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 An adaptive parallel tempering algorithm is developed in a user-friendly fashion that efficiently and 

robustly generates near-optimum solutions.  Using adaptive, implicit, time-integration methods, the 

method allows fitting model parameters to dynamic data.  The proposed approach is insensitive to the 

initial guess and requires minimal fine-tuning: most of the algorithm parameters can be determined 

adaptively based on the analysis of few model simulations, while default values are proposed for the few 

remaining ones, the exact values of which do not sensitively affect the solution.  The method is extensively 

validated through its application to a number of algebraic and dynamic global optimization problems 

from Chemical Engineering literature. We then apply it to a multi-parameter, highly nonlinear, model of 

the rheology of a thixotropic system where we show how the present approach can be used to robustly 

determine model parameters by fitting to dynamic, large amplitude, oscillatory stress vs. shear rate, data.  

Keywords: Global optimization, Parameter estimation, Parallel tempering, Differential algebraic 

equations, Large amplitude oscillatory shear 

	
Introduction 

	

The evaluation of multiple parameters involved in nonlinear models based on dynamic data is 

often a non-trivial step. As in any parameter estimation, this is based on the minimization of the sum of 

the squares of the differences between the model predictions and the experimental data. However, the use 

of a local method, such as in classical least squares, using a local, gradient method1, only converges to a 
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local minimum that is not necessarily the global one. Thus, the answer typically depends crucially on the 

initial guess. Furthermore, an analysis of the sensitivity of the local minimization solution to the initial 

guess can be time consuming. This is especially true if dynamic data are used, as then the model 

predictions require the time-integration of a set of ordinary differential equations (ODEs), which is itself 

computationally costly.  There are several variations of this basic strategy. Some examples are the general 

Newton’s method, Quasi-Newton, trust-region methods, line search methods, and Levenberg-Marquardt 

methods1,2. The use of some of those local methods, as well as other variants that can also accommodate 

constraints, such as the Nelder-Mead-Simplex and the sequential quadratic programming, in the particular 

problem of the parameter estimation of nonlinear models based on dynamic data, is illustrated by Yuceer 

et al.3 Alternatively, stochastic methods have been developed, such as Simulated-Annealing4,5, in order to 

better explore the available parameter space in search of a global minimum and/ or alleviate the 

dependence of the solution on the initial guess.  

 
Two encompassing references that cover the current state of minimization algorithms are 

Nonlinear Programming Concepts, Algorithms, and Applications by Biegler6 and Introduction to 

Stochastic Search Optimization by Spall7. The first reference tends to focus on the direct search, local 

methods6, while the latter has a focus on global stochastic methods, such as the simultaneous perturbation 

stochastic approximation, and simulated annealing algorithms7. In addition to these, Nonlinear Regression 

by Seber and Wild8, offers a historical account of classical approaches using direct methods. Moreover, in 

Numerical Recipes in Fortran by Press et al.2 there are several detailed explanations and algorithms 

developed both for these local direct methods as well as for the simulated annealing. Furthermore, an 

outstanding description of the available direct methods is provided by both MATLAB and Mathematica, 

in their documentation pages9,10. Deterministic Global Optimization: Theory, Methods, and Applications 

by Floudas11 and Global Optimization Deterministic Approaches by Horst12 represent further repositories 

of deterministic global optimization algorithms and approaches. A concise description of deterministic 

global optimization tools and their benefits in their application to solve systems engineering and 
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computational biology problems can be found in work by Floudas13 with a description of more recent 

advances to be found in the review by Floudas and Gounaris14.   

In dynamic data-driven parameter estimation the evaluation of the objective function to be 

optimized is often prohibitively expensive.  Under such conditions, the use of direct methods for global 

optimization may force one may to employ various approximations of the function to be optimized in 

building surrogate (response) surfaces15,16, such as those obtained through a stochastic simulator (also 

called Kriging15-18) or through radial basis function approximations19.  More recent developments involve 

the use of a derivative-free optimization for expensive constrained problems18.  These methods were 

developed in order to handle global optimization in systems with high uncertainty.  Nevertheless, for 

complex systems involving many parameters and considerable uncertainty, such as found in biology, the 

current tools that combine a local nonlinear programming method with a stochastic global search20,21, 

such as deterministic global optimization methods, tend to become unfeasible21.   

Alternatively, there are many global optimization methods based on stochastic approaches, 

starting with the simulated annealing, as already mentioned above4,5.  Its standard form utilizes the 

Metropolis Monte-Carlo algorithm that was originally developed as a numerical tool to help to evaluate 

thermodynamic behavior by coercing the selection of initially randomly selected microstates, through 

their weighting by a Boltzmann factor, towards the generation of a representative to the true 

thermodynamics population of microscopic samples at a given temperature22.  In the global optimization 

application the thermodynamic potential is replaced with the function to be minimized4,5.  Furthermore, 

the thermodynamic temperature is replaced by an effective one (representing a characteristic value of the 

objective function to be minimized) and instead of being constant (as in a traditional Monte-Carlo 

thermodynamic simulation) is now allowed to vary. This variation is selected to emulate the annealing 

process in solidification, so as to ensure that the global minimum is eventually reached when the final 

temperature in the simulation approaches zero4,5.  Various temperature variation schemes have been 

developed over the years with some of the most successful discussed in standard numerical analysis 

treatises2.  Recently various variants of the classical simulated annealing have also been developed, such 
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as the parallel simulated annealing23 and the coupled simulated annealing24-25 that allowed exchanges of 

state information between simultaneous simulated annealing runs in global optimization.  However, as 

discussed in a recent review of the subject of the use of stochastic methods in global optimization26, 

despite its successes the simulated annealing and its variations suffer from slow convergence and/or high 

sensitivity to the annealing schedule which is highly problem-dependent.   

In addition to the simulated annealing and its various variants discussed above, several other 

stochastic methods have over the years been developed and successfully applied to a number of global 

optimization problems7,27-31 such as genetic algorithms, evolutionary algorithms, the particle swarm 

method, etc.  The genetic algorithms27,30 try to reach the global optimum by following the evolution of a 

population of states generated randomly by first codifying the model into a genetic framework and then 

letting the “genes” evolve stochastically by promoting the evolution of the best “fit” models, their fitness 

being judged from a comparison of their predictions to available data.  An alternative approach is the 

Simultaneous Perturbation Stochastic Approximation (SPSA)7, which uses a stochastic approach to 

generate, model parameters, evaluate their performance though comparison of their predictions to the data 

and then direct their evolution through a local minimum approach by estimating the Jacobian (which is in 

this case the Hessian) to guide the direction of the optimization.  More recent progress in this field 

includes the differential evolution algorithm, which represents an alternative implementation of the 

genetic algorithms and has also been used to estimate parameter values31.   In addition, a further 

refinement of the genetic algorithms is the harmony search algorithm32, which uses all the previous 

generation solutions to generate the new guesses instead of just two parents.  This has been further 

improved and applied to constrained and unconstrained algebraic minimization problems33 whereby a 

novel method of generating solution vectors has been proposed.  This supposedly enhances the accuracy 

and rate of convergence33. However, a common feature among all of these stochastic global optimization 

methods, similar to the simulating annealing algorithm, is the significant number of adjustable algorithm 

parameters that must be tuned for each problem to make the algorithms successful.  Consequently the 

methodology for their selection is unclear.   
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Nevertheless, there has been a significant extension of the simulated annealing method, the 

parallel tempering, which appears to overcome at least some of the drawbacks associated with simulated 

annealing by altogether avoiding the use of, and therefore the need for, a temperature annealing schedule.  

Instead, the parallel tempering approach (also called “Replica-exchange Monte-Carlo”) employs the use 

of multiple Monte Carlo runs, which are all executed in parallel at constant but different temperatures, 

with the possibility of infrequent but consistent exchanges between adjacent temperature runs26,34,35.  

However, it is of interest that although the parallel tempering approach has been used, quite successfully, 

to a number of global optimization problems arising in molecular systems-based physical chemistry 

problems36-40, and despite its general accolades and substantial computational improvements35,38,39,41, its 

adoption for use in more general optimization problems has been unexpectedly slow, with only few 

applications reported to date38,42-45.  In particular, there have been very few applications for general 

parameter-estimation problems44, of which, as far as the authors know, none involves dynamic data, 

which is the subject of the present investigation.  The main explanation for this lack of progress is 

believed to be that the current implementation of the parallel tempering approach has not taken full 

advantage of recent know-how on the development of critical algorithmic parameters adaptively (such as 

the temperature values or the frequency of replica exchanges) implemented under a more general global 

optimization setting, thereby significantly reducing the need of fine tuning of algorithmic parameters.  

This is exactly what we aim to offer here in the particular context of dynamic data-driven parametric 

estimations.  

Indeed, despite all the activity in implementing efficient global optimization techniques, only a 

small part of which has been referenced above, there is still a need for robust formulations that can be 

easily implemented in real applications.  For example, this need has been recently acknowledged in work 

by Nallasivam et al.46  in connection to the optimization of multicomponent distillation configurations.  In 

that work the weaknesses of the sequential minimization algorithm currently used for multicomponent 

distillation configurations are made apparent46.  It is shown that as the number of components in the 

stream is increased the algorithm becomes less reliable.  From these recent examples it is clear that there 
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is a current need for a user-friendly, yet robust global optimization algorithm, with insensitive, but 

intuitive adjustable algorithm parameters. The new parallel tempering algorithm proposed here 

circumvents both of these deficiencies by providing a capability, fully exploiting the power of Monte-

Carlo methods47, to obtain a near-global minimum without requiring either a very good initial guess or 

finely tuned algorithmic parameters, and also has the capability to integrate constraints seamlessly.  

