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Abstract

Rheological measurements on a model thixotropic suspension by Dullaert and Mewis [J. Non-Newtonian Fluid Mech. 139(1–2), 21–30

(2006); Rheol. Acta 45, 23–32 (2005)] are extended to include large amplitude oscillatory shear (LAOS) flow, shear flow reversal, and a

novel unidirectional LAOS flow to provide an extended rheological data set for testing constitutive models. We use this extended data set to

test a new structure-based model developed by improving the Delaware thixotropic model [A. Mujumdar et al., J. Non-Newtonian Fluid

Mech. 102, 157–178 (2002); A. J. Apostolidis et al., J. Rheol. 59, 275–298 (2015)]. Model parameters are determined from steady, small am-

plitude oscillatory, and step shear rate tests. Holding those parameters fixed, model predictions are compared to LAOS experiments. Similar

comparisons are made for three contemporary models from the literature. Two of these models use a scalar internal structural parameter and

include the modified Jeffreys model proposed by de Souza Mendes and Thompson [Rheol. Acta 52, 673–694 (2013)]. The third model is

based on fluidity additivity [F. Bautista et al., J. Non-Newtonian Fluid Mech. 80, 93–113 (1999)]. A common weakness in all models is

shown to be the use of scalar order parameters that cannot account for the reversal of flow directionality inherent in LAOS flow. This is fur-

ther illustrated by comparison with flow reversal and unidirectional LAOS experiments. VC 2016 The Society of Rheology.
[http://dx.doi.org/10.1122/1.4943986]

I. INTRODUCTION

“Thixotropy is defined as the continuous decrease of

viscosity with time when flow is applied to a sample that

has been previously at rest, and the subsequent recovery of

viscosity when the flow is discontinued” [1]. “Ideal

thixotropy” refers to a “time-dependent viscous response to

the history of the strain rate with fading memory of that his-

tory” [2]. It is generally accepted that thixotropic suspen-

sions have an underlying microstructure that reversibly

breaks down under shear flow and rebuilds upon its cessation

[3–17]. Typical thixotropic suspensions comprise colloidal

particles, aggregates, or flocs that associate at rest, and are

broken apart upon an applied shear flow. For an ideal thixo-

tropic suspension, the stress relaxes immediately upon flow

cessation because such suspensions are dominated by vis-

cous hydrodynamic interactions. However, real suspensions

sometimes exhibit additional features characteristic of non-

linear viscoelasticity, such that one can differentiate between

“ideal” and “nonideal” thixotropic materials, the latter hav-

ing an additional viscoelastic time scale for stress relaxation.

Thixotropic suspensions are ubiquitous to everyday life and

in industry. Many food products, paints, cleaning, and indus-

trial waste products are thixotropic [4,11,13,14]. Blood is

also a thixotropic suspension [15–17], and several thixotropic

models have been proposed to model its flow, most recently by

Apostolidis et al. [6]. Finally, there are several multibillion

dollar superfund site cleanup efforts underway at two national

labs based on the remediation of highly thixotropic suspen-

sions containing transuranic waste [13].

Generally speaking, thixotropic models can be categorized

into three broad classes with increasing order of microstructure

resolution (and hence, complexity): A phenomenological con-

tinuum approach, a phenomenological structural kinetics

model approach, and a particle-level microstructural approach.

The structural kinetics approach balances the simplicity of the

continuum approach with a simplified, phenomenological

model for structure against the complexity of a more funda-

mental model based on particle micromechanics. As such,

structure-kinetics models attempt to capture the key features of

the coupling of material properties to structure while avoiding

computational intractability when applied to time-dependent

and complex flows. Necessarily this involves introducing pa-

rameters for various structure building and breaking phenom-

ena, as well as functional forms relating viscous and elastic

material properties to the structure parameter. Such phenome-

nological parameters can, in principle, be derived by coarse

graining the more fundamental, particle micromechanics equa-

tions [18,19].

The modeling of thixotropy can trace its roots to

Goodeve’s treatise on the relationship between thixotropy

and structure [20]. In this work, a simple structural kinetics

model is postulated that links the change in a scalar structure

parameter to shear forces acting on a microstructure. Since

then many others have built on this framework and much of

this is surveyed in reviews [1,11,21]. In most of these

approaches, the structure is described by a scalar parameter
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with values typically ranging between 0 and 1 [9,10,22,23].

A structural value of one corresponds to the fully structured

material and a value of zero is indicative of the complete

absence of structure due to deformational breakdown

processes. The range of approaches to structural kinetic mod-

eling is very broad and alternative formulations abound

[7,24–26].

Scalar structure-based models of the response of thixo-

tropic materials to flow incorporate a parameter, usually

denoted as k, to represent the “degree of structure” with an

associated equation describing its evolution with time and

shear conditions. Early work by Goodeve associated the

structure parameter with degree of “bonding” between

particles or aggregates in the suspension [20], but in

general, this parameter does not have a quantifiable micro-

structural interpretation. In some cases, such as the modi-

fied Jeffreys model, [7,27] the structural parameter is

allowed to range over a broader range and can take on

any positive value. Other formulations are possible, such

as the Bautista–Monero–Puig model (BMPM) [6], which

uses the fluidity as a surrogate for the structure based on

work of Fredrickson [23]. Experimentally, structure can be

measured directly under flow through the use of structure-

sensitive techniques such as X-ray scattering or small

angle neutron scattering under flow, [9,28,29], small angle

light scattering under flow [30,31] and confocal micros-

copy under flow [32,33], although no firm connections to

the scalar structure order parameter have been identified

to date.

The structure parameter satisfies a kinetic, evolution

equation that combines physical processes acting to build or

break the suspension microstructure. In the limit of infinitely

high shear rates, the microstructure in a thixotropic suspen-

sion goes to zero, which represents a state of complete

microstructure breakdown. Upon flow cessation the micro-

structure rebuilds through processes such as Brownian

motion, which may be diffusion or reaction limit [34].

During flow, shear-induced aggregation and Brownian

aggregation compete with shear-breakage [34,35]. Various

models have been proposed for each of these processes in

terms of the structure parameter, and combining them leads

to an ordinary differential equation for the time evolution of

the structure parameter under shear flow [1,9,36].

Structural evolution equations have been developed that

focus on the difference between the present state of structure

and an equilibrium state [5,7,9,10]. Recently, Dimitriou

et al. [37] made several insightful contributions to modeling

thixotropic, elastoviscoplastic (EVP) materials by decompos-

ing the strain and shear rate into elastic and plastic compo-

nents, building on work by de Souza Mendes and Thompson

[7,24]. This technique assigns the appropriate component of

strain and shear rate to specific rheological behavior, i.e.,

elastic (reversible, recoverable) behavior, and plastic (irre-

versible, dissipative) behavior. With regards to structure, the

elastic component is associated with structure “stretching”

and recovery, and the plastic component is associated with

structure destruction and rebuilding [3,6,24,37]. We incorpo-

rate aspects of these works by developing a new structure-

based model we refer to as the modified Delaware thixo-

tropic model (MDTM).

