On the Macroscopic Modeling of Dilute Emulsions Under Flow in the Presence
of Particle Inertia

P. Masafu Mwasame, Norman J. Wagner, Antony N. Beris?
Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular
Engineering, University of Delaware,
Newark, DE 19716, USA
dCorresponding Author. Tel. 1- 302- 831-8018, E-mail address: beris@udel.edu

Proposed Journal: Physics of Fluids

Recently, Mwasame et al. (J. Fluid Mech., vol. 831, 2017, p. 433) developed a macroscopic model for the
dynamics and rheology of a dilute emulsion with droplet morphology in the limit of negligible particle
inertia using the bracket formulation of non-equilibrium thermodynamics of Beris and Edwards (Oxford
U. Press, 1994). Here, we improve upon that work to also account for particle inertia effects. This advance
is facilitated by using the bracket formalism in its inertial form that allows for the natural incorporation of
particle inertia effects into macroscopic level constitutive equations while preserving consistency to the
previous inertialess approximation in the limit of zero inertia. The parameters in the resultant Particle
Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model are selected by utilizing
literature-available mesoscopic theory for the rheology at small Capillary and particle Reynolds numbers.
At steady-state, the lowest level particle inertia effects can be described by including an additional non-
affine inertial term into the evolution equation for the conformation tensor, thereby generalizing the
Gordon-Schowalter time derivative. This additional term couples the conformation and vorticity tensors
and is a function of the Ohnesorge number. The rheological and microstructural predictions arising from
the PITCEE model are compared against steady-shear simulation results from literature. They show a
change in the signs of the normal stress differences that is accompanied by a change in the orientation of
the major axis of the emulsion droplet towards the velocity gradient direction with increasing Reynolds

number, capturing the two main signatures of particle inertia reported in simulations.



l. INTRODUCTION

An important and common assumption in continuum macroscopic models of complex fluids and
soft material flow and dynamics is that microscopic particle inertia effects are negligible. Physically, this
means that the divergence of the extra stress tensor is independent of the acceleration of the system and
thus, of any solid body rotation. Mathematically, this requires the extra stress expression, if it is explicitly
obtained in terms of the local kinematics, to only involve the symmetric rate of strain component of the
velocity gradient tensor. Such is the case for generalized Newtonian fluid flow models. For many complex
fluids, the stress tensor is obtained implicitly in terms of a contravariant or covariant second order tensor,
depending on the choice of the microstructural descriptor. In such models, material objectivity and
Galilean invariance require only the involvement of very specific contributions of symmetric (rate-of-
strain) and anti-symmetric (vorticity) components of the velocity gradient in defining the upper or lower
convected time derivatives respectivelyl. Requiring the extra stress tensor to be invariant to solid body
rotation also explains why the only allowed, non-affine corrections to the upper convected time derivative
involve the rate-of-strain tensor. This explains the absence of the vorticity tensor from the non-affine
correction to the upper convected derivative that gives rise to the Gordon-Schowalter derivative® 3.
However, although microstructural inertia is typically negligible under most typical circumstances, this is
not always the case. Of particular interest to this work is when the particle Reynolds number, selected
based on a characteristic microscopic particle length scale, becomes of the order of one-tenth or higher,
in which case particle inertia effects become important*®.

Considerable progress has already been made towards developing rheological models for
emulsions in the absence of particle scale inertia. These developments have been made through either

719 or more formally by applying the framework of Non-Equilibrium

phenomenological approaches
Thermodynamics'!1®. Regardless of the approach, the key modeling consideration is that the
microstructure of an emulsion droplet can be represented using a second order tensor. However, of the
two approaches, the NET framework is preferred because the corresponding constitutive relationship for
the stress tensor emerges self-consistently. A more thorough literature survey of current progress in
emulsion flow modeling can found in Minale'’ and Mwasame et al.!8, Recently, there has been a renewed
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interest in understanding the effects of particle-scale inertia in suspensions
droplet morphology??%. An important observation in simulation studies involving particle-scale inertia in

emulsions® is the emergence of a negative first normal stress difference (N, ) and a positive second



normal stress difference ( V, ). This is in contrast with inertialess emulsion flow theory?® %’ that predicts

a positive N, and negative NN, . Furthermore, in the same simulation studies?? at non-zero particle

Reynolds number, the deformed droplets are observed to increasingly orient in the direction of the
velocity gradient in shear flows. This orientation is in direct contrast to experimental studies in the
absence of inertia where droplets orient increasingly in the flow/velocity direction?. Such complex and
non-intuitive phenomena are the motivation for developing new macroscopic flow models that take
particle inertia effects into account.

The ubiquity of complex fluids in a wide variety of process flow conditions justifies the need to
develop new capabilities within macroscopic models to account for the rheological phenomena associated
with particle inertia. Unlike secondary flow effects, for example, turbulence arising due to the choice of
the external flow conditions and geometry?, particle-scale effects leading to micro-inertia may be
considered an intrinsic property of a complex fluid as they do not depend on a macroscopic length scale.
The scaling of particle inertia effects involves a microscopic length ¢ that enters the definition of the

particle Reynolds number, Rep . Micro-inertia effects can be neglected if the particle Reynolds number

is small, as for example in the bulk, laminar flow of molecular fluids and nanoparticle dispersions. On the
other hand, for complex fluids with supermolecular structures, such as suspensions of micron-scale or
larger rigid spheres, aggregates or emulsions, a particle Reynolds number of order one tenth or larger may
be realized indicating micro-inertia effects are important*®. Under these conditions, the distorted
microscale flow around the supermolecular structure may be highly non-linear and characterized by
boundary layer separation, as shown in the highly idealized depiction of an emulsion droplet in Fig. 1. This
distinguishes particle scale inertia from inertial effects traditionally associated with macroscopic
turbulence and opens a promising new application area for conformation tensor-based macroscopic

continuum models.



Figure 1: An idealized schematic depiction of micro-inertia effects on a single emulsion droplet in material
flow. In the presence of micro-inertia, the droplet increasingly orients in the direction of the velocity
gradient in a shear flow. Bold (red) lines are a depiction of the boundary layer surrounding the deformed
droplet/ellipsoid.

Emulsions with droplet morphology are a particularly useful case study to understand the effects
of micro-inertia since they are easily amenable to continuum level modeling through conformation
tensor-based models” * 8, Mwasame et al.®® have outlined a particularly useful Thermodynamically
Consistent Emulsion Ellipsoidal (TCEE) model that distinguishes itself by being consistent with known
asymptotic theories for small Capillary numbers, but at zero particle Reynolds for dilute emulsions with
droplet morphology?® 27:3932_ Despite this latest advance, developing macroscopic models for emulsion
rheology for non-zero, even small, particle Reynolds numbers remains an open question. Recent studies
using both simulation?? and theoretical®® investigations to understanding the rheology of dilute emulsions
at finite particle Reynolds numbers provide an ideal setting to understand and advance new macroscopic
models for emulsion rheology when micro-inertia is present.

So far, the only other macroscopic flow models in which microscopic inertial effects have been
taken into account are those for liquid crystalline systems, which were actually first developed in an
inertial form3% 3%, Subsequently, the non-inertial forms were developed as approximations in the limit of
zero inertia and both forms have been consistently expressed within the bracket formulation of Non-
Equilibrium Thermodynamics®. Although Dressler®® attempted to adapt the same framework applied
towards tensor-based constitutive models for liquid crystalline systems to emulsions in inertial flows, his
efforts remain incomplete as he failed in his equations to account for the more complex, anisotropic,

dissipation relaxation behavior encountered in the latter. The general lack of conformation tensor models



in which inertial effects are taken into account may stem from the current applications of such models to
systems and for process conditions under which particle inertia effects are negligible. However, as new
applications emerge, for example involving microfluidic devices under high Reynolds number conditions
and/or particle-based systems with large enough particle sizes (developed for example through
aggregation), micro-inertial effects may become significant.