The method described in this work is applied to multiple parameter estimation problems in 

dynamic systems, such as those describing the dynamics in complex chemical reaction systems, 

biological systems, complex rheological systems and others. The algorithm is validated against several 

model problems involving systems of chemical reactions6,11,48 that they have been employed before in 

testing global parameter estimation methods.  The efficacy of the algorithm is also demonstrated through 

its application to complicated algebraic systems with known multiple minima18,49. Finally, the algorithm 

is applied to the parameter estimation in fitting complex nonlinear rheology models to measurement data. 

Such experiments include several dynamic sets of experiments, such as large amplitude oscillatory shear 

data (LAOS)50-54. Large amplitude oscillatory shear flow is a regime used in rheological systems to 

physically probe a nonlinear mechanical response, both temporally and spatially, either by programming a 

sinusoidal strain oscillation and measuring the stress response or vice versa, using a rheometer.  LAOS 

presents a unique way to measure and quantify material properties using nonlinear flow conditions50-54. In 

the following it is shown that our approach ensures, for reasonably complex realistic problems, the 

reproducible approximation of the global minimum independent of the initial guess in a systematic way 

and with very few adjustable algorithmic parameters that also do not sensitively affect the performance of 

the method.  Consequently, we anticipate application to be of value for a broad range of parameter fitting 

challenges concerning dynamic data.  

The structure of the rest of the paper is as follows. In the next section we present the problem 

formulation.  Following this, we offer a brief overview of necessary background information, consisting 

of highlights from simulated annealing and parallel tempering. The proposed algorithm is then described 

in detail in the next section, dynamic parameter estimation. The implementation of the parallel tempering 
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is performed so as to avoid adjustable parameters with high solution sensitivity. Default values are offered 

for the remaining few numerical parameters needed, while sensitivity analysis in the following section 

shows the solution to be fairly insensitive to their values. In the subsequent sections a detailed set of 

parametric evaluation tests is offered. These involve problems from the literature, starting from simple 

algebraic ones with known multiple minima, some also involving constraints, the more complex chemical 

reaction network models that have been typically used in the past as benchmarks for dynamic parametric 

estimation evaluations, leading to a novel application in nonlinear dynamic rheology. Lastly we state our 

conclusions. 

 

Problem Formulation 

The dynamic modeling of all the systems of interest can be described as follows.  First let as 

denote by a vector q , the N internal model parameters 

  

.             (1) 

 

In addition to the N internal parameters of the model, we also have, in general, P external, control, 

parameters. Those are user-specified, and control the experimental conditions. Those form the elements of 

the P-vector  z and can also be a function of time: 

 

          ,                       (2) 

 

Where both q, z  contribute, in general, to a system of J ordinary differential and K algebraic equations: 

 

,            (3) 
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              .            (4) 

 

Those equations describe the time evolution of the J+K dynamic variables of the system: 

  

,             (5) 

 

subject to a commensurate, J, number of initial conditions 

 

.             (6) 

 

Furthermore, the N model parameters are considered to be subject to a number of constraints 

 

.             (7)  

 

Note that as the parameters a
n
, b

n
in Eq. (7) are also allowed to take the limiting values, 

respectively, these equations can represent generically, both the presence or absence of limiting 

constraints on the parameter values11. 

The general dynamic parameter estimation problem can then be defined as finding the N internal 

parameters, q , of the above-defined dynamic model based on available dynamic (and possibly also static) 

experimental data.  In general, let us assume that the experimental data involve L sets of dynamic and M 

sets of static (or steady-state) experimental data corresponding to the following measurable quantities:   

 

,                 (8) 
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where z( l ) (t)is a user-prescribed function that defines the time evolution of the control variables 

corresponding to the l-th set of dynamic experimental data, defined over the time interval and  

 

 ,          (9) 

 

where z(m, j ) is a user-prescribed vector that defines the set of control variables corresponding to the j-th 

discrete point of the m-th set of static experimental data (i.e. there are M sets of data, and each of the data 

sets has mN  discrete data points).  Note that each one of the L dynamic sets involves, in general, 

continuous variables with a continuous dependence on time over a specific interval, whereas each one of 

the M static sets involves a finite discrete number of data points that do not involve time. It is important to 

make that distinction even when in actual applications one ends up having to deal with discrete dynamic 

data sets, as the experimental data are practically collected over a finite, discrete, number of times. This is 

because it is best (and most practical) to explore the continuity of the dynamic data by developing 

continuous approximations of the experimental measurements. It is through those continuous 

approximations that the dynamic data enter in the formulation of the objective function, as described 

below.  This is even more critical when the dynamic data involve a time-periodic behavior, which can be 

most appropriately captured by using time-periodic functional approximations, such as those provided by 

a Fourier series expansion.  In this case the actual values of the limits 
l
,

l
are not defined; simply their 

time span (period)  

 

  .                       (10) 
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Note that this time-periodic behavior can either be forced on the system through the imposition of a 

suitably time-periodic history (forced oscillation) on the control parameter vector, z( l )  or, sometimes, it 

can be spontaneously observed even for time-independent control parameter values, such as from a 

naturally occurring limit-cycle behavior.  In the first (more common) case, the fundamental period is 

externally imposed, whereas in the second it is one of the model predictions. 

 A crucial item to be decided is the construction of a suitable objective function, F
obj

, the 

minimization of which leads to the evaluation of the model parameters. A reasonably general form, based 

on a weighted sum of the square of the differences between the L continuous sets and M discrete sets of 

experimental data 

 

                   ,       (11) 

 

and the corresponding model predictions provided by Eqs. (8)-(9), is 

 

,            (12) 

     

where t
l
 are characteristic times of the l-th dynamic set of data defined as  

 ,          (13)  

and where are positive 

weight, continuous functions and discrete coefficients, respectively. Note that in association with dynamic 
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data gathered within a non-time-periodic experiment, it is assumed here that the behavior to be captured is 

some type of relaxation with 

  ,            (14) 

 

i.e., the data to be fitted represent the departure from the limiting value reached at infinite times. It is only 

with respect to this formulation that the convergence of the corresponding integral can be guaranteed as 

the length of the observation time window  , also under the assumption that, at least for long 

times, the behavior is decreasing in a sufficiently rapid fashion such as, for example, described by the 

decaying exponential 

     .          (15) 

 

Whenever applicable, Eq. (15), can also used to define the characteristic relaxation time 
l
 with 

equivalent expressions used under other circumstances. Now, if the limiting value is trivial (zero) this is 

all that is required. If it is not (i.e., when the limiting value is anticipated to be non-zero and model-

dependent) then that limiting value should also appear on its own right, as part of static data, in the 

definition of the objective function. 

An important factor in the quality of the fit is the choice for the weight functions. Only an 

appropriate choice to the available information will allow for a balanced fit that is consistent and 

optimum. In particular, any statistical noise information should also be used to advantage. The expression 

provided by Eq. (12) can accommodate noise and uncertainly that is unequally distributed between the 

elements of any given set. Under such conditions the statistically best fit is provided by taking the weights 

to be inversely proportional to the variance of the corresponding data55. Thus, as far as the dynamic data 

are concerned, the weight functions should be determined as  
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 ,           (16) 

 

where Var
l
(t) describes an estimate of the variance of the corresponding  




l
(t) data, and c

l
 a 

dimensionless scaling factor of the l-th dynamic set of the data. Similarly, as far as the static data are 

concerned, the weights should be determined as 

  

               ,            (17) 

 

where Var
m,i

 describes an estimate of the variance of the corresponding  



m,i
 data, and c

m
 a 

dimensionless scaling factor of the m-th static set of the data.  Note that as the absolute value of the 

variance in any given set can always be absorbed within the weight coefficient c
l
 only the relative 

variance variations within a given set are important to be defined. 

In the absence of any specific, data-dependent information, the variance in either case may be 

estimated.  Of importance is to distinguish two limiting cases (illustrated here for the static case, but the 

dynamic case can be handled in a similar way):  a) where the variance is taken to be proportional to the 

square of the data value 

  ,           (18) 

 

with the proportionality coefficient absorbed within the dimensionless scaling factor c
m

  and b) where the 

variance is taken to be some fixed absolute value 
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 ,            (19) 

 

where ,0m  is some reference value for the m-th set of the data and, where, again, any proportionality 

coefficient is absorbed within the dimensionless scaling factor c
m

.  Note that in all cases, given the 

dependence of the variance to the square of the data values, the scaling factors for the weights are 

dimensionless as well as the objective function. 

 As far as the scaling factors are concerned, those can be defined based on a) the relative weights 

for each one of the dynamic and scalar data sets and b) the absolute maximum value desired for the 

objective function. In the absence of any specific information to the contrary, a safe choice (and one that 

is followed throughout this work) is to use equal relative weights and an absolute value that provides for a 

maximum objective function the value of unity. For simplicity and generality the model predictions used 

to determine the maximum objective function is one are all assumed zero.  This has as a side effect to 

always allow for a safe choice of the maximum Boltzmann energy, , in the proposed parallel 

tempering-based methodology discussed below, thereby eliminating this from the parameters that need to 

be determined to run that method.  To better understand how that method works, we first need to provide 

an overview of some related background information, below. 