Recently, similar structural evolution equations have been

coupled to more complicated, tensorial constitutive equa-

tions. In particular Giacomin and Dealy [38], and Jacob

et al. [39], involved modified versions of the Maxwell and

Giesekus models, respectively. In these tensorial approaches,

the structure parameter k remains a scalar parameter with a

range of values between zero and one. Other recent work

modeling of elasto-visco-plastic, or EVP materials, by

Stickel et al. [40] uses a modified version of the EVP model

of Cheddadi et al. [41] and Saramito [42]. We find that the

EVP model cannot capture the thixotropic time scales inher-

ent in our material due to the fact that it only has a visco-

elastic time scale. The Blackwell and Ewoldt model [43],

based on a Jeffreys framework, does not have a yield stress

term, and therefore cannot fit our steady state data. However,

we believe that it could, by adding a yield stress term, or

using it in “multimode” form, and fitting the mode parame-

ters directly to the small amplitude oscillatory shear (SAOS)

frequency sweep data first, similar to the way we used the

BMPM here (results shown in Sec. IV B and in

Supplementary Material [44]) [43].

Generally, structure-kinetics models have been fit and

validated against steady viscosity measurements combined

with some time-dependent flows, such as steps up and down

in shear rate. More recently, structural kinetics models have

been applied to other time-dependent shear flows such as

large amplitude oscillatory shear (LAOS) flow [3,5,7,10]. In

a LAOS test, a sinusoidal strain with specified amplitude and

frequency is applied, which can be independently varied to

explore material response over a broad range of deformation

amplitudes and timescales. Early examples of LAOS include

work by Philoppoff to rheologically characterize viscoelastic

materials [38,45]. Modern studies of LAOS combine rheo-

logical measurements with simultaneous measurements of

microstructure [46,47–49]. In the absence of such direct evi-

dence for the microstructural behavior under LAOS a num-

ber of techniques have been proposed to interpret the

material’s microstructure response during LAOS from the

rheology alone [38,47,50–52]. Such interpretations benefit

from having robust and accurate structure-based constitutive

models that are applicable to results from LAOS, which

could further enable fitting LAOS measurements to predict

material performance under other flow conditions

[43,53,54]. Further developing and validating this capability

for thixotropic suspensions is an important part of the work

presented here.

In the following we investigate the ability of structure-

parameter based, thixotropic models to predict LAOS experi-

ments conducted on a model thixotropic material. In Sec. II,

we introduce the structure-based model for thixotropic sus-

pensions, termed the MDTM, and compare it against other

models from literature. The model, thixotropic suspension

used and the rheological tests conducted are presented, along

with the model parameter fitting in Sec. III. In Sec. IV, we

present the LAOS experiments along with a comparison

model predictions. We compare and contrast the models

Sec. V and present our conclusions in Sec. VI.
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II. THIXOTROPY MODELS

Three thixotropic models used in this work are, in order

of increasing complexity: the simple scalar thixotropy model

(SSTM) presented in Chap. 7 of, “Colloidal Suspension

Rheology,” [9]; a modification of the Delaware thixotropy

model, as originally derived by Mujumdar et al. [5] pre-

sented in detail in the following; and a modified Jeffreys

model, known as the “unified-approach” model (UAM) from

de Souza Mendes and Thompson [7]. Each of these models

has a scalar parameter that represents the structure, k, an

evolution equation for structure in the form of an ordinary

differential equation, as well as a constitutive equation for

the stress in terms of elastic and viscous contributions. The

fourth model examined in this investigation is from BMPM

[8], and is a tensorial model based the evolution of inverse

viscosity (fluidity) modes entering the description of a modi-

fied multimodal Maxwell model. Fitting and predictions

obtained for these three models are discussed in Sec. V, and

to be found in more detail in the accompanying

Supplementary Material [44].

In the simple scalar thixotropic (SST) and MDTM, the

total shear stress in shear flows is decomposed into an elastic

stress, re and viscous stress rv, both of which are functions

of the current level of microstructure k

rtot ¼ reðkÞ þ rvðkÞ: (1)

This respects the fundamentally different micromechanical

sources of the stresses arising from hydrodynamic and inter-

particle interactions, respectively [55]. Alternatively, the

UAM and BMP models use a modified Jeffreys and Maxwell

constitutive equation, respectively, for the deviatoric stress r

[7,27,56]

rþ gðkÞ
GðkÞ _r ¼ gðkÞ _c (2)

is the governing equation of the Maxwell model, where the

elastic modulus G, and the current viscosity, g, are both

modified to be functions of k. A detailed description of the

model is offered here for the MDTM, as this is new. For

completion, descriptions for all others are included in the

Supplementary Material [44]. The Jeffreys model is similar

to the Maxwell model, Eq. (2), with an additional character-

istic time of material loading included [27].

A. Modified Delaware thixotropy model

The MDTM evolved from the original “Delaware model”

[3], which was in turn a modification of the original

Herschel–Bulkley model [9]. The original Delaware thixo-

tropic model consisted of the Herschel–Bulkley stress

expression with material properties dependent upon a scalar

parameter to describe the current level of structure. In the

MDTM an additional term was added to the structure evolu-

tion equation to account for shear aggregation processes, fol-

lowing the approach of Dullaert and Mewis [3]. The new

term introduces an additional time scale and an additional

power law exponent

dk
dt
¼ kBrown �kjt̂r1 _cpjaþð1� kÞ 1þjt̂r2 _cpjd

� �h i
; (3)

where kBrown is a kinetic constant with units of inverse time,

representing Brownian, structure restoration effects and tr1,

tr2 are two thixotropic constants, connected to the breaking

and aggregation kinetic constants kBreak and kAggr

t̂r1 ¼
kBreak

kBrown

� �1=a

(4)

t̂r2 ¼
kAggr

kBrown

� �1=d

(5)

In the original “structural kinetics model for thixotropy”

[1] a similar format was used for the structure evolution

equation with the addition of a time-dependent prefactor,

which makes the model inappropriate for LAOS as it

depends on absolute time and will not reach an alternance

state. Additionally, we allow for variable exponents a and

d, while Dullaert and Mewis [3] use explicit values of 1 and

0.5, respectively. Importantly, the MDTM incorporates

aspects from the work of Dimitriou et al. [37], who devel-

oped a framework to separate strain and shear rate into elas-

tic and plastic components [37] to better capture the EVP

behavior of soft solid materials. In particular, according to

the theory of kinematic hardening of plasticity, [37], the

strain and shear rate each have elastic and viscous compo-

nents, and together the components add up to the total strain

and shear rate, respectively,

c ¼ ce þ cp$ _c ¼ _ce þ _cp: (6)

In turn, the elastic strain, ce is postulated to evolve as [6]

_ce ¼ _cp–
ce

cmax

j _cpj: (7)

This adds an equation for the MDTM modulus,

dGf

dt
¼ �kGðGf�kG0Þ; (8)

which imparts an additional time constant /k–1
G for this pro-

cess. In the original structural kinetics model for thixotropy

Dullaert and Mewis [3] used an algebraic equation for vari-

able elastic modulus, kG0ce at each shear rate, where G0 is

the fully structured elastic modulus, k is the current structure

level, and ce is the elastic strain. In the Dullaert and Mewis

structural kinetics model for thixotropy, the elastic strain is

an ordinary differential equation (ODE), and a more detailed

description is provided in literature [3].