Recent theoretical and simulation work?* 23 on emulsion rheology suggests that inertial effects,
though subtle, may be more prevalent than previously thought, such that effects appear at a particle
Reynolds number as low as 0.1. The main goal of this work to capitalize on the capability of the bracket
approach to naturally describe particle inertia effects directly into material flow models. This allows for
the derivation of inertial macroscopic models fully capable of predicting the key micro-inertia effects in
dilute emulsions as revealed by the recent numerical and simulation studies previously mentioned.
Furthermore, the recently developed inertialess macroscopic model for dilute emulsion through the
bracket formulation (TCEE model) is utilized to provide an important limiting case to fix model parameters
and ensure the consistency of the micro-inertial emulsion model against its micro-inertialess limit. This is
developed here within the same rigorous thermodynamically-consistent bracket NET framework, giving
rise to the so-called Particle Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model.

In the next section, we outline the latest literature-available microscopic theory results for the
shear stress of a dilute emulsion at small non-zero particle Reynolds numbers. In section Ill, we present
the general development, through the single generator bracket approach of Non-Equilibrium
Thermodynamics®, of the micro-inertial emulsion flow (PITCEE) model. In section IV, we explain how the
literature-available microscopic theories in the limit of small Reynolds and Capillary numbers, are used
both to provide independent validation of the final macroscopic equations and to determine the PITCEE
model parameters. In section V, we compare the PITCEE model predictions against existing simulation
results for the rheology and droplet morphology of single emulsion droplets in the presence of inertia.

Finally, in section VI we present our conclusions.

1. PREVIOUS MICROSCOPIC THEORY AND SIMULATIONS AT FINITE PARTICLE INERTIA IN THE
LITERATURE

Microscopic theory and simulations provide important independent results to rigorously examine
the consistency of macroscopic models. This has been successfully demonstrated in the recent work of

Mwasame et al.'® in relation to the development of the TCEE model in the limit of zero particle Reynolds



number flows when asymptotic results available for small Capillary numbers but zero particle inertia were

used. The recent asymptotic theory by Raja et al.?3

on the rheology of dilute emulsions in the presence of
micro-inertia provides important results that are useful for parameterizing and validating corresponding
macroscopic micro-inertial emulsion flow models. More specifically, the expression for the extra stress

for a general linear flow field in the limit of small Capillary and Reynolds numbers is given by??
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where A = u, / ut is the viscosity ratio (with £, the droplet viscosity and 4 is the matrix viscosity),

Ca = Haly (with a the droplet radius, . y . the surface tension and 4 is the medium viscosity) and

Re; = azp/,u (with p is the density) are characteristic time scales that, when scaled by the flow time

scale taken as the inverse of the shear rate ), lead to the Capillary and particle Reynolds numbers,

Ca E,uaj?/y and Re, = azpy}/,u , respectively. In the same expression, the rate of strain tensor, D, is

defined as
1 T
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while the vorticity tensor, §=2, is defined as
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respectively. For shear flows, with the flow, shear and vorticity directions being identified as directions 1,

2 and 3, respective these two tensors reduce to
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In in the limit of vanishing Reynolds number, Eq. (1) reduces to the well-known results of Schowalter et
al.?® and Frankel and Acrivos®.

The asymptotic expression for the stress in the limit of small inertia for a dilute inertial emulsion
in Eq. (1) is an example where the presence of inertia allows for violation of the principle of frame
invariance to solid body rotation® %, In particular, focusing on the last term in Eq. (1), note that the

numerical coefficients multiplying the substantial time derivative of D and the corrotational terms,

(22—22), are not the same in the presence of inertia. This can be more clearly understood by

comparing the general form of Eq. (1) to the form of the retarded motion expansion®® 3° developed for
flows that vary slowly on the microscale (thus inertialess), truncated at second order (corresponding to a
second order fluid), which is given as

g
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Note that in this expression the same numerical coefficient y; is multiplying both the substantial time

derivative of 2 and the corrotational terms, (§=2I=)—I=)§=2), as fixed by the requirements of frame

invariance to solid body rotation® with the expression weighted by ¥, simply representing the upper
convected derivative of D, which is duly satisfying the frame invariance principle, hence its presence in

most inertialless second order tensor evolution equations®. Therefore, it is clear from Eq. (1), as, in
general, different coefficients weight the substantial time derivative and the corotational terms for
nonzero particle Reynolds number values, that the presence of inertia leads to the violation of material
frame invariance. This is however acceptable as this principle has been developed explicitly in the absence
of microscopic inertia®’.

The availability of additional results from microscopic simulations?? provides other, independent, data
to validate the resultant inertial emulsion flow model, as will be discussed in subsequent sections. In
particular, although the microscopic theory results in Eq. (1) do not provide any information on the
orientation and deformation of emulsion droplets, the microscopic simulations quoted can provide both

rheological and microstructural information. This allows for direct comparison of all the predictions arising



from the macroscopic emulsion PITCEE model, both on the stress tensor and the droplet orientation and
deformation. The following section outlines the development of the PITCEE model through the single

generator bracket approach of Non-Equilibrium Thermodynamics (NET).

. GENERAL DEVELOPMENT OF A PARTICLE INERTIA TCEE (PITCEE) MODEL

The bracket formulation of NET provides a systematic approach to develop macroscopic model
equations. For a full account of the assumptions and physical foundation of the single generator bracket
formalism the interested reader is referred to the relevant monograph®. Here we will highlight its most
important to this work characteristics. There are two key elements required to develop macroscopic
equations in the single generator bracket approach of NET®>: (i) a system Hamiltonian, expressing the total
energy of the system, that is a function of given state variables and (ii) the Poisson and dissipation
brackets, expressing the reversible and irreversible dynamics, respectively. In general, the Poisson bracket
is well-known and well-defined once the state variables are decided since their evolution is fully specified
by time- reversible, Hamiltonian dynamics in the absence of any dissipation. In contrast, the dissipation
bracket is always approximate, requiring modeling of the irreversible dynamics in the system. Its
mathematical expression involves phenomenological matrices that express dissipative effects including
viscous dissipation, structural relaxation and non-affine effects®>. Non-equilibrium thermodynamics and
continuum mechanics principles (such as the requirement of a local non-negative entropy production
rate, the Onsager/Casimir symmetry relations and the principle of material objectivity) can be profitably
used to place restrictions on the phenomenological matrices entering the dissipation bracket, but they
can never fully determine them. For that task, comparisons against known limiting cases where
microscopic modeling results are available and/or against experimental data are needed.

The details of applying the single generator bracket approach of NET towards developing material
flow models for dilute emulsions in the limit of inertialess flows have been outlined in Mwasame et al.*®.
The most important finding from this work is the demonstration that the availability of microscopic-based
asymptotic analysis results in the limit of small Capillary numbers enable not only the validation of the
bracket-based macroscopic theory, but also allow the full determination of the model parameters of a
minimal model so constructed as to allow those asymptotic results to be quantitatively recovered (the so-
called Thermodynamically Consistent Ellipsoidal Emulsion (TCEE) model). However, an important
limitation of the TCEE model is that in its development particle inertial effects were neglected a priori.