 

Background Information 

Parallel tempering overview 

 The simulated annealing algorithm is a stochastic method that attempts to direct a biased 

“random” walk through the allowed parameter space to that set of parameter values that best minimizes 

an objective function, such as the one defined in Eq. (12)4,5. This biased random walk through parameter 

space is generated using the same Metropolis algorithm that is used in the more familiar Monte Carlo 

(MC) stochastic simulations in statistical physics2,22. Simply, here the objective function plays the role of 
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microstate energy and the parameter space that of the physical microstate space. Briefly, the stochastic 

simulation proceeds as follows. Starting with an initial guess for the parameters, q
old

, the corresponding 

(initial) value of the objective function, , is generated. Then, a new set of parameter 

values, q
new

, is proposed based on a random perturbation of the previous set of parameters. The new 

value of the objective function, , corresponding to the new set of parameter values is 

then calculated. To complete the MC step, the new state is accepted (and thus replaces the previous “old” 

state) based on the Metropolis acceptance probability, P
accept

:  

   

 
, ,

, ,

, ,

1

exp

accept
obj new obj old

obj new obj old

obj new obj old
B

P
F F

F F
F F

E

 



  
   
   

,    (20) 

where E
B

is a scaling factor (Boltzmann energy; also denoted in physical MC simulations in terms of the 

system’s temperature as k
B
T where k

B
is the Boltzmann constant).  A cartoon of a prototypical cooling 

schedule is shown below. 

 

Figure 1. Schematic of a typical simulated annealing cooling schedule; here “Time”  

         is proportional to MC steps. 

 

The parallel tempering is a stochastic method that attempts to circumvent the extreme parameter 

sensitivity to the cooling schedule of the standard simulated annealing procedure by concurrently 

generating a number of parallel MC sequences. Each one of these (say N
run

 in number) MC sequences is 

executed in parallel, advancing each one step at a time, at different (but constant) Boltzmann energy 

levels, .  Simultaneously, additional state exchanges between these sequences are 
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allowed to take place, but these are infrequent, and only occur between adjacent energy levels 

sequences34-36. Still those exchanges are sufficient to allow the potential “trickling-in” of good, low 

objective function, states from a high Boltzmann energy level (where there is a much higher probability 

of randomly generating a low value objective function, given the wider range of the parameter space 

explored under those conditions) to the lowest Boltzmann energy level (where the chance of “loosing” 

that good guess due to a random “uphill” move, is very improbable)7,34-38,47. Thus, the annealing can take 

place naturally without the need to implement a cooling schedule. Furthermore, the fact that the state 

exchanges are infrequent provides an advantage as the parallel tempering algorithm can be well executed 

in parallel, thus significantly minimizing the computational time. Indeed this has been exploited in the 

past,2,47 albeit it was not necessary in the examples shown here. Here is the approach: 

1. Start with a selection of the Boltzmann energy levels, from a maximum, , to a 

minimum ; with a recommended schedule for intermediate Boltzmann energy levels: 

,         (21)                           

.         (22) 

 2.  The proper selection of the values of the Boltzmann Energy vector, , can 

be verified by evaluating the probability distribution functions (pdf) corresponding to any parameter p , 

that are obtained from each one of the parallel MC sequences corresponding to the Nrun Boltzmann energy 

levels shown in Figure 2 with data from the catalytic cracking of oil example6.  

 

Figure 2. Plot of pdfs for the state quantity p=k1 reaction rate constant based on normal  

   Probability density distribution fits using statistics data (k1,i
,

k1,i  ) drawn from  

   Catalytic Cracking of Gas example6 as shown in Table 1.  The Boltzmann energy  
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   levels corresponding to the pdf curves shown are indicated on the right of the  

   figure. 

 

Table 1.k1,i
,

k1,i  statistics from a sample run of Catalytic Cracking of Gas example6 

   

 

The normal density pdfs used in Figure 2 are: 

 .            (23) 

 

3.  The next item to be specified is the number of steps, N
Ex

, after which a chance will be offered 

to a given MC run (except to the first) to exchange its state, he exchange takes place according to an 

acceptance probability P
accept

that is defined in terms of the objective functions corresponding to the 

“warm” and “cool” states as34,35,56  

  

.              (24) 

 

 4.  For the determination of the number of steps follow the work of Bittner et al.35,  and the 

autocorrelation function, R
k
, which is a function of the step difference k, calculated with meta-data 

obtained on a state quantity, p , collected during an initial trial run of the algorithm as 
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,         (25) 

 

where the subscripts denote the MC step number and the overbar the average calculated over a set number 

of steps,  Nsteps . The k values for which the autocorrelation function R
k
 = 0.5, , define an 

optimum point of exchanges, .  We choose R
k
 = 0.5 because this is a typical value to reveal 

the characteristic time scale for the decay of correlations---1/e could also be used with no significant 

changes to the results.  This is shown in Figure 5a,b calculated based on data corresponding to catalytic 

cracking of oil example, discussed in Dynamic Parameter Estimation Examples section, below as 

calculated for the state quantity p=k1 reaction rate constant.   

 

Figure 3. Autocorrelation function for a) EB=1 and b) EB=10-5 (*red arrow indicates 

).  

 

Comparing Figures 3a and 3b shows that each Boltzmann Energy level will have its own unique 

NEx that can be obtained via an autocorrelation function calculated with metadata obtained from the 

corresponding Monte-Carlo sequence. NEx is therefore a vector of length that is identical to the number of 

Boltzmann Energy levels. Furthermore, as also can be realized from a comparison of Figures 3a and 3b, 

due to a faster decaying correlation the “hotter” tracks will request an information exchange, on average, 

more than their “colder” track counterparts, i.e. we anticipate: 

 

.        (26) 
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 5.  An approximation can be developed for N
Ex

 that only requires the determination of N
EX ,Hot

 

and N
EX ,Cold

 alone (i.e., based on the autocorrelation functions corresponding to the two extreme cases) 

by using a formula similar to that for E
B

, i.e. assuming that N
Ex

 always increases from one Boltzmann 

energy level to the next by a constant ratio: 

 

       .       (27) 

 

In this way, only two MC runs are needed at the hottest and coldest Boltzmann energy states, 

respectively. The third and last item that needs to be specified, how the selection of the proposed new 

random parameter states is taking place, is problem-dependent and will be addressed at the dynamic 

parameter estimation methodology section. 

 

In summary, the parallel tempering method can be visualized with the following schematic 

diagram, shown in Figure 4: 

 

 

Figure 4. Parallel tempering graphic depiction. Arrows depict the flow of  

       information between parallel MC runs whereas the color indicates    

        qualitatively the Boltzmann energy level magnitude at which each run is being    

               carried out, red being higher, i.e. “hotter” and blue lower i.e. “colder.” 

 

Dynamic Parameter Estimation  
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 The core of the proposed methodology for the parameter estimation, the parallel tempering, has 

been described in the Parallel Tempering Overview section. However, the key advantage of the 

methodology is the minimization of the need to finely adjust numerical parameters. Instead, all the 

required information to which the parallel tempering algorithm is sensitive to is proposed to be generated 

adaptively from a limited number of initial Monte-Carlo runs together with several dynamic simulations 

based on an initial set of model parameters.  

 

Parallel tempering implementation 

 First, the number N
run

 of the parallel tempering runs needs to be selected (a default value of 15 is 

proposed; as it will be shown later, the results vary little when N
run

 varies between 10 and 20). Then, 

with the upper limit for the Boltzmann energy determined from the objective function normalization as 

, only the lower limit, E
B,Cold

, or, equivalently, the ratio 
E

B,Hot

E
B,Cold

 , needs to be selected. We 

recommend a value of , albeit, this is another variable that can vary considerably without 

significantly affecting the results, as it will be shown later. The span of the Boltzmann Energies, EB, are 

selected following a power law relationship indicated in Eq. (22).   

Next, of critical importance is the specification of the process of selecting the proposed new state 

variables (i.e., the new parameter vector, q
new

) based on a previous value, q
old

.  As most often one has 

to deal with parameters that are strictly positive (and even when this is not the case the problem can be 

easily reduced to such a case by examining separately the cases where a parameter can be positive or 

negative and in the latter instance replace the parameter by its negative) it is with no loss of generality 

that we consider each one of the components of the parameter vector, , to be strictly 

positive 
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.                        (28) 

 

Under those conditions, it is also sometimes advantageous to apply the new parameter values generation 

process to the logarithm of the original parameter (if there is high uncertainty on the order of magnitude 

of the parameter value) 

,                    (29) 

while, otherwise, we can also work directly with the parameters, assumed to be of order 1.  

Then, the parameter selection process proceeds as follows.  For each component n of the log 

parameter vector  n  the new value is selected based on the selection of a normal random variable   

(i.e., which obeys the normal distribution with zero mean and unity standard deviation, N(0,1)  as  

,              (30) 

where the standard deviation 
n

is taken to be a function of both the component n as well as (empirically) 

the Boltzmann energy E
Bj

of the corresponding MC j-th run, as 

           ,             (31) 

where the scaling parameter A
n
is obtained from the statistics of an initial run (performed at the higher 

Boltzmann energy and with unity standard deviation) corresponding to the n-th parameter’s standard 

deviation and where the exponent p is taken as the order of accuracy of the ODE solver, typically here 

p=5.  The rationale behind Eq. (31) is to let the parameter variation decrease in a matter roughly 

proportional to the time step size used in the numerical integration. 