Our model differs from that of Dimitriou et al. [37] in the

following ways:

• The MDTM uses an ordinary differential equation to

evolve the elastic modulus in time, with kG, an elastic

modulus time constant.
• The MDTM incorporates a unique ordinary differential

equation for elastic strain, ce, that is a function of the
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current plastic strain, cp, in such a way that the sum of

plastic and elastic strain is always equal to total strain.
• The MDTM incorporates an ordinary differential equation

for the structural evolution that involves a term for shear

aggregation.
• The maximum strain, cmax, is set as a limit to ensure that

the material cannot accumulate more strain than the mate-

rial limit.

In the model, strain is the linear superposition of an elas-

tic strain and a plastic strain, with shear rate correspondingly

the linear superposition of elastic shear rate and plastic shear

rate, as shown in Eq. (6). The calculation of the plastic com-

ponent of shear rate is

_cp ¼

_c

2� jcej
cmax

� � _c � 0

_c

2þ jcej
cmax

� � _c < 0

8>>>>>>>><
>>>>>>>>:

(9)

and is a function of shear rate, _c, elastic strain, ce, and maxi-

mum strain, cmax, where cmax represents the maximum elastic

strain the material can withstand, and is postulated to be a

function of the structure parameter as

cmaxðkÞ ¼ min
cCO

km ;c1

� �
(10)

Note that this expression requires the following connectivity

at the zero deformation limit between the yield stress, ry0,

and the zero deformation strain, cCO appearing in Eq. (10)

above

cCO ¼
ry0

G0

: (11)

With this understanding it is now possible to cast the con-

stitutive equation as a sum of elastic and plastic components,

where the elastic components are aligned with stretching,

reversible processes, and the plastic components are aligned

with irreversible, dissipative processes. An earlier version of

this thixotropy model has recently been applied to success-

fully model and predict blood flow [4]. The stress decompo-

sition within MDTM has an additional viscous stress term,

namely the structural viscosity

r ¼ Gf ce þ kKST _cn2

p þ K1 _cn1

p ; (12)

where the first term represents elastic stress, and the second

and third terms represent structural, and solvent contribu-

tions to the viscous stress with consistency parameters, KST,

K1 and analogous power law parameters n2 and n1.

As presented, there are 14 parameters in the MDTM.

However, c1 in Eq. (10) is empirically set to be 1 in this

work. We find, however, that under no circumstances is

k sufficiently small such that the maximum elastic strain

reaches this value; however, we include it in the model

description for completeness. Consequently, we can drop

this parameter and limit from consideration for what follows.

We also note that, as written, the stress given in Eq. (12) vio-

lates thermodynamic consistency in that upon flow cessation

from steady shear, both the plastic [Eq. (9)] and elastic

[Eq. (7)] strain rates immediately go to zero. As the structure

rebuilds upon flow cessation via Brownian motion, the mod-

ulus will also increase [see Eq. (8)] such that the elastic

stress will also increase upon flow cessation. This anomalous

effect is common among thixotropy models (see [8]) and can

be corrected by including an additional relaxation term in

Eq. (7) such that the elastic strain can relax to zero upon

flow cessation.

There are 13 parameters to determine in the MDTM,

which are tabulated, along with their units, best-fit values

and uncertainties in Table I. The determination of these

model parameters from experimental data is discussed fur-

ther in Sec. III B.

B. Literature models

The additional models from literature that were examined

herein are briefly discussed in the Supplementary Material

[44], with their respective equations listed, and primary source

TABLE I. Parameter values determined for the MDTM. The five shaded parameters are fit to specific aspects of the experimental data while the remaining

eight parameters are determined by global fitting of the steady and transient data.

Parameter Units Meaning Range initial guess Limiting values Optimal Average Range: (6)

ry0 Pa Yield stress (-) (-) 11 (-) (-)

g1 Pa sn1 Infinite shear viscosity (-) (-) 1.17 (-) (-)

n1 (-) Power law exponent K1 (-) (-) 1 (-) (-)

G0 Pa Elastic modulus (-) (-) 450 (-) (-)

m (-) Power law exponent of ce evolution (-) (-) �1.5 (-) (-)

KST Pa sn2 Consistency parameter [9–11] >0 11.21 11.36 0.547

n2 (-) Power law exponent KST [0.5–1] [0.5–1] 0.81 0.82 0.019

a (-) Power law exponent for shear breakage [1–2] [1–2] 1.53 1.51 0.036

d (-) Power law exponent for shear aggregation [0.25–0.75] [0.25–0.75] 0.65 0.59 0.05

kBrown s�1 Characteristic time of Brownian motion [1� 10�3–1] >0 0.28 0.28 0.041

t̂r1 (kBreak/kBrown) s Characteristic time of k shear breakdown [1� 10�3–1] >0 0.77 0.81 0.23

t̂r2 (kAggr/kBrown) s Characteristic time of k shear buildup [1� 10�3–1] >0 2.0 2.76 0.17

kG s�1 Characteristic time of G evolution [1� 10�3–1] >0 0.09 0.09 0.024
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as well, in order of increasing complexity, from the simplest

to the most complicated. The simple scalar thixotropic model

(SST) equations are Eqs. (S.1)–(S.3) [9]. The unified approach

model (UA) equations are Eqs. (S.4)–(S.14) [7]. The BMP

equations are Eqs. (S.15) and (S.16) [6].

III. MATERIALS AND METHODS

A. Thixotropic suspension

The model thixotropic suspension reported by Dullaert and

Mewis [4] was reformulated for this work, following as closely

as possible the prescribed methods. The suspension consists of

2.9 vol. % fumed silica (Evonik Aerosil
VR

R972) aggregates

with primary particle radius of 16 nm in a blend of 69 wt. %

paraffin oil, (Sigma Aldrich, density 0.827–0.890 g/cc) and

31 wt. % poly-isobutylene (TPC Group, molecular mass

750ðg=molÞ). Note that the polyisobutylene (PIB) molecular

mass differs from that of the polyisobuylene used by Dullaert

and Mewis [3,4] due to availability. The particles as supplied

are imaged with transmission electron microscopy and shown

in Fig. 1, where it is apparent that the nominally 16 nm primary

particles are aggregated into large, (micron) sized agglomer-

ates. The particles were dispersed in the blended solution using

a Silverson Mixer, model L4Rt using the tubular mixing unit

with square hole high shear screen at the 8000 rpm setting for

30 min. This was followed by degassing at 40 �C in a vacuum

chamber for 1 h. Samples were stored under gentle rolling con-

ditions on a Wheaton benchtop roll-mixer.

Figure 2(a) compares the steady shear viscosity with that

reported by Dullaert and Mewis [3,4]. The data superimpose

well, where differences are attributed primarily to the differ-

ence in the background viscosity of the suspending fluid

blend (0.39 Pa s as compared to 0.65 Pa s) reported by Dullaert

and Mewis [3,4]. Superimposed on the plot are the error

bars calculated from four different experiments using the

t-distribution with 95% confidence interval [57]. The differ-

ence evident at high shear rates arises from differences in the

solvent viscosity and that the two colloidal suspensions are

not identical—the system of Dullaert and Mewis [3,4]

has larger aggregates (>1 lm). Differences in particle ag-

glomerate size will also affect the elastic stresses, as seen in

Fig. 2(a). Our results are in semiquantitative agreement with

the prior work and the similarities enable direct comparisons

between the two data sets.