Although this constitutes a common assumption in describing material flow behavior---see, for example,



Bird et al.3® ---as a result of the microscopic size of the material particles, there are situations that
frequently arise in applications where either the size of the particles (e.g., through aggregation or
coalescence) or the flow intensity increase, or both. Under these circumstances, particle inertia effects
can produce non-negligible effects.

An important consideration regarding the bracket approach of NET is that material inertial effects
can be easily accommodated. In fact, the reversible component of the dynamics, described by the Poisson
bracket, only assumes its natural, canonical, form when both structural and the corresponding
momentum variables are included among the state variables. Rather, it is the inertialess form that is an
approximation. Consequently, one should expect that the macroscopic inertial flow model for dilute
emulsions can naturally emerge from the bracket formalism of NET framework once allowance is made
to suitably enlarge the state space to accommodate the conformation momentum tensor corresponding
to the conformation tensor variable. In this case, the availability of the inertialess TCEE model can be
profitably used both as a starting point in the model development and for validation of the final resulting
model ensuring consistency to the TCEE model to which it should reduce to in the limit of zero inertia.

The development of the full inertial model for dilute emulsions also benefits from previous
developments in the modeling of liquid crystalline systems, which represent the first documented case
where micro inertial effects were included in material constitutive equations®*3°. Moreover, in the last
reference by Beris and Edwards*®, the full bracket structures corresponding to three different descriptions
of liquid crystals (vector, vector and scalar, and tensor) have been developed and in each one of these
three cases for both the full inertial and inertialess approximations. By comparing those two descriptions
in all these three cases, the following four main steps are identified in order to obtain the full canonical
inertial bracket description: A. an expanded set of variables that enter the state space Z(Z,X), B. an
extended expression for the free energy, i.e., the Hamiltonian of the system, which is a function of all the
system variables, C. an appropriate inertial Poisson bracket to express the reversible dynamics involving
the canonical fully antisymmetric coupling between the structural and corresponding momentum
variables and D. an appropriate dissipation bracket expressing the irreversible dynamics that in general
can involve different phenomenological matrices than the inertialess description. However, the two
descriptions are related by the consistency requirement. These four steps are described in more detail

below.

A. The expanded state space



There are four variables that enter the state space Z(Z,X) for a dilute emulsion, one of which (the
scalar mass density p ), is trivially constant in the incompressible flow case considered here and therefore,

can be subsequently ignored from the set of relevant state variables of the system. The rest of the

variables are: a) two variables that have been used in the inertialess description®®: the momentum density

vector U, and a contravariant conformation tensor, C, representing by a three-dimensional ellipsoidal
the deformed shape of an emulsion droplet, and b) an additional inertial tensor variable, w, that

physically describes the corresponding to the conformation tensor structural momentum. The two tensor
variables merit additional discussion. The definition of the conformation tensor follows Maffetone &
Minale’: Its eigenvectors and eigenvalues correspond to the direction and square of the dimensionless
magnitude, respectively, of the principal semi-axes of the droplet represented as an ellipsoid. In our
previous work'®, we have shown that this definition guarantees that the conformation tensor is physically
a contravariant tensor quantity, which therefore automatically fixes its reversible dynamics. Moreover,

for convenience, C is made dimensionless using the radius, R, of the equivalent spherical equilibrium

droplet. For a droplet with constant volume V(Z‘)ZV, the corresponding equilibrium droplet size is

/3
defined as R E(V/47Z') . By neglecting coalescence and breakage as well as diffusive mass transfer

processes, e.g., Ostwald ripening, the emulsion droplet volume is preserved, and this constraint is

expressed mathematically as

I, =det(C)=1, (7)

where [, is the third invariant of C . This invariant assumes the value of one when C is normalized based

on the equilibrium spherical droplet dimensions, as is the case here, thus preserving the drop volume®.

The second tensor variable w represents, as mentioned, a ‘structural momentum’ tensor, which is

necessary to pair with the conformation tensor to properly represent the canonical dynamics in the
material inertial framework and is related to the rate of change in time of the conformation tensor. Thus,

for an incompressible system, the relevant state space for the subsequent discussionisz =[u,C,w].

B. The free energy expression of the system Hamiltonian

The Hamiltonian of a dilute emulsion when considering micro inertia is given by adding an extra,

(structural) inertial, term to the previously developed inertialess expression by Mwasame et al.’8 as

10



H(u,Cw)=| %+¢Fh([l,lz)+h(T)s(¢)+ég:g dr , (8)

Inertialess Inertial

where Z is an inertial parameter, entering the canonical description of the (structurally) inertial kinetic
energy (last term in the right-hand-side of Eq. (8)) in an analogous fashion to the mass density p entering
the description of standard (momentum) kinetic energy (first term in the right-hand-side of Eq. (8)). As
the physical interpretation of the inertial parameter Z cannot be specified a-priori, its significance will
be discussed in Section IV with respect to comparison against existing asymptotic theory. The second and
third terms appearing in the right-hand-side of Eq. (8) are modeling the surface energy of the droplets and
the mixing entropy, respectively. The parameters in the above expression are defined as follows: I" is

the surface energy density defined as the ratio of the surface tension ( » ) and the radius of the droplet (
R ), h is the dimensionless surface area of the ellipsoidal droplet normalized by the equilibrium un-
deformed surface area, ¢5 is the volume fraction of the droplets, &, is the Boltzmann’s constant and S(¢)

is the entropy density. In addition, there is an equilibrium contribution to the Hamiltonian expression
mentioned above, which however, as only a function of temperature and pressure, is unimportant for the
following analysis.

The dimensionless surface area & for a deformed ellipsoid is approximated using Knud

Thomsen’s formula® in terms of the eigenvalues of C (which themselves can be expressed equivalently

in terms of the invariants (7,,1,) of C)as

1

®/2 1 /2 /2 2 0/2 0/2 q0/2 \qg
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T

In the expression above, S, is the dimensional surface area of the deformed droplet and 4,, 4, and A4,

are eigenvalues of C . The use of the Knud Thomsen’s formula to express the surface area of an ellipsoid

has been previously justified®, where it was also shown that this expression is especially accurate at small

deformations of the droplets from sphericity.

C. The inertial Poisson and Dissipative brackets in the single generator approach

11



The starting point of the single generator bracket description of NET is that the time evolution for
any arbitrary functional F of the N-dimensional state space, z(f,X), is generated by a linear

superposition of the Poisson {D,D} and Dissipative [D,D] brackets as (Beris & Edwards 1994)

dar Ny OF 0z
— =P H)+[F, H]= IZ“& —kdQ, (10)

These two brackets dictate the reversible and irreversible dynamics, respectively. The brackets are
functionals of F and H and they obey specific symmetry/antisymmetry properties® with H
representing the Hamiltonian (extended free energy) of the system provided here by Egs. (8) and (9). In
Eg. (10), the second equality is derived following the standard chain rule of differentiation and provides
the connection between the evolution equations for the system variables and the structure of the

brackets. In the same expression, Q denotes the bulk volume phase space

The Poisson bracket consists solely of antisymmetric terms that therefore do not contribute to

entropy generation (i.e.,{H,H} =0(0). The starting point to develop the inertial Poisson bracket for

emulsions is the corresponding standard inertialess unconstrained bracket expression for an

unconstrained conformation tensor variable Gop which is provided by**
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Note that here and in the following, Einstein’s implicit summation convention for any pair of repeated

subscript indices is followed with the repeated indices taking values between 1 and 3. The Poisson bracket

above expresses the reversible dynamics of the state variables p, x4, and an unconstrained

conformation variable Dop » and the physical implications of the various terms will be discussed shortly.