The recursive generation of proposed parameter guesses is then given for each one of the Nrun 

parallel MC runs by Eq. (30) with the Fobj,new determined based on the new (proposed) parameter values 

following Eq.(12). Additionally, to improve the effectiveness of the algorithm, based on the fact that you 

need higher accuracy (and therefore tighter error criteria) as the Boltzmann energy decreases, we have 
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introduced a direct correlation between the time step size used in the dynamic DAE/ ODE solver of the 

code (as well as in the numerical integration required to evaluate the integral contributions of the 

objective function entering Eq. (12)) and the Boltzmann Energy level. It is noted that excellent sources of 

DAE/ ODE solvers can be found in the literature57-64. The numerical integration is typically performed by 

using a high order algorithm, such as Simpson’s rule2,65 for non-periodic domains and the trapezoidal rule 

for periodic ones. All that is needed to define the proper integration time step  is to correlate the targeted 

relative integration error, , to the Boltzmann Energy level, EBj, used.  As a first approximation, we can 

assume the two to be directly proportional 

.                      (32) 

That leaves the maximum error, ErrorMAX, as the only adjustable parameter.  Again, this is a parameter to 

which the solution does not depend sensitively; a value of ErrorMAX=0.001 is used which seems to be 

backed up with a sensitivity study that is presented later.  For a p-th order integration method this implies 

a time step size h that can be found iteratively from the time step, testh , used in a test integration that has 

resulted to a relative integration error test  as    

.              (33) 

Similarly, the influence of the time step size used within the numerical integration of the ODE/DAE to the 

accuracy of the solution can be determined separately from its influence to the error resulting from the 

numerical integration of the dynamic data involved in the evaluation of the objective function as given by 

Eq. (12).  Then the time step size used can be chosen as the highest one that fulfills all error requirements.  

In consequence, the order of accuracy of the ODE/DAE system has to be commensurate to the order of 

accuracy of the numerical integrator (typically a fourth order Simpson method).   

The other parameters needed specifically for the parallel tempering is the vector of the MC steps 

before an exchange is attempted, NEX.  This can be obtained adaptively by running two test Monte-Carlo 

Page 21 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

22 
 

runs, one at the highest and one at the lowest Boltzmann energies.  Evaluation of the autocorrelation 

functions during these two runs enables obtaining estimates for the minimum and maximum values of 

NEX, with all other values calculated following Eq. (27). 

 Lastly, an important consideration is also to decide on a sensible way when to stop the algorithm. 

There are several options there.  What we have followed is a simple criterion where the calculations are 

terminated if, within a certain number of MC steps, the improvement obtained in the objective function, 

,obj BestF , (defined as the smallest value of Fobj over all of the parallel runs) is smaller than the smallest 

Boltzmann energy E
B,Cold

.  As a reasonable estimate of the number of MC steps over which the change 

in the objective function has been evaluated we used a small multiple, N
min

 , of the maximum NEX, 

,Ex ColdN : 

    , ; termination criterionobj,Best obj,Best min Ex Cold obj,Best B,ColdF F current N N F current E     . (34) 

The small multiplicative factor, N
min

, used in this work is 5.  Again, this is a parameter on which the 

solution depends in a non-sensitive fashion.  The value 5 has been chosen as optimal from the results of a 

sensitivity study.  It was observed that (see below) whereas larger values of N
min

 do not improve 

significantly the minimum of the objective function reached they significantly increase the CPU 

requirements.  

The parallel tempering algorithm does also lend itself to easily applying parameter constraints. 

This can be, for example, easily accomplished by transforming the constrained parameter (which again is 

assumed here to be positive) to an unconstrained (still positive) parameter 

 through the following bilinear transformation 

.            (35) 
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In conclusion, the parameters that need to be set a-priori to use the proposed algorithm are only 4, as 

indicated in Table 2 below.  Furthermore, there are specific default values for all of those, as also 

indicated in the same table.  Note that the suggested default values are selected conservatively in order to 

provide the most robust behavior even at the expense of computational efficiency as robustness is the key 

issue addressed in the present work. 

 

Table 2. Default values of parallel tempering algorithm 

 

Moreover, as also seen in indicative data supplied in the next section below, the algorithm performance 

depends only weakly on the values of those parameters.  In contrast, all the other parameters on which the 

algorithm performance crucially depends upon are determined (as explained above) adaptively for each 

problem separately following a small number of simulation and MC runs.  A graphical summary of the 

proposed methodology is described in Figure 5. 

Figure 5.  Schematic of the proposed algorithm where AP  and BP  are given by Eqs. (20) 

      and (24), respectively. 

    

Algebraic Examples 

 To further validate the algorithm and demonstrate its utility we offer in the present section a 

series of test cases from literature.  We start with one- and two-dimensional algebraic equations examples 

that exhibit several local minima in their respective parameter space to demonstrate the robustness of the 

present approach in the presence of multiple local minima.  Then we demonstrate several algebraic test 

cases with constraints.  We then present three classic dynamic systems examples drawn from the chemical 

engineering literature. We conclude with a very nonlinear complex dynamic rheological example. When 

possible we compare our results from other methods from literature.  For consistency, in all cases we use 
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for the numerical parameters the default values indicated in Table 2, although, on a case by case basis, we 

also offer sensitivity results to the numerical parameters, initial guess and experimental noise.   

 

Unconstrained algebraic examples  

 The algebraic examples chosen are taken from the literature49,66 so that they involve functions in 

one- and two-dimensional parameter space that are highly variable with many secondary local minima.  

Those correspond to the following one- and two-dimensional functions  

     ,         (36) 

  , (37) 

which are shown in graphical form in Figures 6 and 7, respectively. These examples are used to 

demonstrate that the parallel tempering algorithm can distinguish between many local minimum locations 

and out of those successfully select the global minimum in a robust and relatively computationally 

efficient fashion. It was also chosen to demonstrate that traditional methods in MATLAB will struggle 

with this algebraic problem because to get the correct answer via a traditional method, a good guess will 

be required. The Chebfun, and Chebfun2 over-ride software49,66 was used below to overcome these 

limitations.  Typical results obtained with the two methods are compared in Tables 3 and 4 below.   

 

 

     

Figure 6. Local vs. global min. (1-D):         Figure 7. Local vs. global min. (2-D): 

Objective function (y) vs. parameter       Objective function (F) vs. parameter  

values (x) for the 1D algebraic system            values (x,y) for the 2D algebraic system 

described in Algebraic Examples section       described in Algebraic Examples section 
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Table 3. 1-D algebraic equation parallel tempering results 

*Comparison made with Toshiba, 16G SDRAM, Intel® Core™ i7-4700; 2.40GHz 

 

 

Table 4. 2-D algebraic equation parallel tempering results 

*Comparison made with Toshiba, 16G SDRAM, Intel® Core™ i7-4700; 2.40GHz 

 

Several things should be noted here. The first being that traditional MATLAB inbuilt 

functionality will fail here, unless given an initial guess close enough to the solution. The Chebfun, and 

Chebfun2 override software add-on can solve the minimization problem much quicker and 

computationally efficiently, as seen in Tables 3 and 4, but of course is limited to algebraic problems.  It 

should also be noted that for the simulannealbnd command with MATLAB (simulated annealing 

algorithm), it was tested 100 times for each of the two cases (the 1-dimensional and the 2-dimensional 

case).  The average and standard deviations of these runs are reported, as well as the “best” values (i.e., 

corresponding to the run that provided the closer to the actual solution answer).  The simulated annealing 

algorithm can do a better job than the more traditional local minimization routines in MATLAB but still 

behaves rather erratically without always leading to the global minimum, as can be evidenced from the 

large mean errors and standard deviations.  For the 2-dimensional case, the best out of 100 simulated 

annealing runs offered a solution that was not better than six significant figures, while the parallel 

tempering algorithm can capture at least 12 significant figures each time. The generality and additional 

complexity involved in the parallel tempering approach makes it substantially less efficient than the more 

streamlined Chebfun-based software for these simple algebraic problems. However, it is instructive to 

note that as the complexity of the problem increases (i.e., moving from the 1d to the 2d case) the CPU 

time ratio between the parallel tempering and the Chebfun-based approach drops from about 100 to about 
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15.  This provides evidence that the computational efficiency of the proposed algorithm may be 

reasonable for relatively complex minimization problems,   

 

Algebraic examples with constraints 

 

 The intent for the algebraic examples with constraints is to demonstrate that our parallel 

tempering implementation can easily incorporate them in two ways.  In the first we explicitly limit the 

selection of limit parameter values over a specific allowed range using a bilinear mapping shown in Eq. 

(35).  In the second approach, at each MC step we enforce the algebraic constraint inequalities iteratively 

and implicitly by applying a penalty to the calculation of the Fobj .  Neither of the two methods is better 

than the other.  For constraints of the form ig ( ) 0x , the objective function is modified as  

   = + max
n

obj obj i
i=1

F F a 0,g (x)  ,  (38) 

where n is the number of constraints, and   is calculated as follows: For the first iteration,    

                                                                

 
α =

max

obj
n

i
i=1

F

0, g (x)
  ,                                                          (39)             

while for any subsequent one, and as long as there exists at least one inequality that is not satisfied, 

2   so the value of  , grows as the algorithm runs, and the penalty gets greater and greater until all 

constraints are satisfied and  max
n

i
i=1

0, g (x)  =0 (this procedure, as well as the calculation of the 

parameter  , is of course not needed if from the very beginning all constraints are duly satisfied).  In this 

work both methods were used for each algebraic constraint problem attempted. 