B. Rheological measurement protocol

Rheological measurements were performed with an

ARES G2, strain controlled rheometer (TA Instruments)

using a 50 mm cone and plate geometry with 0.0404 rad cone

angle Dynamic yield stress experiments were conducted on a

DHR3 stress controlled rheometer (TA Instruments) with

40 mm cone and plate geometry with a 0.04 rad cone angle.

Measurements of the stress at each shear rate in the steady

flow curves were performed after a preshear of 300 s�1 for

300 s. Following the completion of each preshear the new

shear rate was set and allowed to equilibrate for a varying

amount of time depending on the shear rate. For the highest

shear rate (300 s�1) this time was determined to be 10 min.

For the lowest shear rate [10�3 (s�1)] this time was deter-

mined to be 2 h. Equilibration times were determined by

requiring the time derivative of the stress to effectively reach

zero. All of the transient step-up and step-down series were

preceded by a preshear of 300 s�1 for 300 s, followed by a

period of time to arrive at a steady stress value for a given

initial shear rate (600–900 s for all shear rates). The LAOS

flows were preceded by a preshear of 300 s�1 for 300 s in the

same manner. Some of the LAOS experiments started from

a fully structured state, which required a rest period (or

soak time) of 10 min, but the results presented here are for

the alternance state, which is independent of the initial

state. Values of the viscosity obtained during the preshear

were used before and after each experiment to determine that

no irreversible changes occurred to the sample during test-

ing. The rheological data presented here were found to be

FIG. 1. Transmission electron microscope micrograph of the fumed silica

(Degussa R972) aggregates as supplied (courtesy of Ryan Murphy, University

of Delaware).

FIG. 2. (a) Steady state flow curve experimental results of model thixotropic

system (2.9 vol. % fumed silica in paraffin oil and PIB), compared against

the results of Dullaert and Mewis [1,2] and the solvent mixture. Also shown

are the contributions from the elastic stress as obtained from stress jumps,

with the error bars, compared against the results from Dullaert and Mewis

[2,57].
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reproducible from loading to loading and batch to batch of

sample.

The elastic stress was measured using a strain jump

experiment following the procedure outlined by Dullaert and

Mewis and is shown in the Supplementary Material [44,58],

Fig. S.1(b). This experiment rapidly reduces the shear rate

from a steady, constant value to a value near zero at pre-

scribed time. The viscous forces go to zero with the shear

rate [9,59] such that extrapolation of the residual stress back

to the time of the rate reduction yields a measure of the elas-

tic component of the total stress derived from the rheome-

ter’s torque measurement.

C. MDTM parameter determination procedure

The thirteen parameters of the MDTM are listed in

Table I. The parameters are listed generally in the order

they were determined, which can be characterized as a two-

step process. The first five parameters listed in Table I were

fit to specific aspects of the experimental data as follows:

the first three parameters ry0; g1; n1, are determined using

the steady state flow curve and its limiting values at the

shear rate extremes, while G0 and m are evaluated with the

SAOS data, steady flow curve, and the critical relationship

cCO ¼ ry0=G0. At the end, the value for the critical yield

stress is corroborated with the G0–G00 crossover amplitude

shown in Fig. S.2 (Supplementary Material [44]). The criti-

cal strain cCO was shown to compare well with the strain at

the limit of linearity as determined from selected amplitude

sweep experiments shown in the Supplementary Material

[44], Fig. S.2. All of the other parameters are then deter-

mined simultaneously with the parallel simulated annealing

algorithm, while keeping the first 5 parameters constant

(ry0; g1; n1;G0;m) during this process.

To fit the remaining eight parameters to the experimental

data we define an objective function to be minimized FOBJ,

which is a summation of the L2 norm applied to each respec-

tive data set, shown in Eq. (13), divided by number of points,

P, in each dataset. FOBJ is the sum of the relative errors of

each respective data set divided by the total number of data

sets, M [56],

FOBJ ¼
1

M

XN

k¼1

1

Pk

���� ðrModel � rDataÞ
rData

����
2;k

: (13)

The experimental data used during this nonlinear dynamic

parameter fitting were the steady state flow curve [Fig. 3(a)],

the elastic stresses, [Fig. 3(a)] and the sixteen sets of tran-

sient step-up and step-down data [see Figs. 4(a)–4(d) as

examples]. In the global fitting, constraints were imposed on

some parameters. The range used for the a, and d values has

been discussed in literature for a thixotropic material, where

a has been recommended to range between one and two,

[3,4,9] while it has been suggested [3], that the value of d be

set close to 1=2, such that the range 0.25–0.75 is feasible.

Additionally, as the material is shear thinning, we con-

strained n2 to lie between 0.5 and 1 [9]. Importantly, the final

fit values were not limited by the extremes of these ranges.

From the results of the 15 trials, statistics were calculated,

including parameter averages, and standard deviations. This

is detailed in Table I, and the values of the 15 trials for each

parameter are shown in Table S.1. The parameter values giv-

ing the smallest value of FOBJ defined in Eq. (13) were used

for the results presented in this work (Table I), which are

presented along with the average and standard deviation of

the 15 independent fits. The MDTM always converged to a

single basin with respect to FOBJ as observed from the pa-

rameter values from the 15 trials. The parameter correlation

matrix is shown in Table S.3 along with an analysis.

IV. EXPERIMENTAL RESULTS AND MODEL
COMPARISONS

A. Experimental results and MDTM comparisons

A comparison of the steady state flow curve and elastic

stresses with the best fit of the MDTM, over more than

5 orders of magnitude variation in shear rate is shown in

Fig. 3(a). The data exhibit a distinct yield stress at low shear

rates and shear thinning at moderate values of shear rate and

transitions to a nearly constant high shear viscosity at rates

in excess of 100 s�1. To help interpret the data, the model

predictions for the structure parameter k are also shown. The

structure parameter is close to 1 (corresponding to a fully

structured material) until the stress rises significantly above

FIG. 3. (a) Steady state flow curve of model thixotropic system with

MDTM fit and k and (b) small amplitude oscillatory shear (frequency sweep,

c0 ¼ 0:01) results with MDTM best fit.
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the yield stress, whereupon it decreases to become fully

unstructured (k¼ 0) at the highest shear rates probed. The

elastic component of this steady shear stress is observed to

decrease as the structure is broken down by the flow. The

MDTM predicts this effect, but at slightly lower shear rates

than observed experimentally.

The small amplitude oscillatory shear measurements over

4 orders of magnitude of frequency are shown in Fig. 3(b).

The experimental spectrum does not exhibit a terminal liquid

regime at the lowest frequencies probed, but rather, is char-

acteristic of a material with an apparent yield stress. The

small amplitude oscillatory shear frequency sweep is fit to a

spectrum of five relaxation times, each with a corresponding

modulus, to yield the relaxation spectrum, as shown in

Supplementary Material [44], Table S.8, over the range

[0.001–1]. These data also suggest that any terminal relaxa-

tion process to a thixotropic liquid must be on the order of at

least 1000 s. The amplitude sweep experiments used to

define the linear regime are shown in the Supplementary

Material [44] [Figs. S.2(a) and S.2(b)]. Importantly, the

model calculations are performed at the same frequency and

strain amplitude (1%) used in the experiment. The amplitude

sweeps verify that, up to frequencies of order 10 rad/s, this

amplitude is sufficient to be in the linear regime. Indeed the

structure parameter is �1 even at the highest frequencies

probed for this amplitude, which corresponds to a shear rate

amplitude of 1 s�1. Empirically, it is observed that this mate-

rial in a sealed bottle left on the shelf will creep over the

course of many days, demonstrating that thixotropic relaxa-

tion processes are more extended than the viscoelastic relax-

ation process that consists of a recoil process.