12



To add inertial effects into the resultant unconstrained bracket equations above requires specifying

additional terms in the Poisson bracket that express the coupling between the structural momentum

variable w,_, and the momentum density u, , as well as the coupling between w,_; and the conformation
tensor ¢, respectively. These additional contributions to the Poisson bracket above, denoted
{F, H}mm , have already been derived with regards to inertial models for liquid crystalline systems® and

are given by

() :‘f{ SF SH SH SF } .
5Waﬂ 5qaﬁ 5waﬂ 5%/;

—j —5F \Y 5—Hwaﬂ ——5HV 5—Fwaﬂ d’r
ow,, "\ ou, ow,, "\ ou,

The above expressions in Egs. (11) and (12) do not enforce a unit determinant constraint on the

(12)

conformation variable Dop - The corresponding inertial Poisson bracket that enforces a unit determinant

constraint can be derived from Egs. (11) and (12) by first making the identification

<

g—>C= (13)

Through this relationship, the Volterra derivatives with respect to the g, tensor can be expressed in

terms of the determinant constrained variable Caﬂ as

oC
or _or 6. _oF (5 ¢ cl) "
§qaﬂ §C7€ 5%5 oC

ay ™ Pe re " af
7E 3

Substituting this expression, also provided by Eq. (21) in Edwards et al.*%, into Eq. (11) alone yields the
constrained inertialess brackets (for a unit determinant) that appear in the TCEE model®. Including the

expression into Egs. (11) and (12) leads to the final inertial constrained Poisson bracket equation for the

C,; tensor which is given by
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In the above expression, the first term provides the reversible dynamics of the momentum density
variable, the second term provides the dynamics of the mass density that leads to the continuity equation,
which is unimportant for incompressible systems in which mass is conserved. The third, to seventh term
lead to the standard upper-convected time derivative that governs the dynamics of any contravariant
second order tensor, such as the conformation tensor, plus some additional correcting terms emerging
from the unit determinant constraint---see Mwasame et al.’® for further details. The eighth and ninth
terms account for the (canonical) dynamic coupling between the inertial and conformational tensor
variables including the necessary correction emerging from the unit determinant constraint. The

remaining terms account for the standard reversible dynamics of the inertial variable tensor w . Note
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that the first seven lines in Eq. (15) express exactly the Poisson bracket determined in the inertialess
limit®8,

There is no simple transformation through which the dissipation bracket can be similarly derived
from its inertialess counterpart. Instead, the correct structure of the dissipation bracket is judged by
ensuring that the final inertial model equations can reduce to the corresponding inertialess TCEE model
equations in the appropriate limit. Following this requirement, the inertial dissipation bracket is

established following standard NET practices as a general bilinear form coupling the various Volterra

derivatives®® according to the rules of continuum mechanics as
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(16)
The subscript wec means “without entropy production correction”, i.e., without terms involving

derivatives with respect to entropy, which are unimportant when describing (as here) the dynamics of

isothermal systems. Raﬂyg and O, . are defined as positive definite phenomenological fourth order

tensors to ensure thermodynamically admissibility of the model. These tensors represent the relaxation
and viscous dissipation effects, respectively, following the general arguments described in ref. 35. These

phenomenological tensors have units of time and pascal-seconds respectively and are symmetric with
respect to the following interchanges of indices: a <> [, y <> & and (a,ﬂ) © (7/,8), following the

standard Onsager/Casimir symmetry relations®*. Finally, £ and { are non-affine parameters whose

physical interpretation will be discussed shortly.
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A few words of explanation regarding the proposed form of the dissipation bracket are warranted
here. First, the last term, representing standard viscous effects, reproduces here exactly a similar term
appearing in the inertialess dissipation bracket!®. Second, as the first term one would initially have
proposed a much simpler bilinear symmetric expression involving just that Volterra derivative with
oF 5_H

— d’r. However, such a term alone
5waﬂ ow,

respect to the (structural) inertial variable w as —I Raﬂ%g

could not have accounted for the antisymmetric dissipation term coupling the Volterra derivative with
respect the conformation tensor and the gradient of the Volterra derivative with respect to the
momentum density that appeared in the inertialess formalism8. Note that even for the case of the liquid
crystals, similar terms accompanying the Volterra derivatives of the structural momentum tensor appear
in the corresponding dissipative brackets®*. Furthermore, we note that during the transition from the
inertialess approximation to the inertial dissipation bracket, when we replace Volterra derivative of the
conformation tensor (a quantity of even parity upon time reversal) with the Volterra derivative of the
structural momentum tensor (a quantity with odd parity upon time reversal), the corresponding coupling
to the gradient of the Volterra derivative with respect to the momentum density (a quantity with odd
parity upon time reversal) must also change from antisymmetric to symmetric, respectively. Such
couplings should be included as representing the cross terms of the most general bilinear form involving
the Volterra derivatives with respect to either the conformation or structural momentum tensor from the
one hand (in the inertialess or inertial descriptions, respectively) and the gradient of the Volterra

derivative with respect to the momentum density, from the other.

What is really new though in the expression proposed in Eq. (16) for the inertial dissipation
bracket is that, as this expression applies for the case of an inertial model, the cross terms involve more
than the symmetric part of the gradient of the Volterra derivative with respect to the momentum density.
It is noteworthy that the symmetric contribution, weighted by the non-affine parameter &, eventually
ends up modifying the upper-convected derivative when we evaluate the resulting evolution equation for
the conformation tensor to give rise to the Gordon-Schowalter derivative. More importantly, the new
coupling in Eq. (16) involves an additional non-affine parameter ¢ that weights the antisymmetric part
of the gradient of the Volterra derivative with respect to the momentum density. This term introduces
additional correction terms to the upper-convected time derivative that further modify the Gordon-
Schowalter derivative to include a term proportional to the flow vorticity. This new term also makes the

final evolution equation non-objective. However, as the resulting material model is inertial in origin, we
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cannot apply any objectivity criterion to the corresponding equations with respect to arbitrary moving
coordinate frames. Rather, equation invariance is limited to only with respect to Galilean frames, i.e.,
those which correspond, at most, to a steady uniform translation of one with respect to the other.
Physically, the scalar parameter & weights non-affine effects arising from the mismatch in the
deformation between a partially rigid microstructure (e.g., polymer chain or emulsion droplet) and the

surrounding matrix fluid. On the other hand, the new non-affine scalar parameter represents the

lowest order micro-inertia correction, which affects the relative rotation, as will be justified in the

following.