The results shown below include the results for optimization of several problems from literature 

including Constrained Sasena Function, the Constained Branin Function, and the New Branin Function 

Page 26 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

27 
 

with parallel tempering, all with the Table 2 parallel tempering algorithm parameters.  We compare our 

results of all three with recently published results for the same constrained algebraic functions by 

Boukouvala and Ierapetritou18 . All results and comparisons are presented in Table 5.  Note the ability of 

the parallel tempering algorithm to estimate error bars on the parameters.  This is accomplished by 

running the code 15 times, and collecting the best results over all of the runs, followed by presenting the 

average, and using the standard deviation as an error bar estimate.  With the array of best parameter 

values one can also calculate the covariance matrix.  We note here that to accomplish this task one must 

randomize the initial guesses of each of the parameters to ensure a different and unbiased starting point 

(within the allowable parameter range of each parameter of course, and reasonable value which is chosen 

as same order of magnitude).  The goal is to show that our user-friendly, yet robust algorithm in which we 

use parallel tempering is competitive with the best optimization algorithms in literature. 

We start with brief description of the Constrained Sesena Function18,67: 

       

 

7
2

2 2
1 2

(-x )2 2
1 1 2

2 1 2

2 2
3 1 2

i

        min f(x) = -(x -1) - (x - 0.5)

                             s.t.

g (x) = (x -3) + (x + 2) 10 -12 0

g (x) =10x + x - 7 0

 g (x) = (x - 0.5) + (x - 0.5) - 0.2 0

                  0 x 1 i =1,2

									







 

 ,  (40) 

 

where, there is a function f(x) where x =[x1, x2], to be minimized, with the three constraints, g1, g2, and g3.  

Additionally, the values of x are found in the range [0 1].  To incorporate these constraints we use Eqs. 

(38)-(39), as well as the bilinear mapping to ensure that our values of x stay in the required range.  

Additional information about this function can be found in work by Boukouvala and Ierapetritou18 and 

Sasena et al.67.   Results and comparison are shown in Table 5. 
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 Our next functions to be optimized using parallel tempering are the constrained Branin and new 

Branin Functions shown here18: 

 

2 2
2 1 1 1

1 2 2

1

2

2

min f(x) = a(x - bx + cx - d) + h(1- e)cos(x ) + h

                                 s.t.

                     x (1- x ) - x 0

                         - 5 x 10

                          0 x 15

5.1 5a =1,b = ,c = ,d = 6π4π



 

 

,h =10,e =1 8π

 ,  (41) 

and 

       

 

2 2
1 2

2 2
2 1 1 1

1

2

2

min f(x) = -(x -10) - (x -15)

                              s.t.

a(x - bx + cx - d) + h(1- ff)cos(x ) -5 + h 0

                    - 5 x 10

                     0 x 15

5.1 5a =1,b = ,c = ,d = 6,h =10,ff =1 8ππ4π



 

 
 .       (42) 

  The functions shown above, Eq. (41) and Eq. (42), each have ranges for the parameters that must 

be obeyed and we again apply this in the code using a bilinear mapping68.in order to enforce the required 

constraints on the parameter values.  The additional constraints are also applied with Eqs. (38) -(39).  

Note that our code can obtain both sets of parameters that lead to the same global minimum for this 

problem. 

 Lastly we show for the sake of completion one more result that incorporates algebraic constraints.  

This is the classic benchmark problem minimization of weight of the spring, recently optimized by 

Kazemi et al.69.  For more details about the system we refer the reader to this recent publication69. Suffice 

to say here that there are 3 parameters, 4 constraints, and each of the parameters is further constrained 

with a specific allowable range of values.  To keep our parameters in the allowable parameter space we 
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once again use the bilinear mapping shown in Eq. (35), and for the algebraic constraints Eqs. (38) and 

(39).  For this demonstration problem we show our average parameter values, along with our best 

parameter values, shown in Table 5. 

 

Table 5: Comparison of Parallel Tempering results to the results of Boukouvala and Ierapetritou 

(2014)18 and Kazemi et al. (2011)69 for the indicated functions 

 

Dynamic model parameter estimation examples 

 The intent for the first three test cases is to demonstrate the entire process of the parallel 

tempering methodology, from running the Monte-Carlo dynamic model investigation runs to the meta-

data analysis of the results. In addition, by choosing classical examples from the Chemical Engineering 

Literature we validate our approach against previously reported ones.  We also use the opportunity of 

these well-defined and relatively simple cases to show the sensitivity of the results on several numerical 

parameters, thus validating the default values proposed in Table 2.  We will also demonstrate the 

robustness of the algorithm by demonstrating insensitivity of the results to the initial guess of parameter 

values in appropriate cases. 

 

Catalytic cracking of gas oil model problem: 1. Application 

 The first full demonstration problem is a classic example from chemical reaction engineering 

initially used by Tjoa and Biegler70, and more recently by Kristensen62,63---see also Nonlinear 

Programming Concepts, Algorithms and Applications to Chemical Processes by Biegler6 and work by 

Biegler and Damiano71. This example has been featured in several other publications in order to 

demonstrate parameter fitting algorithms6,70,71. The model reaction network refers to the (irreversible) 

catalytic cracking of gas oil from reactant (A) to gasoline (Q) and additional products (S):  

 

 

Page 29 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

30 
 

 

        (43) 

 

 

 

The corresponding set of governing differential equations expressed in terms of the dimensionless 

concentrations y
A
, y

Q
 and y

S
 are:  

                   ,          (44) 

     ,           (45) 

     .           (46) 

The data sets used for the parameter estimation, involving the time evolution of the dimensionless 

concentrations for species A and Q, are generated within the time interval  using the dynamic 

model, Eqs. (44) and (45), subject to the initial conditions  

       .           (47) 

For the parameter values  this is the test case mentioned in the publications 

referenced above. Therefore, this demonstration involves a system of two ordinary differential equations, 

J=2, zero algebraic equations, K=0, with two sets of accompanying data, L=2, and a total of three 

parameters to fit, N=3. Note that the third of the ODEs, Eq. (46) was not used in the simulation as the 

corresponding concentration was decoupled from the equations governing the others and it was also not 

present in the experimental data.   

S 

A Q 
k
1
 

k
2
 k

3
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Sample results from the application of the proposed parallel tempering algorithm are shown in 

Table 6 in comparison with typical results obtained with other methods from the literature.  It should also 

be noted that to run our algorithm it took 3.06 seconds, and 446 iterations.  The “experimental” data used 

and the fit achieved with the method’s obtained parameters are shown in Figure 8. 

 

Table 6. Optimized parameter values for catalytic cracking problem (Tjoa & Biegler, 1991)70 

 

Figure 8. Solution to the catalytic cracking problem for the parameter values  

               1 2 3k = 12, k = 8 and k = 2        

 

Catalytic cracking of gas oil model problem: 2. Sensitivity analysis 

 

 In addition, we took advantage of the simplicity of this problem to carry out some sensitivity 

analyses of the results on different numerical parameters.  In Figures 9a,b we show the dependence of 

both the best value for the objective function, F
obj ,best

 , and the CPU times on the number of parallel runs, 

N
RUN

 , used and on the ratio of E
B,Hot

E
B,Cold

, respectively, all the other parameters remaining constant 

to their recommended default values as shown in Table 5.  Note that the CPU times reported are for the 

core of the parallel tempering (i.e. without accounting for the MC initialization---which is typically much 

less) and for the code running on a single CPU---one can expect that time to decrease roughly in 

proportion of the CPU units running in parallel (up to the number of the parallel tracks used) if the code is 

implemented to run in parallel given the good parallelization characteristics as also documented in our 

previous work56.  
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Figure 9. Sensitivity of F
obj ,best

 and CPU time on a) the number of B,iE  levels, RUNN  and b)  

                the B,Hot

B,Cold

E
E

 ratio for the catalytic cracking problem. 

 

Similarly,  Figures  10a,b show the sensitivity of the same quantities ( F
obj ,best

 and CPU time ) to the other 

two remaining numerical parameters, Error
Max

 and N
min

.   

 

 

Figure 10.  Sensitivity of obj,bestF  and CPU time on a) the maximum Error, MaxError , and b)  

          the factor minN  for the catalytic cracking problem. 

 

 

Figures 9 and 10 clearly show that while all four parameters impact the efficiency the dependence 

on their exact values is rather weak. In particular, the solution accuracy, as judged from the value of 

F
obj ,best

, is influenced very little from changes with respect to either N
RUN

 or N
min

(suffice that a the 

numerical values chosen are greater than a critical minimum value) within the investigated regimes of 

values. Even in case of the other two parameters, to see an impairment of the solution accuracy one has to 

change the magnitude of E
B,Hot

E
B,Cold

 below 1000 or of the Error
Max

 above 0.01, i.e., an order of 

magnitude or more from their default values.  Similarly, we also see that although the CPU times do show 

higher variations than the objective function there is still a significant region of parameter values within 

which the CPU time remains reasonably small within a factor of 3 from its minimum, 5, calculated under 

the constraint that the F
obj ,best

is close to its own minimum value, 0.00312.  Considering that this 

application is a rather simple one, the above observations justify the selection of the recommended default 
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values as those are well within the optimum operating region (minimum F
obj ,best

).  The penalty factor of 3 

more CPU time than the absolute minimum required for this problem is considered legitimate in order to 

allow for the operating point to be far away from the boundaries of the optimum region. 