Fits to the MDTM are also shown in Fig. 3(b), where the

zero frequency limit of the elastic modulus is 225 Pa [dashed

line in Fig. 3(b)]. To make this determination, both the

SAOS frequency sweep and amplitude sweep were used to

simultaneously determine the low frequency plateau of the

frequency sweep and the y-intercept at the small strain am-

plitude extreme of the amplitude sweep data. A value for the

critical yield strain cCO is calculated from the ratio of the

yield stress and elastic modulus [Eq. (11)] to be 0.024. This

agrees well with the values identified in the strain sweep

experiments (see Fig. S.2 in Supplementary Material [44]),

providing confidence in these parameter values. Note that

the MDTM has a frequency-independent elastic modulus

due to the separation of strain into plastic and elastic terms,

which yields both elastic and viscous contributions to the

equilibrium moduli. The loss modulus has a contribution

from the viscous stresses, which becomes evident at higher

frequencies. The MDTM best fits are also shown, where the

model’s simple representation of the elastic yield stress leads

to an elastic modulus, G0 that does not depend on frequency,

and hence, can only approximately represent the experimen-

tally observed spectrum.

Two basic protocols are followed for the step up and step

down in shear rate experiments. The first is transitioning to a

common final shear rate from different values of initial,

FIG. 4. (a) Data and MDTM fits of step down in shear rate from 5.0 s�1 to 4 different values as indicated; (b) data and fits of step up in shear rate from 0.1 s�1

to 4 different values; (c) data and fits of step down to 0.25 s�1 from 4 different values (in this data the initial shear rates are the same while the final shear rates

vary); and (d) data and fits of step up to 5.0 s�1 from 4 different values as indicated in plot (in this data the final shear rates are the same while the initial shear

rates vary). The arrows indicate the stress starting values before the step up or step down in shear rate.
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steady shear rate. The second protocol consists of transition-

ing from a common initial rate to different final values of

shear rate. The results of the step up and step down experi-

ments are shown in Figs. 4(a)–4(d), where the initial stress

values, as indicated by the arrows, correspond to points on

the steady flow curve [Fig. 3(a)] and only the transient stress

responses from the time of the rate jump are shown in the

figure so they can be presented on a logarithmic time scale

for clarity. These results follow trends characteristic of a

thixotropic material and closely follow the observations of

Dullaert and Mewis [3]. Comparison of these curves shows

that there are different time scales for structure break down

and build up, and that these processes depend on the rate of

deformation. Furthermore, there are vestigial elastic signa-

tures at early times showing that the material is not purely

thixotropic in its response.

Structure predictions from the MDTM are shown in

Figs. 5(a)–5(d) corresponding to Figs. 4(a)–4(d). Using the

steady state flow curves for reference [Fig. 3(a)], the MDTM

predictions for structure evolution during these transient tests

can be interpreted. Namely, structure rebuilds upon lowering

the applied shear rate, leading to an increase of the viscosity

and yield stress. An increase of the shear rate results in the

opposite process. Furthermore, the structure evolution is

monotonic during these processes, explaining the monotonic

behavior of the model predictions for shear stress. We also

find that the shear induced breakage and aggregation terms

are dominant at finite shear rates, which supports the inclu-

sion of a shear aggregation term in the structure kinetics

equation. Because these two shear-dependent processes have

a different power law index, there is no simple reduction of

this transient behavior to a uniform master curve, as

observed for the simpler SSTM (see Mewis and Wagner [9],

Chap. 7).

B. Comparison to literature models

In addition to the MDTM, three thixotropy models from

the literature have been used to fit the data: The SST model

[9]; the UA model [7]; and BMPM [8]. In this section

we highlight some key comparisons of the four model

fits to the experimental data sets presented in Secs. III A

and III C, as well as Sec. IV A. Detailed comparisons of the

best fits for each of the three models, presented in the same

level of detail as for the MDTM, can be found in the

Supplementary Material [44].

FIG. 5. (a) MDTM Structure predictions of step down in shear rate from 5.0 s�1 to 4 different values as indicated; (b) structure predictions of step up in shear

rate from 0.1 s�1 to 4 different values as indicated; (c) structure predictions of step down to 0.25 s�1 from 4 different values as indicated (in this data the initial

shear rates are the same while the final shear rates vary); (d) structure predictions of step up to 5.0 s�1 from 4 different values as indicated (in this data the final

shear rates are the same while the initial shear rates vary); All predictions are calculated with the parameter values in Table I. The arrows indicate the structure

(k) starting values before the step up or step down in shear rate.
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The steady state flow curves are compared with model

predictions for each of the four models in Fig. 6(a). Not sur-

prisingly, all of the models have more than enough parame-

ters to accurately model the steady state flow curve (SSTM:

5 parameters; MDTM: 13 parameters; UAM: 10 parameters;

BMPM: 30 parameters—five relaxation modes). Figure 6(b)

shows that the SSTM, and UAM fail consistently to approxi-

mate the SAOS spectrum, whereas the multimode BMPM,

with its 30 parameters can very accurately fit the linear

viscoelastic material response (by construction). The MDTM

predictions fall somewhere between these two limits.

Previous work has identified that elasticity in aggregated or

flocculated suspensions can arise from both intra and inter

aggregate interactions [60]. The simplified expressions for

the yield stress employed in single scalar parameter struc-

tural thixotropy models can only capture the overall behavior

qualitatively at best (as shown here for the MDTM) and not

the detailed frequency dependence of the moduli. However,

as the focus of thixotropy models is the time dependent flow

behavior under nonlinear conditions, the level of approxima-

tion afforded by the MDTM is sufficient and qualitatively

similar to that of the SSTM and the UAM.

Examination of the step-down and step-up in shear rate

results and model fits in Figs. 7(a) and 7(b) shows significant

differences between the models (note only two characteristic

curves are provided here for brevity and the rest are pre-

sented in the Supplementary Material [44]). The MDTM can

fit the data well, while the SST model is less satisfactory

from a quantitative perspective and both the UA and BMPM

approach yield qualitative inconsistencies. The advantages

of the MDTM over the SSTM is also due to the addition of a

third process to account for shear-induced aggregation,

which is important for accurately modeling the differences

in recovery processes between increases and decreases in

shear rate. In contrast, the UAM and BMPM include proc-

esses that always lead to both viscoelastic and thixotropic

responses in rate jump experiments. These viscoelastic proc-

esses are also clearly evident in some of the other compari-

sons shown in the Supplementary Material [44]. This is

especially true for the five-mode BMPM, which is con-

structed on a viscoelastic framework. However, these addi-

tional viscoelastic short time transients are not observed in

the data.