The inertial dissipative bracket in Eq. (16) has a number of novel features compared to related
inertial theory previously discussed with regards to liquid crystalline polymers®> and consequently,
substantially corrects the inertial theory for emulsions proposed by Dressler®. In particular, all dissipative

effects that involve the conformation tensor are mediated through a single fourth order tensor, Raﬂyg ,

combining the roles of both the relaxation tensor A . and the non-affine coupling tensor L

affye affye
appearing in the inertialess approximation®. This is to be contrasted against the inertial liquid crystal

polymer models, where we not only have a very particular case corresponding to

R 5ay5ﬂg + 5(185@ ) , but the effects of the non-affine motion are combined with those from the

1
afye 5(
upper-convected terms of the upper-convected derivative resulting in the dissipative terms splitting into

two: one weighted by (1—5)/2 and the other by (1+§)/2. Also, there is no equivalent { -weighted

term coupling the conformation tensor to the vorticity. These differences are explained by the different
physics described in these two situations; the emulsion case describes flow-deformation effects, while the
liquid crystalline case describes the effects of rigid body rotation®. An additional check that the inertial
brackets presented in Eqgs. (15) and (16) are the correct ones will be presented once the resultant
macroscopic equations (i.e., those representing the PITCEE model) are developed from the inertial
brackets through the direct comparison of the predictions resulting from the PITCEE model against
available microscopically-based asymptotic results---see Section IV below. However, before deriving the
PITCEE model equations, one needs first to properly identify the Volterra derivatives of the Hamiltonian

as described in the next section.

D. The Volterra derivatives of the Hamiltonian
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The Volterra derivative of the Hamiltonian with respect to the conformation tensor in the
presence of a unit determinant constraint must be defined such that it is always constrained to the
appropriate subspace and its proper derivation has been discussed in detail®®. For completion purposes

the final expression is also reproduced here:

OH 1 11, -3
—= on/ol)| 8, —| =—2—|C.' |+(on/ol,)| 16, —C —| 22— |C'||, (17
5C (( / 1)( e (Ij_zllj ;/E] ( / 2)[1ya yE [lj_zllj }@]J ( )

Ve

where [, and I, are the first and second invariants of the conformation tensor respectively defined as

L=tr(C)=A+A4+1;, (18)

and
gz%«uggf—u@;g»=4%+@@+4@, (19)

where the 4.’s are the eigenvalues of g In these expressions, tr( ) is defined as the trace. The partial
derivatives 6h/611 and 61/1/8]2 that appear in Eq. (17) are obtained through the use of the Knud
Thomsen’s formula®® given by Eq. (9), are given as

1

3_; (/llw/Zﬂlzw/Z + ﬂ/zw/zlsw/Z +ﬂ/3(u/2/1lw/2 )(1;71

ah/a]l = 2 2 2 2 2 2 X
2R = WAS = KA+ 2 A+ A =245 ) , (20)
((Mz)?‘l(ﬂz ) (A ) (A=) + (k) (4 —/%)j
and
onjor, = G

4#@—4%—ﬁ&+%%+%%—%%ﬁx , (21)

(2 (=) (s (= 2) 1 (AR5 (34|

respectively, where the value of @ = 8 /5 . Note that the subscript differentiates the eigenvalue notation

from that of the viscosity ratio which is simply denoted A -see for example Eq. (1).
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The Volterra derivative of the Hamiltonian with respect to w_,, as computed from the extended

free energy expression provided in Eq. (8), is given as

OH Wy,
oW, Z

Wep - (22)

Finally, the Volterra derivative with respect to the momentum density is evaluated as usual as

O Moy, (23)
Su, p

where v represents the velocity field.

E. PITCEE model equations

The governing evolution equations of the field variables in the PITCEE model are determined, as

usual®, by forcing Eq. (10) for an arbitrary functional F of z =[u,C, w] using the brackets defined in Egs.

(15) and (16). This results first in the following evolution equation for the rescaled structural momentum

tensor w , defined in Eq. (22), as

Dw SH 1 SH OH
Z—% —— +~C.,C
Dt s5C.. 3 e 5(: P Sy

af g

+¢(¢,D,. +D,C,.)+<¢(Q,C,.-C,Q,)

yrne ynone

,(24)

v
where o represents the upper-convected derivative. Second, the evolution equation for the conformation

tensor, C , is provided (after simplifications due to incompressibility) by

vl 1 _
Capt = CogCop?,V,Cop = Wy =5 Cop o, - (25)

Finally, the extra stress tensor is extracted from the evolution equation for the momentum density

variable, u, as

H 1 H Dw
on o -2£C, 7 Tt”” ) (26)

Gaﬂ Qaﬂ}/fv V +2(1 5) ﬂ7 §C 3 2 5Cp,7

These equations complete the PITCEE model. Note that in developing these equations, a unit determinant

constraint on C is enforced following the rules developed by Mwasame et al.*® following the guidelines
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/41

established by Edwards et al.**. In the following section, we demonstrate how the PITCEE model

parameters may be determined.

F. Specification of the phenomenological matrices
The expressions provided by Egs. (24)-(26) represent the inertial model equations. Further

progress requires specification of R the relaxation matrix. One method to identify Raﬁyg is to apply

afye !
Eqgs. (24)-(26) in the inertialess limit, obtained by setting both Z and ¢ inertial parameters to zero and
then by forcing the consistency of the resulting equations to their inertialess counterparts which have

been previously derived®®. Evaluating Eq. (24) for Z = =0 and then taking the double inner product of

which when substituting in Eq. (25)

the resulting equation by B_l , enables solving for = Waﬂ ,

aff
gives (taking also into account incompressibility)
1

- L |6H 1 ., 6H
Caﬁ+3c Cpﬂvyvycpn é:(DaﬂCnﬁ-i_C D, ) Raﬁys(F_ECy‘sCﬂanU

ye
3 CosCrop| R (f ~3CCa Ej

(27)

Similarly, applying the same limiting values Z =¢ =0 to Eq. (26) gives

SH 1. SH
aﬂ} . (28)

Oup = Qs V, Ve +2(1 5)( py 5C -3 p"—é‘CM

These equations have exactly the same form as the inertialess TCEE model developed by Mwasame et
al.’8, Egs. (29) and (31) in that work. To obtain the identical final equations in the inertialess limit, the
following choices need to be made for the phenomenological matrices, taking also into account the form

of the corresponding matrices in the inertialess case as given by*2:

C, 05 +Co0, +Cy 3, +Cy6
Rr;/li}/g :Aaﬂ}/g I — 3 ( P ” a}/) ’ (29)
ALredl | a,(2C,,C,, + 2cagcﬁ7)
O, = u(1+¢P(D))(8,,6,. +5,,6,,) . (30)

In the above expressions, 7. is the Capillary relaxation time defined as 7. = R/ y suchthat 7. = Ca

as defined in Eq. (1). In addition, a, and a, are parameters that weight the relaxation terms while P(A)
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is a function of the viscosity ratio, 4, of the disperse and continuous phases. The parameters appearing
in Egs. (29) and (30) have been previously evaluated through comparison against relevant asymptotic

theory for dilute emulsion rheology in the limit of Ca — 0 and zero Reynolds number'®, as

24-2
YR (31)
36(254° +411+4)
| 35(192+16)
(32)
300(A+1)  36(252° +414+4)
a, = —
Tl (194+16)(24+3)  35(194+16)’
and
5A+2 194+16
e e el (33)
2(A+1)( 0 (54+2)(24+3)

The specification of the two additional remaining parameters Z and ¢ that arise in the inertial

formulation of the emulsion model is discussed in the next section.