 Finally, in order to further get insight as to how the algorithm operates, we provide in Figure 11 a 

graphic of the evolution of F
obj

 within the 15 parallel MC runs as a function of the iteration (MC step) 

number as obtained from a sample run.  From this figure one can appreciate the rapid convergence of the 

parallel tempering as well as the power of exploring widely the allowed parameter space, as indicated by 

the peaks of high values for the objective function that continue to appear throughout the run.    

 

Figure 11. The dependence of F
obj

 within the 15 parallel MC runs on the iteration (MC 

step) number for the catalytic cracking problem.  The legend values on the right show the 

normalized  Boltzmann Energy levels used in the parallel tempering. 

 

Reversible chemical reactions network 

 The second dynamic system is based on a reversible chemical reactions network  

,             (48) 

 

which has been previously modeled70,71 and it was also used to benchmark parameter fitting 

algorithms6,11,70. To generate the appropriate value of h
test

 and 
test

 in accordance with Eqs. (33) and (32) 

several test runs were made of the ODE solver.  This was also performed to explore the sensitivity of the 

both the ODE integration error and the Composite Simpson’s Rule integration in the F
OBJ

 formulation.  

For this test problem it was thus determined that the Simpson’s Rule integration was more sensitive and 

this was used as a basis to pick the h
crit

 , or the largest h that the algorithm could tolerate while still 
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maintaining our Error
Max

 criteria.  In addition to this we were able to extract from this numerical 

experiment the approximate value for h
test

 and 
test

.  This system represents liquid reactant A, reacting to 

form liquid B, and finally reacting to form product C in a batch reactor. The corresponding set of 

differential equations governing the time evolution of the dimensionless concentrations of species A, B, 

and C is : 

        ,                     (49) 

 ,             (50) 

         .                      (51) 

 

The three data sets used for the parameter estimation, one for each one of the three species 

concentrations, are generated within the time interval  using the dynamic model, Eqs. (49)-(51), 

subject to the initial conditions:  

.           (52) 

The parameter values correspond to the test case cited in the 

publications referenced above. Therefore, this demonstration involves a system of three ordinary 

differential equations, J=3, zero algebraic equations, K=0, with three sets of dynamic data, L=3, and a 

total of four parameters, N=4, to fit. Note that the third of the ODEs, Eq. (51), can be replaced by an 

algebraic equation taking advantage of the overall mass balance, which for the case considered here can 

be simply expressed as 

          .                      (53) 
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Alternatively, (as it was done here), the constraint condition represented by Eq. (53) can be used 

to check the accuracy of the ODE integrators. Corresponding to the value used for the 

numerical integrations, for the problem at hand, this condition was found to be satisfied to within a 

maximum of 8.23 10-5 error.   This value was calculated using the Composite Simpson’s Rule, and 

verified by taking the infinity norm in MATLAB of the difference between the ODE solution for y
C

 over 

the time period of integration, and the y
C

 concentrations calculated using mass balance. Also, consistent 

to the analysis offered in the description of the objective function in the Problem Formulation section, in 

this case as the infinite time concentration values do not necessarily go to zero, their steady state values 

needed to be subtracted from the transient results and used independently as elements of the objective 

function. These equilibrium values were solved for using linear algebra, with MATLAB a priori so as to 

use the values in the F
OBJ

.  The , standard format was utilized, using the known solution vector 

k
1
,k

2
,k

3
, and k

4
, as well as the fact that at equilibrium Eq. (49),(50), and (51) can be set to zero.  The 

integrations within the objective function, F
OBJ

 were calculated using the fourth order composite 

Simpson’s rule so it is of the same accuracy as the ODE integration method used here.  For this example 

we used an explicit, linear-multi-step integration scheme, the 4th order Adams-Bashforth-Moulton 

method65, with Runge-Kutta Dormand-Prince method to start (5th order part)57,64.  A typical solution, 

shown graphically in Figure 12, was found in 91.7 seconds, and it compares favorably to the solutions 

from literature70 as shown in Table 7.   

 

Figure 12. Time evolution for the three species concentration as obtained from the  

      Solution for the reversible chemical reactions problem for the parameter 

      values 1 2 3 4k = 4, k = 2, k = 40 and k = 20 . 

 

Table 7.  Optimized parameter values for the reversible chemical reactions problem 
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First order irreversible chemical reaction network: 1. Application 

 The next demonstration problem has also been previously modeled and is used to demonstrate 

parameter fitting algorithms, such as featured in the work of Biegler6, Tjoa and Biegler70, Biegler and 

Damiano71, and Cizniar et al.72. The third dynamic system is based on a two-step, irreversible isothermal 

reactions network that model the irreversible transformation of a liquid reactant (A) initially to a liquid 

product (B) and then finally to another liquid product (C): 

 

 .           (54) 

 

This reaction is carried out in a batch reactor, and is modeled by the following equations expressed in 

terms of the dimensionless concentrations y
A
, y

B
 and y

C
6,70-72: 

 

      ,           (55) 

   ,           (56) 

       .           (57) 

 

The three data sets used for the parameter estimation, involving the time evolution of the dimensionless 

concentrations for all species, are generated within the time interval  using the dynamic model, 

Eqs. (55)-(57) and subject to the initial conditions:  
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 .          (58) 

 

The parameter values correspond to the test case mentioned in the cited referenced 

above.  It should be noted that there are three sets of data to fit, L=3, three differential equations, J=3, 

zero algebraic equations, K=0, and two parameters to optimize, N=2. For this solution a 5th order explicit 

Runge-Kutta technique was used to start the problem with transition to the Adams – Bashforth – Moulton 

4th order linear multistep method57,64,65. Several test runs were made of the ODE solver to generate the 

appropriate value of h
test

 and 
test

 in accordance with Eq. (33). This was also performed to explore the 

sensitivity of the both the ODE integration error and the Composite Simpson’s Rule integration in the 

F
OBJ

 formulation.  For this test problem it was thus determined that the Simpson’s Rule integration was 

more sensitive and this was used as a basis to pick the h
crit

 , or the largest h that the algorithm could 

tolerate while still maintaining our Error
Max

 criteria.  Note that, as was the case in the previous 

problems, the third of the ODEs, Eq.(57), can be replaced by an algebraic equation taking advantage of 

the overall mass balance, which for the case considered here can be simply expressed by Eq. (53), as 

before.  Alternatively, (as it was done here), the constraint condition represented by Eq. (53) can be used 

to check the accuracy of the ODE integrators. Even with when the value was used for 

the numerical integrations, for the problem at hand, this condition was found to be satisfied to within 

machine accuracy using the Composite Simpson’s Rule, and verified with the infinity norm in MATLAB.  

The integrations within the objective function, F
OBJ

 were calculated using the fourth order composite 

Simpson’s rule so it is of the same accuracy as the ODE integration method used here.  A typical solution 

was found in 5.8 seconds, and it compares favorably to the solution from literature 70 as shown in Table 8.   

Table 8. Irreversible chemical reaction parameter comparison 
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First order irreversible chemical reaction network: 2. Sensitivity to initial guess 

 

Using this dynamic model we have investigated the resilience of the proposed method to poor initial 

guesses.  The results of this investigation are represented in Figure 13, which shows the convergence 

behavior for the objective function as obtained from four different initial guesses, including the initial 

guess from Tjoa and Biegler70. In addition, in each case we have used three independent stochastic runs to 

show the influence of the stochastic nature of the method.    

 

Figure 13. Plot of iterations vs. error of different initial guess values for irreversible  

      chemical reaction 

 

Table 9 presents the final parameter values of k1 and k2 obtained after each one of the parallel tempering 

algorithm runs, with mean and standard deviation values.  As seen from the results both Figure 13 and 

Table 9, the method is quite resilient, always leading to the same solution with small fluctuations in both 

the accuracy and the CPU time required.  

 

Table 9. Best parameter values after three random trials with different initial guesses of k1,0 and k2,0 

 

Fitting Complex Dynamic Nonlinear Rheological Example 

Fitting LAOS data: 1. Application 

A crucial test for our dynamic parameter estimation approach is represented by the final test 

problem.  This involves the dynamic mechanical behavior of a highly nonlinear thixotropic colloidal 

system.  For the dynamic parameter evaluation study a structural, albeit phenomenological, rheological 

model is considered, the de Souza Mendes model50. The model equations are flexible enough for 

predicting both steady state and large amplitude oscillatory shear conditions. However the fitting of those 
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parameters that only affect the dynamic behavior, as probed here from the model predictions to Large 

Amplitude Oscillatory Shear (LAOS).  This nonlinear shear oscillation probes critically the gradual 

transition observed in these highly concentrated colloidal systems, from elastic to viscous, as the elastic 

strain saturates and the plastic strain rate increases.  In the phenomenological model used here to describe 

such a behavior the material properties, such the elastic modulus, G, and the viscosity, η, are all functions 

of the structure parameter. As this model allows both the elastic modulus and the viscosity to vary with 

the structure parameter, one can accurately predict cases of more structure as more elastic and less 

viscous, and vice versa. This model also involves comparison to the equilibrium value of the structure 

parameter, based on current stress or shear rate, to calculate the new value. It uses the difference between 

current conditions and equilibrium conditions as the driving force to calculate the next value of structure 

parameter, modulus, viscosity, etc.50-54   

Briefly, the mathematical description of the de Souza Mendes model has as follows.   The heart 

of the model is a viscoelastic differential equation that relates implicitly the shear stress,  , to the shear 

rate,   and their time derivatives (denoted by double dots), 

 

  .              (59) 

 

The key difference from any other (simple) viscoelastic model is that the material parameters appearing in 

this equation are not constant but vary in time following the development of the structure within the 

material.  The material structure is modeled by a scalar variable,  , for which a separate relaxation 

equation is proposed: 

 

.         (60) 
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The parameters entering Eqs. (59) and (60) satisfy the following algebraic equations 

 

       ,                       (61) 

,                      (62) 

                 ,        (63) 

 ,                      (64) 

     ,                       (65) 

     eq
eq = ln






 
 
 

,                       (66) 

       ,                       (67) 

 

and 

       = 
eq

( 
eq

) 
eq

.                       (68) 

 

The above set of equations contains a total of ten parameters, of which seven are to be separately fit based 

on the steady shear and small amplitude oscillatory shear (SAOS) material behavior (not considered in the 

present study).  A list of values for the parameters used here are presented in Table 1050. 