What is apparent from these comparisons is that accurate

constitutive models for nearly ideal thixotropic materials

under time dependent nonlinear shear flow require a dominant

viscous response that is coupled to a time and rate dependent

structure. Although viscoelastic models can capture some

aspects of nearly ideal thixotropic systems, they fail to capture

the dominant qualitative features inherent in thixotropic flows.

FIG. 6. (a) Steady state flow curve model fits and data for all four models

and (b) small amplitude oscillatory shear predictions and data for all four

models.

FIG. 7. (a) Single step-down in shear rate from 5.0 to 0.5 s�1 and data com-

parison with all four models and (b) single step-up in shear rate from 0.1 to

2.5 s�1 and data comparison with all four models.
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However, fits to already known data can be deceptive. In

Sec. V, we compare predictions of these models obtained

with the same fit parameters against various additional

time-dependent flows that are used for characterizing thixo-

tropic materials.

V. PREDICTING STRESS RESPONSE UNDER
NONLINEAR, TRANSIENT SHEAR FLOWS

A. Large amplitude oscillatory shear

LAOS experimental results are presented in Figs. 8(a)–8(d)

for a range of frequencies and strain amplitudes, shown in

dimensionless form for ease of comparison. Inspection reveals

characteristics of both thixotropic and viscoelastic behavior;

for example, in Fig. 8(a), in the x ¼ 0:01ðrad=sÞ data, a yield-

ing behavior can be clearly observed (seen in the shoulder,

indicating yielding). In addition, at the higher strain ampli-

tudes there is clear evidence of stress overshoots leading to

secondary LAOS loops in the viscous projections. This indi-

cates that there is structure reforming and breaking down dur-

ing this portion of the LAOS cycle. This is a consequence of a

lag time within the structured material such that the structure

breakdown lags behind the instantaneous shear rate, so called

“thixotropic loops” in classical thixotropic tests (e.g., see

Chap. 7, Mewis and Wagner [9]). This effect becomes less

evident as the frequency is increased from 0.01 to 10 (rad/s),

whereupon the sample exhibits a predominantly viscous stress

response. This is expected as _c0 is increasing, which leads to

less structure, and consequently, more viscous behavior. It is

the structure that directly contributes to the elastic nature of

the material, and if the frequency is sufficiently high, the

structure cannot recover sufficiently during the cycle time. A

similar interpretation has also made by de Souza Mendes

et al. [61]. Furthermore, direct observation of this effect has

been made for colloidal gels by Kim et al. [28], where meas-

urements of the structure under flow verified this

interpretation.

FIG. 8. (a) LAOS data at x¼ 0.01 (rad/s) over a range of strain amplitudes (LAOS data normalized by maximum values, then normalized stress values

scaled by 0.5, 0.67, 0.83, and 1 for c0 ¼ 1; 10; 100; and1000, respectively, for presentation purposes). (b) LAOS data at x¼ 0.1 (rad/s) over a range of c0

(LAOS data normalized by maximum values, then normalized stress values scaled by 0.33, 0.5, 0.67, 0.83, and 1 for c0 ¼ 0:1; 1; 10; 100; and1000, respec-

tively, for presentation purposes). (c) LAOS data at x¼ 1 (rad/s) over range of c0 (LAOS data normalized by maximum values, then normalized stress val-

ues scaled by 0.5, 0.67, 0.83, and 1 for c0 ¼ 0:1; 1; 10; and100, respectively, for presentation purposes). (d) LAOS data at x¼ 10 (rad/s) over range of c0

(LAOS data normalized by maximum values, then normalized stress values scaled by 0.67, 0.83, and 1 for c0 ¼ 0:1; 1; and10, respectively, for presentation

purposes).
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Model predictions are performed by simulating LAOS

for a sufficient number of cycles until alternance is

achieved, in a manner similar to the experiments. In this

context, alternance refers to the state of LAOS whereby the

stress and structure, although continuously evolving over a

period, do so such that stress and structure repeat over con-

secutive periods. Comparisons are made in both elastic and

viscous projections, with the respect to cðtÞ, and, respec-

tively, _cðtÞ, of the Lissajous–Bowditch figures. To illustrate

a typical model behavior, we show the three dimensional

Lissajous–Bowditch plot comparing the experimental data

with predictions of the MDTM at x ¼ 1rad=s; c0 ¼ 10 at,

and x ¼ 1rad=s; c0 ¼ 1 in Figs. 9(a)–9(e), and 10(a)–10(e),

respectively.

FIG. 9. (a) Three dimensional Lissajous–Bowditch curve for x ¼ 1rad=s; c0 ¼ 10; (b) two dimensional elastic projection; (c) two dimensional viscous projec-

tion; (d) two dimensional structural, elastic projection; (e) two dimensional structural viscous projection. The arrows indicate the direction of time evolution

during the cycle and the numbers correspond to specific states discussed in the text.
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The conditions shown in Fig. 9 give rise to states where

both elastic stresses and viscous stresses are of significance

at points during the cycle, and the frequency is such that the

suspension’s structure can recover significantly during the

cycle at alternance. Thus, these conditions provide a good

illustration of the rich LAOS behavior of thixotropic suspen-

sions and a good test of model fidelity. At the high shear

rates of states 1 and 3, the stress is largely viscous in nature.

Reducing the strain rate to zero at the point of flow reversal

(states 2 and 4) shows small differences in stress response

during the cycle depending on the position due to hysteresis

in structure rebuilding and breakdown. Note that the data

and the model predictions both cross during the cycle in the

viscous projection [see Fig. 9(c)]. The nonzero stress at zero

shear rate is characteristic of the yield stress corresponding

to structure in the suspension. It is evident that the MDTM

can qualitatively capture these effects and supports the typi-

cal microstructural interpretation through predictions of the

FIG. 10. (a) Three dimensional Lissajous–Bowditch curve x ¼ 0:1rad=s; c0 ¼ 1; (b) two dimensional elastic projection; (c) two dimensional viscous projec-

tion; (d) two dimensional structural, elastic projection; and (e) two dimensional structural viscous projection. The arrows indicate the direction of time evolu-

tion during the cycle and the numbers correspond to specific states discussed in the text.
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structure evolution [Figs. 9(d) and 9(e)]. Importantly, the

thixotropic loop evident in the LAOS stress response is also

evident in the structure parameter, which lags over the in-

stantaneous shear rate.

Reducing the frequency and strain amplitude each by an

order of magnitude locates the LAOS conditions at suffi-

ciently small strain rates and strains such that the experiment

is largely dominated by the elasticity leading to the yield

stress. Note that this strain value is still above cCO, such that

the suspension is in the weakly nonlinear regime. The experi-

mental data show predominantly elastic behavior with a stress

overshoot and viscous flow evident as the maximum shear

rates are reached (states 1 and 3). Very significant differences

in stress at the states corresponding to flow reversals during

the cycle (states 2 and 4) are a consequence of the yield stress.

Figures 10(d) and 10(e) show that the sample remains nearly

fully structured during the oscillation, such that the model’s

response is dominated by the yield stress. Note that the model

again qualitatively captures the stress overshoot, but now

incorrectly predicts a loop in the viscous projection. This can

be seen as a large overestimation of the yield stress as evident

in the elastic projection [Fig. 10(a)], where the model lies

well outside the experimental data. Similar observations were

reported in recent experimental studies of colloidal gels by

Kim et al. [28], where LAOS was shown to result in different

structure at alternance as compared to that observed during a

comparable steady shear flow.

