. 16. The first row in the Fig. 16 shows the evolutions of the alignment factor 12fA  and the 

principal axis angle 12,0j  in the velocity ( )v -gradient ( )Ñv  plane at various Pe values (5, 10,20, 50, 

100, 200). With the evolution results, the best fitting parameters ( )1 20.025, 1.14, 15.89S k k= = = , 

which are optimized to best fit the measured stress for all Pe, were chosen using a polynomial curve 

fitting technique with least squares method. In the middle of the right hand side of Eq. 26, the 
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influence of the shear rate, which is described by stress-SANS coefficient ( )C g  in the original 

stress-SANS rule, is represented by 1/ 2g . Because the shear rate is closely related to the relaxation of 

the structure, the stress response of the colloidal gel depends on the applied shear rate. In Fig. 3(D), it 

has been shown that the flow curve of the colloidal gel conforms to the SGR model, which predicts 

the power law relationship between shear stress and rate with an exponent of 0.5. However, one can 

expect that at very high shear rates the particles will be fully dispersed and the sample will reach a 

limiting high shear viscosity plateau. In addition, the stress overshoot in Fig. 3(C) agrees with the 

SGR model, which demonstrates the stress maximum at a constant strain. Therefore, according to 

these similarities, the influence of the shear rate on the stress response is represented based on the 

SGR model, which shows a power law increase of the shear stress with an exponent of 0.5 under start 

up shear [45]. The last term ( )1/2
12 12,0sin 2fA j , which describes the influence of the structural 

anisotropy, is unchanged from the original stress-SANS rule.       

 In Fig. 15, blue squares show the stress response calculated by the modified stress-SANS 

rule. As seen, the modified stress-SANS rule connects the measured metrics of the structure to the 

stress with quantitative agreement over the entire range of strains probed. Equally successful results 

are shown for startup flows at other Pe values (Fig. 17 in Appendix B), verifying the hypothesis that 

the stress-SANS rule must account for direct bonded interactions.  

 To further explore the theoretical basis of this modified stress-SANS rule, we examine the 

possible relationship between the structure parameter and the bond network. Theoretically, the 

structure parameter was originally associated with the number of links between structure elements, 

such as the bonds between the particles [54,55]. Thus, we replace the structure parameter and its 

associated kinetic equation with a normalized average bond number, ( )
init

z
z
gæ ö

ç ÷
è ø

. Here, initz  and 

( )z g  note the average bond number at initial equilibrium state and at strain 𝛾, respectively. The 

gray circles in the Fig. 15 shows the stress responses calculated from the stress-SANS rule with this 

replacement using the average bond number directly calculated during the simulation. The stress-

SANS rule modified with the average bond number nearly quantitatively predicts stress response, 

which validates the underlying hypothesis of the modified stress-SANS rule with the structure kinetics 

model. Again, as shown in the Appendix B, this result holds for startup flows at other Pe values. This 

result verifies the correlation between the structure parameter and the degree of bond formation in 

colloidal gels. Interestingly, it suggests that the modified stress-SANS rule can be interpreted to study 

bond rupture in colloidal gels.     
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Ⅳ. Conclusions 

 A modified Brownian Dynamics simulation that explicitly accounts for surface bond 

formation is used to study the shear-induced structural anisotropy during flow startup for colloidal 

gels with the goals of demonstrating the quantitative connection between the real space microstructure, 

scattering patterns, and measured deviatoric stress tensor. Under startup shear flow, the colloidal gel 

shows structural anisotropy predominantly along the direction of the compressional axis, with bond 

rupture along the extensional axis, in qualitative agreement with experiments. This also results in an 

anisotropy aligned along the vorticity axis, again in agreement with recent experimental results. The 

structural anisotropy in the direction of the compressional axis arises from initial structural 

deformation, which condenses the particles along the compressional axis, and the rupture of the 

colloidal gel structure, which is preferred in the extensional axis direction. The structural anisotropy 

along the vorticity axis direction is attributed to the same shear-induced structural rupture when 

viewed in the appropriate projection. Because the shear flow acts in the velocity-gradient plane of 

flow, it competes with the attractive interparticle force to break the structure along the velocity 

direction and the gradient direction. On the other hand, with no vorticity direction component in the 

shear flow, the attractive inter-particle force maintains the network structure and the colloidal gel 

undergoes relatively less microstructural change in the vorticity direction. The structural changes in 

the velocity -gradient plane leads to an anisotropic structure orientation in the direction of the vorticity 

axis evident in the velocity-vorticity and gradient-vorticity planes of observation. The evolution of 

structural anisotropy with strain was quantitatively linked to nonlinear stress response that exhibits a 

strong stress overshoot through a spherical harmonic expansion of the pair distribution function and a 

stress-SANS rule. Consistent with micromechanical theory, the spherical harmonic expansion of the 

pair distribution function showed a quantitative correlation between the structural anisotropy and the 

macroscopic stress response. Importantly, we demonstrate that a modified stress-SANS rule that 

explicitly includes bond formation and rupture via a structure kinetics model can quantitatively relate 

the nonlinear stress evolution upon flow startup to the order parameters. Finally, analysis of the bond 

network in the simulations proves the proposed hypothesis that the structure parameter is associated 

with the number of bonds between particle surfaces. This work provides a quantitative connection 

between the evolution of the deviatoric stresses in the flow startup of a colloidal gel and the 

microstructure, as can be determined by direct microscopy and scattering, as well as a method to 

connect this back to the bond network. As such, it is useful for both designing and interpreting 

measurements of colloidal gel rheology, as well as in designing better quantitative theories for 

predicting colloidal gel rheology. We caution, however, that our work neglects hydrodynamic 
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interactions, which are known to play an important role in both gel formation and gel rheology. Thus, 

comparisons with experiment should keep this approximation in mind.  
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Appendix A: Alignment factor change and principal axis angle change 

Figure. 16 shows alignment factor change and pricipal axis angle change in three orthogonal planes of 

velocity-gradient, velocity-vorticity, and gradient-vorticity for various Pe values (5, 10, 20, 50, 100, 

200). Results were calculated and averaged for five different simulation sets with different random 

motion and initial configuration of the particles.     

 

Fig. 16. Alignment factor ( )12 13 23, ,f f fA A A  change and principal axis angle ( )12,0 13,0 23,0, ,j j j  

change in velocity ( )v -gradient ( )Ñv  plane, velocity ( )v -vorticity ( )Ñ´v  plane, and gradient ( )Ñv

- vorticity ( )Ñ´v  plane. Results are shown for various Pe values as indicated.  
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Appendix B : Measured and predicted stress response  

In Fig. 17, stress response predictions for different Pe values (5, 10, 20, 50, 100, 200) are shown. 

Stress responses are calculated from stress-SANS rule and modified stress-SANS rule with the 

alignment factor change results in Fig. 16. Results ware compared with measured stress response (Red 

Solid line).         

 

Fig. 17. Measured and predicted stress responses of the colloidal gel at various Pe values. Stress 

responses are predicted using Stress SANS rule and modified Stress SANS rule. Stress-SANS (Linear) 

indicates the use of the stress SANS coefficients defined on the basis of linear rheological behaviors. 

In the case of stress-SANS (steady), steady shear measurements are used to define the stress SANS 

coefficients. Modification (bond number) signifies the modified stress-SANS rule in which structure 
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parameter l  is replaced with normalized average bond number ( )
init

z
z
gæ ö

ç ÷
è ø
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