 

 

Page 40 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

41 
 

Table 10. Complex rheological model parameters fit to steady state and SAOS data 

 

The remaining parameters that are to be fit against model LAOS data are the power law index, n, the 

power law viscosity prefactor K and the relaxation time t
eq

.  To test the present code in evaluating those 

parameters, three sets of LAOS data have been prepared for a fixed set of model parameters and three sets 

of stress amplitudes, aτ = 5,10, 20 Pa  that control a time=periodic material behavior assuming a 

sinusoidal stress  

       

    sin( )  a t .           (69) 

 

The dynamic system consists of two ordinary differential equations, Eqs. (59) and(60),  J=2, and 

six algebraic equations, Eqs. (63)-(68), K=6. Note that some of those equations are highly nonlinear 

requiring an iterative approach for their solution.  We used three sets of dynamic periodic data, L=3, 

generated as mentioned above, for evaluating three of the parameters, N=3. A fully implicit 5th order 

Runge-Kutta method64 (Radau 1a), was used due to the stiffness of the differential algebraic system. 

Typical results are shown in Table 11 and Figure 14. The fully implicit 5th order Runge-Kutta (Radau 1a) 

DAE/ ODE solver has no way to check a nth order solution vs. an (n+1)th order solution during the ODE 

integration, at each time step.  Therefore, error was estimated by integrating the trapezoid rule between 

the model prediction and the solution for each of the sets of dynamic data and comparing values using 

successive different values of h. The composite trapezoid rule was used in this problem for the calculation 

of F
OBJ

 due to the periodic nature of the dynamic data.   

 

Table 11. Complex rheological model parameters fit to transient (LAOS) data 

 

Figure 14. Complex dynamic rheological parameter oscillatory behavior shown in the 
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        form of Lissajous-Bowditch plots for two different stress amplitudes as 

      shown in the figures: a) aτ = 5 Pa  ; b) aτ = 10 Pa , 

 

Fitting LAOS data: 2. Sensitivity analysis 

As far as the algorithm is concerned, we have explored the robustness of this model in great depth 

with the logic that success with the most challenging and non-linear system would provide clear evidence 

of ability to successfully be independent of bad guesses. To conduct this test thoroughly, a series of 

increasing perturbations to the initial guesses were made to demonstrate the correct parameters +/-<1% 

could still be found by the algorithm. The perturbations of the bad guess were conducted by using 

increasing powers of ten. The results are shown in Figure 15. One can see that as the magnitude of the 

perturbation is increased the solution will still converge to the correct answer.  Interestingly, and this is an 

additional evidence towards the robustness of the method, there does not appear to be a systematic 

correlation of the initial guess to the use of more iterations, and therefore more CPU time.   

            

Figure 15. Sensitivity of the obj,bestF  and CPU time on the magnitude of perturbation 

applied to the initial guess  

 

In addition for this parameter fitting demonstration it should be noted to the user that when 

performing the Monte Carlo runs to find the proper h values, one should note that for certain stiff DAE/ 

ODE systems there may exist a critical value of h whereby all values greater than h
crit

 will give poor 

solutions, none at all, or register as “NaN”.  For this particular DAE system this was the case and a h
crit

 

value of 0.1 was discovered.  During the running of the parameter fitting there was a simple loop that 

overwrites this value when h values are larger than 0.1.  In addition it should be mentioned that the initial 

runs to evaluate adaptively the best operating parameters, like the time step h in the numerical 

integrations and the Monte Carlo runs needed to determine Boltzmann Energy levels, as not too time 
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consuming but requiring the user interaction, were performed best in the interacting environment of 

MATLAB.  In contrast, the more time-consuming calculations involving the parameter fitting through the 

parallel tempering method are more efficiently performed using a compiled language like Fortran90.  This 

was due to the fact that Fortran90 is approximately 25 times faster than MATLAB.  

Additionally an investigation into how the algorithm can fit parameters successfully to data sets 

with experimental noise has been conducted with the results shown in Figure 16. The noise is 

superimposed onto the experimental data, which in this case means that the empirical functions used to 

recreate the data were modified with a varying degree of imposed noise. The magnitude of the noise is 

varied in sequence by increasing orders of ten, while the number of iterations was purposefully kept the 

same between all cases. The results shown in Figure 16 refer to F
OBJ
*  , evaluated in Eq. (70), that 

represents the average, normalized deviation from the actual values of the parameters, where the deviation 

is caused by the noise in the ‘data’.  This demonstrates that the parallel tempering algorithm works 

reasonably well even when the data to be fit has noise provided, of course, the noise levels are not 

excessive. 

    

Figure 16. Sensitivity of objF  to the magnitude of the noise applied to empirical data 

  .        (70) 

Finally, in Figure 17 F
OBJ

, and the value calculated for the quantity used in developing the 

stopping criterion, , is plotted versus CPU time.  This figure shows that 

the stoppage criterion ,OBJ min B ColdF N E   for any small value of Nmin (5 was used here) works well in 

capturing the best value for FOBJ.  Continuing the calculations beyond the conditions satisfying the 

stopping criterion only results in increasing the CPU time without improving the results.  The results 

shown justify the choice of the stoppage criterion for our algorithm. 
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Figure 17. Evolution of F
OBJ

and stoppage criteria with CPU time during the parameter fit  

      of the complex dynamic rheological data. 

 

Conclusions 

 

 In this manuscript we demonstrate an approach to parameter fitting in dynamic systems that is 

based on a parallel tempering algorithm and that allows for an optimization that goes beyond local 

optimization and has the potential to avoid local trapping and reach a global optimum provided sufficient 

number of parallel runs are use.  The objective function that is minimized is constructed using an L2 norm 

average of the differences between the model predictions and dynamic as we all as static data.   

Furthermore, the approach is fully adaptive with few (only 4) adjustable parameters, for which default 

values are suggested.  The solution is shown to be independent of those parameter values as well as on the 

initial guess for a number of test cases. All the other necessary parameters are determined adaptively 

using a few Monte-Carlo runs at the outset (such as, for example, for the N
Ex

 data). The algorithm’s 

capabilities have been demonstrated on two algebraic equations with several known minima, as well as on 

several dynamic systems from chemical engineering and one from complex rheology.  

 During the course of testing the algorithm on many cases and using several dynamic systems 

from literature there were several critical lessons learned. The first is that although a good initial guess 

may give faster results, it is not necessary for convergence and even the CPU time penalty, starting from a 

poor guess, is fairly small. What is important is the robustness of the approach, which was always found 

to provide a good parameter estimate, and the lack of any need for fine-tuning. Second, as a side benefit, 

one can use the proposed approach to evaluate the relative sensitivity of the objective function to each 

model parameter as well as for possible correlations between the different parameters, as demonstrated by 
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Armstrong et al.73. Regarding the overall computational load, which of course increases substantially with 

the problem complexity, we note that the underlining algorithm is really only needed to provide an 

approximate answer for the global minimum by identifying its locality.  Once this is achieved, any direct 

local optimization method can be used to gain as much accuracy as desired. As with all stochastic 

methods, and as it is applied to engineering problems not necessarily well defined, no a-priori guarantees 

can ever exist for the performance of the method to find quickly the global optimum.  Finally, we 

emphasize that the parallel tempering process is inherently parallelizable, which may be necessary for 

much more complex problem than those explored here. 
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Notation  

A,B,C,Q,S  reactant; product 

Ai      relative parameter sensitivity 

an, bn      lower, upper bounds of parameter values 

al      Runge Kutta time steps 

blk        Runge Kutta weights 

ci Runge Kutta weights on i+1 soln.; empirical eqn. coefficients 

di      ESDIRK34 error weights 
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EB        Boltzmann energy vector 

EB,Cold      Boltzmann Energy of the cold (lowest) level 

EB,Hot        Boltzmann energy of the hot (highest) level 

EBi      Boltzmann Energy of ith level 

Fobj      objective function 

G      elastic modulus 

h      time step 

i      iteration 

J      number of first order ODES 

K      number of algebraic equations 

ki; pi               reaction coefficients 

kB      Boltzmann constant 

L      number of cont. sets of dynamic data 

M      number of sets of static data 

N      number of internal model parameters 

NEx      number of steps between exchange trials 

Nm      number of discrete data of m-th static set 

Nrun         number of parallel MC sequences 

Nsteps         number of steps during the time int. 

ci      empirical equation coefficient 

pi      parameter value at ith iteration 

P      number of external control parameters 

Paccept        probability of acceptance 

q      vector of N internal model parameters 

Rk      autocorrelation function 

wi     weights used in objective function 

x     vector of J initial conditions 

y      vector of J + K dynamic variables 
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yA, yB, yC  reactant/ product conc. 

yQ, yS          reactant/ product conc. 

z    vector of P external control parameters  

αi,βi    lower, upper bounds of i-th time span 

γ               ESDIRK34 weight 

     shear rate 

     derivative of shear rate 

ε    error  

η    viscosity 

θ    time scale; vector of parameters 

λ    structure parameter 

λl    char. relaxation time 

μi    average of parameter at ith EB level 

σN    standard deviation 


n

      empirical equation time constants 

τ	 			vector	of	measured	quant.,	shear	stress     

  

Literature Cited 

 

1. Marquardt DW.  An algorithm for Least-squares estimation of nonlinear parameters.  J SIAM. 1963; 11: 

431-441. 