A global summary of the LAOS experiments and MDTM

predictions are presented in the form of Pipkin diagrams in

Fig. 11. The gold boxes identify the two frequency and strain

amplitude combinations that are shown in Figs. 9 and 10.

Not surprisingly, progressing to lower frequencies but higher

strain amplitudes (i.e., increasing the maximum shear rate)

leads to better model agreement as the stress response is

dominated by the viscous behavior of a relatively unstruc-

tured material. However, as c0 is decreased or x is increased

the structure of the material becomes more and more rele-

vant and the suspension’s elastic response dominates the

stress signal. For example, at an angular frequency of 1 rad/s

and a strain amplitude of 10, the MDTM is able to accurately

predict the Lissajous–Bowditch curve, even predicting the

secondary loops evident in the viscous projection with the

corresponding overshoot evident in the elastic projection.

However, when the frequency is reduced to 0.1 rad/s and the

strain amplitude is 1, the model is less accurate and misses

qualitative features of the data. The maximum stress pre-

dicted is about twice the measured stress, and there are no

secondary loops evident in the viscous projections of the

data while the model predicts minor secondary loops. From

Fig. 11 it can be observed that the MDTM consistently over-

predicts the maximum stress at low frequency and strain am-

plitude, which we believe is due to the over-prediction of the

structure, coupled with a simple isotropic model for the elas-

tic stresses. Similar results are seen with the SST model, UA

FIG. 11. Pipkin diagram: (a) Elastic projections. (b) Viscous projections. Data (gray open circles) and MDTM predictions (blue lines). The data are made

dimensionless by maximum values, while the model predictions are made dimensionless by the same maximum values used for the data. The boxes (gold

dashed frames) indicate the states shown in Figs. 9 and 10.
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model, and BMPM LAOS predictions shown in Figs. S.14

and S.15.

This analysis shows that the MDTM can quantitatively

predict many features of the LAOS response of nearly ideal

thixotropic suspensions, especially for states where the vis-

cous response is dominant. The reduction in accuracy for

the combination of low frequencies and small strain ampli-

tudes reveals the inadequacy of the phenomenological

model to accurately capture the elastic stress contributions

and the coupling to structure. This is evident in the SAOS

and therefore, it follows that the predictions will not be as

accurate at low strain amplitudes, where the structure is

dominant. This leads to the second conclusion, namely that

careful consideration is required in order to use LAOS

measurements for determining model parameters in consti-

tutive equations.

We compare in Fig. 12 predictions of all four models for

the two states considered in Figs. 9 and 10. All four models

provide reasonable, quantitative predictions, but differences

are apparent. Most strikingly, the UA model predicts signifi-

cant stress overshoots leading to a “duck head” pattern in the

viscous projection that is not evident or so pronounced in the

other models or the data. Note that all of the models are ca-

pable of parameter tuning to better fit a given LAOS data set,

but this will not yield good predictions for other flow condi-

tions. Here, we focus on predictions of LAOS with model

parameters independently optimized to fit the steady shear,

SAOS, and step-up/down shear data.

Similar trends as observed for the MDTM in Fig. 10 were

also evident for the other three models explored in this work,

with the results for the other models shown in detail in the

Supplementary Material [44] (Figs. S.14 and 15). All of the

models offer poor predictive capability for conditions of

smaller values of strain amplitude and frequency where the

yield stress dominates the suspension’s response, while all of

the models offer more accurate predictions at large strain

amplitudes and frequencies, where the material structure is

no longer relevant. There is clearly a deficiency in all of the

models to predict LAOS behavior at the region where elastic

forces are important.

LAOS provides an important distinction in experimental

conditions as compared with the steady and transient shear

experiments used to derive the model parameters. During

LAOS, the direction of the shear rate reverses twice per os-

cillatory cycle. Such reversals in flow direction are not

properly captured by scalar thixotropy models, such as

those used in the present work [1,11]. All of the data used

for fitting, with the exception of the SAOS, were for unidir-

ectional shear flows and SAOS are asymptotically close to

equilibrium. In the following, we explore the hypothesis

that the striking differences observed in this work and

others [28] comparing the behavior of thixotropic suspen-

sions under LAOS and transient, but unidirectional shear

flows, is a consequence of the structural anisotropy induced

by shear flow.

B. Flow reversal and unidirectional LAOS
experiments

Classic flow reversal experiments were performed to elu-

cidate the importance of directional structure formation

under shear. In this experiment, a steady shear rate is

applied until the suspension reaches steady state. A rapid

reversal in shear flow is performed to a shear rate equal in

magnitude, but opposite direction, and the time dependent

stress reported. If the structure were independent of the

direction of the applied shear, then reversing the flow would

leave the structure, and the magnitude of the shear stress

unaltered. Figure 13(a) shows the stress response on a loga-

rithmic time scale, where zero on the x-axis represents the

time of reversal, where a significant drop in stress is evi-

dent. A comparison is shown in Fig. S.16 for the suspending

medium, which is Newtonian and shows no effect of the re-

versal, indicating the accuracy of the method and instru-

ment used. Thus, from direct experimental observation, the

direction of flow is an important consideration for the sus-

pension’s response.

Also shown in Fig. 13 are predictions of the MDTM that

indicate an inability to capture the significant transient

observed in the data. A very small transition is predicted in

the stress [circled region in Fig. 13(a)] due to the elastic

strain dependence of the yield stress, but this occurs over a

very small strain and is insignificant on the scale of the

observed data. The corresponding structure shows no appre-

ciable change due to flow reversal as the structure depends
FIG. 12. (a) Elastic projection and (b) viscous projection of all four models

at x ¼ 1rad=s; c0 ¼ 10.
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only on the magnitude of the shear rate. Analogous flow re-

versal plots for the other models can be found in the

Supplementary Material [44] Fig. S.18, where the SSTM

predicts no change while the UAM and BMPM predictions

show a transient upon flow reversal. This transient in these

models arises from viscoelastic effects. The predictions are

qualitatively different than the experimental data in the

details of the recovery, which arises primarily from the elas-

tic components of the stress. Thus, all the thixotropy models

under investigation here are unable to quantitatively capture

the transient stress response in flow reversal. This is conjec-

tured to be caused by the inability of the present models to

capture significant structural changes induced by flow

reversal.

To further test this hypothesis, we propose and explore

here a modified LAOS without flow reversal, termed unidir-

ectional LAOS (UD-LAOS in short). UD-LAOS is more

characteristic of pulsatile flows such as physiological blood

flow [17]. For UD-LAOS a steady shear flow is superim-

posed to a LAOS flow at the same shear rate amplitude such

that the shear rate oscillates between zero and twice the max-

imum shear rate of the underlying LAOS flow, thereby never

reversing direction. Equations (14) and (15) show the strain

and shear rate, respectively,

c ¼ c0sinðxtÞ þ c0xt; (14)

_c ¼ c0xcosðxtÞ þ c0x: (15)

Sample UD-LAOS results are shown in Fig. 14 for the

same conditions as the LAOS results presented in Figs. 9

and 11, as well as two lower amplitudes where the lowest at

x ¼ 1rad=s; c0 ¼ 1, corresponds to LAOS conditions shown

in Fig. S.15. To make these comparisons, the experimental

data and the model predictions are made comparable to

LAOS plots by subtracting out the mean of the experimental

stress from each discrete plotted value of stress (rplot

¼ rexp � �rexp), subtracting the continuously evolving aver-

age strain (xc0t) from the instantaneous strain, and subtract-

ing the corresponding average background shear rate (xc0)

from the instantaneous shear rate.