Iv. Determining the inertial model parameters using asymptotic results for small Rep

To specify the remaining two model parameters, Z and ¢, in the inertial, PITCEE model we
proceed, in an analogous fashion to that followed for the determination of the model parameters in the
inertialess TCEE model, i.e., by matching the asymptotic expansion of the solution to Egs. (24)-(26) to
asymptotic literature results summarized in Eq. (1), applicable for dilute emulsions with droplet
morphology. However, this time we also allow for (small) inertia effects to be present. For convenience,

Egs. (24)-(26) can be re-written using the following scaling relationships:

Z=z/(¢rca)

SH _ SH .
sc, ec, /W) (34

A A N
Raﬂ%? - Aaﬁ%ﬁ - Aaﬂyfﬂca

Consequently, Egs. (24)-(26) can be re-written as
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A

A, | ZCa —
afye af 7
4 ( Dt 6C, 3 “7sC,

~Ca'(#,5+¢(C,D,. +D,C,.)+¢(2,,C, ~C, 0, )

*) Dwaﬂ 519 1 -1 5},\[ }
, (35)

e e
Z*aﬁécaﬂc;,‘]vyvycpﬂ =W, —%caﬂc;‘lwpn, (36)
and
SH 1 . 6H

. . Dw,
Oup = QopeV Ve 1200 (1-6)| Cp, Oup | 726Cp 20 Ca"— = (37)

5CW 3 7 é‘C'p,7
Note that Eq. (35) consists of only dimensionless parameters while Eq (37) is dimensional expressed in
pressure units.

Identifying the inertial parameters begins with analyzing the full inertial stress expression in Eq.

(37) in a form similar to Eq. (1) as

2 3
Ous = 0300 T Tc00p01 TTcOup 00 T O(z;), (38)

through an expansion in terms of the Capillary relaxationtime 7. = u R/ y = Ca’ . The inertialess terms,

inertialess

Oup00r Oupor ANd 0,50, (the contribution to o, , in the absence of inertia) have been previously

102

identified by Mwasame et al.’®. The presence of Z and ¢ results in an inertial contribution, JZ’;’(’)’Z‘” , that

needs to be added to the inertialess contribution to o, ,, such that

2
_ 1 d Jaﬂ inertialess inertial
Oop.02 e (39)
Tc

wp02 T O0upm

70=0
Z=0

These additional contributions to the stress in the asymptotic limit can be readily computed from Egs. (35)

-(37) by using an expansions for W,z and Caﬂ, similar to Eq. (38), leading to

inertial 8¢1—‘§(1_§)2 (1_5) ~ DDaﬁ
= Q -D,—-D _-Q — 42, | L —.
Cap.2 (a1+a2+a3)2(A1+A2)( oo yﬁ)+¢r 2(a,+a2+a3)+ d Dt

(40)
Additional details on how to carry out the asymptotic analysis can be found in Mwasame et al.®®

Subsequently, the full asymptotic expansion of Eq. (37), patterned on the form of Eq. (1), is given explicitly

in vector-tensor form as
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4
6 =2uD+¢guP(1)2D+

(al+a2+a3) 2
(£p-(2n-D0)

_( 200 (1-&) J D= 2= )

(a1+a2+a3)2(A1+A2) _4(1—5)(2a1+a2) D-D—MI c )

a1+a2+a3) = = 3 =
4¢F; 1_68 2 l_ég ADQ 2 3
{(“ +a +a()2(A)+A = Q_QQWF[z(a1(+a2)+a3)+2§}2_7}%+0<rc>
(41)

where Alzéh/8[1|rczoz4—a;(2—a)) and Azzéh/6[2|rc:0:4—a;(2+a)) and the recommended

value of w = 8/5 is used'®. By comparing Eq. (41) to Eq. (1) the following identifications are made:

, Re 100(2747 +304+10)(24+3)
Z=—= , (42)
Ca" (3000(2+1)+(24-2)(194+16)(24+3))(A+1)

and
Re) 160(3/12+3/1+1)
S Ca’ 9(194+16)

(43)

The ratio Re;/Ca* is the definition of the Laplace number (La ) and is related to the Ohnesorge

number® (Oh) as Re;/Ca* =0h™ :Rep/Ca. These two parameter definitions complete the full

PITCEE model equations given by Eqgs. (24)-(26) together with the relevant auxiliary equations already
presented in Section Ill. F. Following the discussion in Section 2, it is clear that the parameter ¢, as

appearing in Eqg. (41), is associated with violation of frame invariance. This parameter also plays an

important role in determining the sign (and magnitude) of the normal stress in inertial shear flows as it
pre-multiplies the term (gg—gg) in Eq. (41).
Even though the use of the inertial variable, Wos has a long and venerable history from the study of

liquid crystals®?, this work for the first time distinguishes the ways through which micro-inertia can enter

a macroscopic model, either directly through the inertial variable W, OF indirectly through the parameter

¢ . This latter effect is missing even in recent efforts*® to develop inertial models for dilute viscoelastic

polymer blends with volume preserving microstructure based on a direct extension of liquid crystal
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theory. Furthermore, the emergence of { as a new parameter shows how asymptotic theory can provide

guidance and new insights on the appropriate terms that should appear in macroscopic conformation
tensor models and provides further confidence in the use of non-equilibrium thermodynamics in
developing (inertial) macroscopic models. The focus of the next section is to demonstrate the applicability

of the PITCEE model to dilute emulsions where particle inertia effects are important.
V. APPLICATION OF PITCEE MODEL

A. The reduced PITCEE model

=A"

ape with

The evaluation of the full inertial model equations requires the specification ofRaﬂ%g

A . defined in (29), to complete Eq. (24) (or alternatively Eq. (35)). However, in general, the inversion

afye
of a fourth order tensor is a non-trivial task except when performed numerically. Therefore, we seek
specialized limits in which the model can be applied without the need for inversion. One such case is the

limit of steady or slowly varying flows, i.e. conditions under which the contributions of the inertial variable
in Egs. (35) and (37)through 7Ca™ DvT/aﬂ /Dt are zero or can be neglected. As we shall demonstrate, this
steady state approximation allows for a number of important rheological signatures seen in emulsions in

the presence of microinertia to be explained. In the limit 7Ca” Dwaﬂ/Dt — 0, the model equations

(Egs. (35)-(37)) reduce to an evolution equation for Caﬂ provided by

v

Cup+ g(Dm]c,]ﬁ + Cw]D”ﬂ)+ {(QMCW - CWQW) =
SH 1 SH ) 1 SH 1 SH (44)

- ~—— __cClc +—C CIA | —/———Cl'Cc —

afiye 5C75 3 e 5Cp,7 3 af ™~ pn” *pnye 5C75 3 T 5va
and a stress tensor given
SH 1 SH

O-aﬂZQaﬁ}/EV]/v5+2(l_§) C 7 (45)

B s 2Pl s B
rsc, 3 7SC,

which are written in dimensional form. These limiting equations are important as they allow us to more

carefully investigate the role of the inertial parameter ¢ . The simplified form of Eq. (44) assumes a

homogenous material description as gradients in the conformation tensor are neglected. Note that the
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inertial variable w no longer enters the governing equations in this limit. The expressions above in Egs.

(44) and (45) can be written more succinctly in tensor notation by using the selections for the

phenomenological parameters in Section Il F as

2
1 (6h/6[2)(a2 %([%+%jg—%g-g—lz£]+as [g—%;D , (46)
)

and
with
0 7 0 0 7 0
2:%700’2:%_700 (48)
0 0 0 0 00

In these expressions, the related auxiliary expressions are identified as follows (unless otherwise

specified): & is provided by Eq. (31), a, and a; by Eq. (32), P(4) by Eq. (33), (8]1/8]1) by Eq. (20),

(ah/ﬁlz) by Eq. (21) and ¢ is provided by Eq. (43), 7. = Ca*= uR/y and ' =3y /R . The expressions

in Egs. (46)-(48) (and the corresponding auxiliary expressions) are referred to as the “reduced PITCEE”

model and will be the ones used for comparison against experimental data in the following section.

The left hand side of the evolution equation for the conformation tensor in Eq. (46) can be

(éé)c
identified as a generalized co-deformational derivative denoted by the short hand = as
t
D9C  DC
==—=+4({-1)(C-D+D-C)+(¢-1)(Q2-C-C-Q) . (49)
== (£-1)(CReR-g)+ (¢ -)(Q-c-C0)

Its introduction goes beyond the traditional non-affine effects modeled through the more standard

Gordon-Schowalter derivative? which can be recovered from Eq. (49) in the limit £ =0. The use of Eq.
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(44) with ¢ # 0, as provided, for example, by Eq. (43), allows for the introduction of micro-inertia effects
into the model equations without the need of additional variables and therefore of a substantial more

complexity into the model equations. The presence of a non-zero & parameter also makes D(é’g)g/Dt

and therefore the whole model to be non-objective.
B. Comparison of the reduced PITCEE model predictions against numerical simulation data

The predictions of the reduced PITCEE model equations are compared against steady shear
simulation data by Li and Sarkar?? for 1 =1 in Fig. 2. Also shown in the same figure are the predictions of
the asymptotic theory of Eqg. (1) for the scaled second normal stress difference: note that the first normal
stress difference predicted by Eq. (1) is in full agreement with that predicted by the reduced PITCEE model
and therefore is not explicitly shown in the same figure. The discrepancy between the predictions of
asymptotic theory and the reduced PITCEE model for N1/0'12 is as a consequence of the fact that the
former are strictly speaking limited to the infinitesimal capillary limit. The key result seen in Fig. 2 is that
the reduced PITCEE model equations can produce a change in sign of the normal stress differences as the
Reynolds number increases, similar to what is seen in the independent simulation data, because ¢
depends on the OA4 number. Furthermore, the model predictions are in semi-quantitative agreement
with those microscopic simulation data, exhibiting all the key features of the rheology data, and most
importantly a change in the sign of normal stress differences following a change in the orientation of the
drop from 6 < 45" to 0 >45°. Remarkably, all these predictions are made possible through the use of
the generalized Gordon-Schowalter time derivative in Eq. (49), without the use of any additional inertial
variable w . Note that the disagreement between the model predictions and experimental data can be
attributed to the fact that the parameter ¢ in Eq. (43) is developed based on asymptotic theory that is
strictly valid only for small Rep . On the other hand, note under the constraint { =0, the PITCEE Eq. (49)
reduces to the inertialess TCEE model and is unable to capture the effects of microinertia as the capillary
number is the only relevant dimensionless group in that limit. Similar limitations are also seen if the model

of Maffetone and Minale’ is used to describe data in the presence of microinertia. This result is not

surprising as in the absence of the parameter { the only dimensionless number in the model is the

capillary number, which is a constant for the prescribed experiments. As a consequence, the model

predictions are insensitive to the prevailing value of the particle Reynolds number. This insensitivity
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highlights a clear limitation of current emulsion flow models that are also developed in the limit of zero
particle inertia. Accounting for the effects of particle scale inertia clearly requires the use of the full
extended time derivative in Eq. (49). Moreover, the present analysis also highlights that at steady-state

particle inertia effects can be introduced effectively into the flow model through the parameter ¢ alone.

Ca=0.02 Ca=0.05
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FIGURE 2. The relationship between (a, b) the normalized normal stress differences and (c, d) the
orientation of an emulsion droplet relative to the flow direction as a function of particle Reynolds number
in steady simple shear flow at two different capillary numbers (a, ¢) 0.02 and (b, d) 0.05 and for A =1 from
both simulation (symbols) from Li and Sarkar?? and the reduced PITCEE model predictions (lines). The
dash-dotted lines in (a) and (b) correspond to the predictions of the asymptotic theory of Raja et al.®

shown in Eq. (1) for Nl/cr12 (note that the corresponding predictions for N, /0'12 overlay with those of

the reduced PITCEE model and are therefore not shown). In the PITCEE model predictions shown, the
value of { is selected based on Eq. (43). Note that the interfacial stress predictions from the PITCEE model

shown are computed from Eq. (28) but by neglecting any viscous contribution (i.e. ignoring the first term
in Eq. (47)).

An even better quantitative agreement with the simulation data can be achieved through the
reduced PITCEE model by non-linearly extending Eq. (43) in the Oh number, for example, as shown in the

following ansatz:

160(34% +34+1 p
_ 1 160( )( 1 J 50

Oh? 9(19/1+16)2 1+1/0h*
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It is possible to use this expression for  that contains just one adjustable parameter p to fit the data
shown in Fig. 2. Crucially, this expression reduces to Eqg. (43) in the limit of small O/4. The model
predictions using this extended form of ¢ for p =0.23 are presented in Fig. 4 showing good agreement
with simulation data of Li and Sarkar?2. The possibility of obtaining better quantitative agreement using

= A_l

apye will be explored in

the full PITCEE model equations by including the inertial variable w and Raﬂyg

a future publication. Finally, it is worth noting that both the simulation data of Li and Sarkar?? as well as
the model Egs. (46) and (47) (but ignoring the first term in Eq. (47)) follow the correlation of Jansseune et
al.® for the interfacial stresses for 4 =1 given by

ﬂ = (011 _0-22)

= 200t(29) . (51)

Oy Oy

This expression is independent of any underlying model assumption and is directly obtained from the
stress expression of Batchelor* by considering only the structural contribution from the elastic interface

of the emulsion droplet®.
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FIGURE 3. The relationship between (a, b) the normalized normal stress differences and (c, d) the
orientation of an emulsion droplet relative to the flow direction as a function of particle Reynolds number
in steady simple shear flow at two different capillary numbers (a, ¢) 0.02 and (b, d) 0.05 and for A =1 from
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both simulation (symbols) from Li and Sarkar??> and the reduced PITCEE model predictions (lines)
considering ¢ is provided by Eq. (50) for p =0.23. Note that the interfacial stress predictions from the

PITCEE model shown are computed from Eq. (28) but by neglecting any viscous contribution (i.e. ignoring
the first term in Eq. (47)).

A word of caution is warranted here. Although the model can be non-linearly extended to describe

the rheology at larger Rep (for example, as shown through Eq. (50)) the physical interpretation of the

conformation tensor at higher particle Reynolds numbers may be different. Unlike the limit of zero
particle inertia where the conformation tensor unambiguously represents the emulsion droplet

microstructure, at larger Rep the conformation tensor should be considered as an effective descriptor of

anisotropy in the fluid arising from both the deformed emulsion droplet and micro-inertia effects arising

from the matrix fluid surrounding the droplet. Furthermore, even when Rep <1, the Laplace number can

be large and consequently the asymptotic results on which the PITCEE model depends upon may be
inadequate. This may be critical in explaining the inability of the PITCEE model to correctly capture the
inertial-induced changes to the shear stress as observed by Li and Sarkar?? (not shown here), despite the
successes of the model in capturing the inertial-induced changes to the ratios of the normal stress to the
shear stress and the droplet orientation, as shown in Figs. 2 and 3. It is anticipated that to achieve this
higher level of quantitative predictive capability of the model at the large Laplace values corresponding
to the Li and Sarkar’s experimental conditions, it requires further fine-tuning of the non-linear

dependence of model parameters other than the £ to the Laplace (or, equivalently, Ohnesorge) number.