It is apparent that the symmetry of the LAOS curves in

these projections is broken by the underlying steady base

flow such that states 1–4 [as shown in Figs. 14(a) and 14(b)]

are now fundamentally different. The base flow is in the pos-

itive direction such that the applied shear rate at state 1 is

actually twice that for the corresponding LAOS flow, while

that of state 3 is zero. Thus, states 2 and 4 both correspond to

states shearing instantaneously with the bulk shear flow, but

state 2 is arrived at from a higher shear rate, with less struc-

ture, while state 4 is reached from a lower shear rate, with

more structure. Correspondingly, the stress in state 2 is lower

FIG. 13. Flow reversal experiments (a) stress vs time for various shear rates

1, 2.5, and 5 s�1 and data (symbols) MDTM (lines) for the rates indicated.

The circle highlights the small changes evident in the predictions and (b)

MDTM predictions of structure parameter.

FIG. 14. UD-LAOS data compared to MDTM predictions: (a) Elastic pro-

jections and (b) viscous projections x ¼ 1rad=s; c0 ¼ 10(c�0 ¼ c=c0; _c�0
¼ _c= _c0), where Dr ¼ rðtÞ��rðtÞ and �rðtÞ ¼ 26:7Pa; Dc ¼ cðtÞ�c0xt; D _c
¼ _cðtÞ�c0x.
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than that in state 4 due to a lower degree of structure that has

not recovered as much as observed in state 4. Following the

cycle from state 1 influenced by the base flow corresponds to

transient reduction in the applied shear rate and a corre-

sponding increase in the structure. The applied shear goes to

zero at state 4, and the sample is once again undergoing

positive shear rate such that the recovering structure is now

subject to shear break down as well as shear aggregation.

There is a similarity of UD-LAOS to traditional thixotropic

loop tests where the shear rate is ramped up and down in

the same direction and the stress reported as is used in

Bureau et al. [16]. An important difference is that UD-LAOS

probes a material at alternance rather than a material starting

from rest.

Figure 14 compares predictions of all four models using

the parameters determined from the steady, SAOS, and uni-

directional strain rate jump experiments reported earlier in

this manuscript. It can be seen that all four models make sig-

nificantly more accurate predictions for UD-LAOS than for

traditional LAOS flows and that the MDTM gives good pre-

dictions. This confirms the importance of directionality of

flow in structure determination.

This new set of LAOS, flow reversal and UD-LAOS

experiments for a model nearly ideal, thixotropic suspension

reveals some important aspects of the coupling of structure

to the applied flow; namely, under flow reversal the structure

changes significantly and therefore must be anisotropic. This

also highlights the possible advantages and disadvantages of

using traditional LAOS experiments to probe structured,

thixotropic materials, as the flow direction reversals during

cycling has a different effect on the structure than setup and

step down experiments performed in the same flow direction.

We believe that by imposing a LAOS condition the changing

flow direction, in addition to the change in shear rate, leads

to more nonlinear and complicated effects on the microstruc-

ture than our simple models can account for in their present

state. This shows that the scalar models in their present form

are appropriate to model, and predict only one directional

shear flows, but fail to accurately predict the more compli-

cated, LAOS condition or flow reversals.

VI. CONCLUSIONS

This study provides both new experimental data on a

nearly ideal, thixotropic system and demonstrates a robust,

improved model with significant promise, but limitations on

accuracy for weak LAOS flows. New experimental data are

presented for a model thixotropic system that significantly

extends the data set of Dullaert and Mewis [3]. These new

experiments are LAOS, shear flow reversals, and novel

UD-LAOS flows, which are shown to be important for rig-

orously testing models for thixotropic suspensions. The

experimental data show only weak viscoelasticity and is re-

producible from batch to batch and between laboratories. A

very rich LAOS behavior is observed when both viscous

stress and yield stress contributions are relevant. This is

suggestive of a time-varying structure during alternance, in

agreement with recent microstructural observations on a

related system [28].

We also present a new thixotropic model based on a sca-

lar structural parameter by modifying the Delaware thixo-

tropic mode [5]. A shear-induced aggregation processes is

added in the structure equation and an adaptation of recent

improvements in modeling of the yield stress is included in

the stress constitutive equation that now explicitly accounts

for elastic and plastic deformations. This modified Delaware

thixotropy model is found to be superior to three other, rep-

resentative models from literature as judged by the ability to

fit traditional thixotropy measurements consisting of steady-

shear flow, SAOS, and rate step-up and step-down flows. All

four models are found to have good quantitative predictive

capabilities for strong LAOS flows with high shear rate

amplitudes, but showed quantitative and qualitative discrep-

ancies for weaker LAOS flows where the contributions from

the yield stress dominates. Analysis of these comparisons

emphasizes the importance of including three structure ki-

netic terms corresponding to Brownian and shear aggrega-

tion and shear breakup in thixotropic models. The

inadequacy of the models to predict LAOS flows where elas-

tic effects predominate was explored. The comparisons also

show the difficulties of using LAOS experiments to deter-

mine model parameters for thixotropic materials.

The source of the difficulty in predicting LAOS is consist-

ent with similar difficulties in capturing the reversal in flow

direction, as demonstrated through exploration of rate rever-

sal experiments. Such deficiencies can be, in part, mitigated

by including more elaborate models for the elastic stresses,

but ultimately may require a tensorial description of the

microstructure. Flow reversal experiments strongly suggest

that the structure developing under shear flow is directionally

dependent. This is supported by recent experimental obser-

vations using flow-SANS in the 1, 2 plane on colloidal gel

aggregates showing flow-induced anisotropy [29]. To test

this further, we explored a new experiment superimposing a

matching steady shear flow with LAOS such that the flow

does not reverse during the cycle, termed UD-LAOS. All

four thixotropy models are shown to be more successful in

predicting UD-LAOS, further confirming the importance of

accounting for the direction of flow change in future thixot-

ropy models.
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NOMENCLATURE

a power law of shear structure breakage term

d power law of shear aggregation term

D deformation tensor

FOBJ objective function

GvðkÞ current value of elastic modulus

Gi elastic modulus relaxation spectrum values

G0 elastic modulus

kG time scale of elastic modulus evolution

ki kinetic constant for structure breaking down of

relaxation spectrum i
KST consistency (structural)

m power law of elastic strain

tri characteristic thixotropic time scale

c applied strain

_c applied strain rate

cCO critical strain

gvðkÞ current value of viscosity

g1 infinite shear viscosity

geq equilibrium viscosity

gST structural viscosity

h1 relaxation time

h2 retardation time

k structure

ki relaxation time/spectrum values

ui fluidity of relaxation spectrum i

u1;i infinite shear fluidity relaxation spectrum i

u0;i zero shear fluidity relaxation spectrum i

r shear stress

r stress tensor

re elastic stress

rv viscous stress

ryd dynamic yield stress

ry0 yield stress
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