However, as this requires further simulation data results (especially on transients) that are not available
currently, it is relegated for a future study. Nevertheless, the power of the conformation tensor-based
PITCEE model is that it provides a framework through which the results from asymptotic theory can be
smoothly extended to much larger particle Reynolds numbers with only assumption that a general tensor
inner variable can describe the structural anisotropy induced by the flow. Most importantly, the key result
of this section is that the most important qualitative effects of particle inertia at steady state flows, those
observed on the sign changes of the normal stresses and in the droplet orientation, can be accommodated

without the need of the inertial variable w by simply extending the corresponding inertialess model

equations through the use of a second non-affine parameter that affects the rotation of the droplets.

Those effects can be independently measured subjecting the sample to additional solid body rotation.
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VI. CONCLUSIONS

This work has outlined the systematic, thermodynamically consistent, development of a general
macroscopic, conformation tensor-based model for emulsion rheology, the PITCEE model, that also
incorporates particle inertia effects. When those inertia effects are absent, the equations are reduced

1*8, which is also used to here to recover

consistently to the previously developed inertialess TCEE mode
most of the new model parameters. The remaining two PITCEE model parameters are evaluated using
existing asymptotic theories that capture the lowest order inertial effects?®. This approach towards the
development of macroscopic models by utilizing results from microscopic analysis is a powerful one and
sets a new paradigm in multiscale analysis and modeling. Asymptotic results enable the development of
macroscopic material flow models without the need of any adjustable parameters. Simultaneously,
macroscopic models, constructed systematically within a rigorous thermodynamic framework, may
significantly extend the range of validity of asymptotic relations and/or provide the means for a much
more effective extension with significantly reduced number of additional adjustable parameters.

The resultant inertial macroscopic model developed in this work, the PITCEE model, is capable of
capturing all known limiting behaviors at small Reynolds and Capillary numbers, and the resultant model
predictions are validated by comparison against recent simulation results?2. In addition, the capability to
develop the inertial PITCEE model based on non-equilibrium thermodynamics provides further validation
of the bracket approach and underlines the importance of developing self-consistent models. Away from
the asymptotic limits that the theory has been rigorously developed from, the PITCEE model predictions
only show qualitative agreement with experiments. However, in this case, the introduction of correction
terms with minimal adjustable parameters (just one in our case) can significantly improve the accuracy of
the model predictions. Further improvements to the quantitative predictions of the model can be
achieved by fine-tuning of the model parameters but this requires additional simulation data and is
relegated to future work.

A critical outcome of this work is the introduction of a new co-deformational time derivative that

incorporates two non-affine parameter & and ¢ . & is traditionally associated with non-affine motion*
3 and from matching the macroscopic model to asymptotic solutions, ¢ is clearly related to the Ohnesorge

number in the case of emulsion droplets. As a result, it may be an important additional parameter in
modeling suspensions that are in the small Reynolds number regime and at small Capillary numbers. As
demonstrated in this work, instances of such particulate suspensions exist and provide further justification

for the efforts in developing inertial macroscopic models. Interestingly, from a thermodynamics
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perspective, ¢ can take on any value, and therefore, provides a new modeling paradigm to describing

complex fluids and structured soft matter under flows for which microinertia is important. More generally,

the co-deformational derivative developed in this work may be applicable to other systems.
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APPENDIX A

This appendix presents the general PITCEE model equations in properly non-dimensional and
tensorial form. For that note that the ‘hat’ symbol is used to denote dimensionless quantities (note

however that Caﬁ is already defined to be dimensionless) and that we use the following scales:

1. For the time we use everywhere the capillary relaxation time, 7. =Ca’ :,u%

Correspondingly, the dimensionless time 7 is defined from ¢ as
T= l/Ca* . (52)

This also means that any time derivatives (like the rate of strain and vorticity tensors, Daﬂ and Qaﬂ,

v
respectively, the upper convected time derivative for the conformation tensor, Cus and the scaled

structural momentum tensor w_,, scale like the inverse capillary relaxation time, I/ = y =7
af . /Ca  /uR

whereas any second derivatives, like the upper convected time derivative of the scaled structural

v
momentum  tensor, Wss scale like the inverse capillary relaxation time square,

2
I/ -1 =7 . A consequence of this scaling is that the dimensionless shear rate
%é %Ca *)2 Asz q g

becomes simply the capillary number Ca = Ca*y? .

2. For the Volterra derivative of the Hamiltonian with respect to the conformation tensor,

§H/5Q we use gl = ¢% such that the dimensionless Volterra derivative becomes

SH &H
—=— /(). (53)
oC ég

3. For the inertial parameter, Z we use Ca*,u¢ . In this way the dimensionless inertial

parameter becomes

Z=z/(frca”) . (54)
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4. For the fourth order relaxation tensor, A we use %T ¢F) . In this way, for its inverse, the
C

fourth order relaxation tensor R,

¢

we use the inverse scaling 7.4l . The dimensionless fourth order
relaxation tensor becomes

:é: Aﬂ"Ca* . (55)

where the dimensionless parameters «;,c, are still provided by Egs. (32). Also, the remaining
dimensionless parameters, &£,¢ are still provided by the same equations, Egs. (31) and (43).

6. Finally for the inertial variable, we use Ca’" . In this way the dimensionless inertial parameter

becomes

5

=Ca (56)

(B
(EL

Based on this non-dimensionalization, the final equation for the time evolution of the

dimensionless structural momentum tensor, Eq. (35), now becomes:

Z%—z‘;—gé g‘;—g C'|=—(¥+¢(Cc-D+D-C)+c(2C-CQ)), 57

>

while Eq. (36) which describes the evolution of the conformation tensor simplifies to

¢ v)c)

——(£3: E) C. (58)

A

D—g—(cb+Dc)—(gg—gg)+(=

(@

=P

In these expressions, all parameters and all variables are now dimensionless. Most notably, Egs. (54), (55)

, in combination with Egs. (42) and (29), (32) can be used to define parametrically as a function of the

viscosity ratio A the dimensionless parameters ZA,é , respectively, while Eqgs. (31) and (43) for the

dimensionless parameters &,{ . Moreover, the dimensionless Volterra derivative of the Hamiltonian
with respect to the conformation tensor is now equal to

SH I y I1L-3)
= =|(an/ol)| 1-| —=2—|C oh/oL)| I 1-C—| 2= |C .
5C ( / 1)(= (12 211j= J‘l'( / 2)( = = (122_2]1j= J (59)

2

Finally, note that for a simple shear flow we now have the following expressions for the dimensionless

rate of strain and vorticity tensors
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1'0 Ca 0
QZE Ca 0 0
0 0 0

- . (60)
0 Ca 0
g:% ~Ca 0 0
0 0 0

If we look carefully between the set of Egs. (57),(58) and (24),(25) they are identical; only the

interpretation of the parameters is different, all of them being replaced in the first set, as indicated above,

by their dimensionless equivalents. It is really therefore the new dimensionless parameter 7 thatone

can compare against the { parameter; and from what we see from that comparison both have the same

order of magnitude with actually the first one being typically larger than the second. Both Egs. (57) and
(58) need to therefore to be integrated in time subject to appropriate initial conditions in order to provide

us with the system’s time evolution subject to a given velocity field history. However, for steady sate or

D
slowly varying flows for which the material time derivative D—— is zero or small enough to be neglected
T

<P

the terms weighted by Z are zero or can be neglected, respectively, thus giving rise to the reduced PITCEE

model equations as indicated in Section V.A above.
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