2. Press WS, Teukolsky ST, Vetterling WT,  Flannery BP. Numerical Recipes in Fortran. Second Edition. 

Cambridge: Cambridge University Press, 1992. 

3. Yuceer M, Atasoy I, Berber R.  A software for parameter estimation in dynamic models.  Braz J Chem 

Eng. 2008; 25: 813-821. 

4. Kirkpatrick S, Gelatt CD Jr, Vecchi MP.  Optimization by simulated annealing.  Science. 1983; 220: 671-

680.  

Page 47 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

48 
 

5. Corana A, Marchesi M, Martini C, Ridella S. Minimizing multimodal functions of continuous variables 

with the “simulated annealing” algorithm.  ACM Trans Math Soft. 1987; 13: 262-280. 

6. Biegler L.  Nonlinear Programming Concepts, Algorithms, and Applications to Chemical Processes.       

Philadelphia:  SIAM, 2010. 

7. Spall JC. Introduction to Stochastic Search Optimization. Hoboken: John Wiley & Sons, 2003. 

8. Seber GA, Wild CJ. Nonlinear Regression. New York:  John Wiley & Sons, 1989. 

9. MATLAB Help/ Documentation, version 2013. Version: 8.1.0.604 (R2013a), License: Student.   

MathWorks, Natick, Massachusetts, U.S.A. 

10. Wolfram Research, Mathematica (2008). Wolfram Mathematica Tutorial Collection Mathematics 

and Algorithms. Worlfam Research Inc., 1‐365. http://www. reference.wolfram.com 

11. Floudas CA. Deterministic Global Optimization: Theory, Methods and Applications. Dordrecht, The  

Netherlands: Kluwer Academic Publishers, 2000.  

12. Horst R, Tuy H. Global Optimization Deterministic Approaches.  Berlin: Springer 1996. 

13. Floudas C. Research challenges, opportunities and synergism in systems engineering and computational 

biology. AIChE J. 2005; 51: 1872-1884. 

14. Floudas CA, Gounaris CE.  A review of recent advances in global optimization.  J Glob Optim. 2009; 45: 

3-38. 

15. Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive blackbox functions.  J Glob 

Optim. 1998; 13: 455–492. 

16. Jones DR. A taxonomy of global optimization methods based on response surfaces. J Glob Optim. 2001; 

21: 345–383. 

17. Kleijnen JPC. Kriging metamodeling in simulation: A review. Eur J Operat Res. 2009; 192: 707-716. 

18. Boukouvala F, Ierapetritou MG.  Derivative –free optimization for expensive constrained problems using a 

novel expected improvement objective fucntion.  AIChE J. 2014; 60: 2462-2474. 

19. Jacobson S, Patricksson M, Rudholm J, Wojciechowski A. A method for simulation based optimization 

using radial basis functions. Optim Eng. 2010; 11: 501-532. 

20. Balsa-Canto E, Banga JR. AMIGO, a toolbox for advanced model identification in systems biology using 

global optimization. Bioinformatics. 2011; 27: 2311-2313. 

Page 48 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

49 
 

21. Villaverde AF, Henriques D, Smallbone K, Bongard S, Schmid J, Cicin-Sain D, Crombach A, Saez-

Rodriguez J, Mauch K, Balsa-Canto E, Mendres P, Jaeger J, Banga JR. BioPreDyn-bench: a suite of 

benchmark problems for dynamic modelling in systems biology.  BMC Systems Biology. 2015; 9:8 (15 pp). 

22. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E. Equation of state calculations by fast 

computing machines. J Chem Phys. 1953; 21: 1087-1090. 

23. Onbaşoğlu E, Özdamar L. Parallel simulated annealing algorithms in global optimization. J Glob Optim. 

2001; 19: 27-51. 

24. Xavier-de-Souza S, Suykens JAK, Vanderwalle J, Bollé D. Coupled simulated annealing. IEEE Trans 

Systems Man Cybernetics---Part B : Cybernetics. 2010; 40: 320-335. 

25. Meybodi MK, Shokrollahi A, Safari H, Lee M, Bahadori A. A computational intelligence scheme for 

prediction of interfacial tension between pure hydrocarbons and water. Chem Eng Res Des. 2015; 95: 79-

92. 

26. Sahimi M, Hamzehpour H. Efficient computational strategies for solving global optimization problems. 

Comp Sci & Eng. 2010; 12(4): 74-82. 

27. Floudas CA,  Esposito WR. Optimization for the Parameter Estimation of Differential Algebraic Systems. 

Ind Eng Chem Res. 2000; 39: 1291 - 1310. 

28. Clerc M, Kennedy J. The particle swarm---explosion, stability, and convergence in a multidimensional 

complex space.  IEEE Trans Evol Comp. 2002; 6(1): 58-73. 

29. Calvo F. Non-genetic global optimization methods in molecular science:  An overview. Comp Mater Sci. 

2009; 45: 8-15. 

30. Li H, Qin SJ, Tsotsis TT, Sahimi M. Computer simulation of gas generation and transport in landfills:  

VI—Dynamic updating of the model using the ensemble Kalman filter. Chem Eng Sci. 2012; 74: 69-78. 

31. Angira R. A Comparative Study of Differential Evolution Algorithms for Estimation of KineticParameters.  

Adv Mod Optim. 2012; 14: 135 – 145. 

32. Geem ZW, Kim JH, Loganathan GV.  A new heuristic optimization algorithm:  harmony search.  

Simulation. 2001; 76: 60-68. 

33. Mahdavi M, Fesanghary M,  Damingir E. An improved harmony search algorithm for solving optimization 

problems.  Appl Math Comp. 2007; 188: 1567-1579. 

Page 49 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

50 
 

34. Swendsen RH, Wang JS. Replica Monte Carlo simulation of spin-glasses. Phys Rev Lett. 1986; 57: 2607 – 

2609. 

35. Bittner E, Nussbaumer A, Janke W. Make life simple: Unleash the full power of the parallel tempering 

algorithm.  Phys. Rev. Lett. 2008; 101: 130603 (4 pp). 

36. Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 

1999; 314: 141-151.  

37. Schug A, Herges T, Verma A, Wenzel W. Investigation of the parallel tempering method for protein 

folding. Phys. Cond. Matter, special issue: Structure and Function of Biomolecules. 2005; 17: 1641-1650. 

38. Earl DJ,  Deem MW. Parallel Tempering: Theory, applications and new perspectives. Phys Chem. 2005; 7: 

3910-3916. 

39. Gront D, Kolinski A. Efficient scheme for optimization of parallel tempering Monte Carlo method. J Phys: 

Condensed Matter. 2007; 19: 036225 (9pp). 

40. Theodorou DN. Progress and outlook in Monte Carlo simulations.  Ind & Eng Chem Res. 2010; 49(7): 

3047-3058. 

41. Guidetti M, Rolando V, Tripiccione R. Efficient assignment of the temperature set for parallel tempering. J 

Comp Phys. 2012; 231: 1524-1532. 

42. Habeck M, Nilges M, Rieping W. Replica-exchange Monte Carlo scheme for Bayesian data analysis.  Phys 

Rev Lett. 2005; 94(1): 018105 (4 pp). 

43. Wang C, Hyman JD, Percus A, Caflisch R.  Parallel tempering for the traveling salesman problem. Int J 

Mod Phys C. 2009; 20(4): 539-556. 

44. Ochoa S, Wozny G, Repke J-U. A new algorithm for global optimization:  Molecular-inspired parallel 

tempering.  Comp & Chem Eng. 2010; 34: 2072-2084. 

45. Sambridge M. A parallel tempering algorithm for probabilistic sampling and multilodal optimization. 

Geophys J Int. 2014; 196: 357-374. 

46. Nallasivam U, Shah VH, Shenvi AA. (2012). Global Optimization of Multicomponent Distillation  

Configuration: 1. Need for a Reliable Global Optimization Algorithm.  AIChE J.  2012; 59: 971- 981. 

47. Amar, JG. The Monte Carlo Method in Science and Engineering. Comp Sci & Eng. 2006; 8(2): 9 - 19. 

48. Renotte CA, Wouwer AV. Stochastic Approximation Techniques Applied to Parameter Estimation  

Page 50 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

51 
 

in a Biological Model. Institution of Electrical Engineering, Computer Science and American Institute of 

Physics. 2003; 261 - 263. 

49. Battles Z, Trefethen L. An Extension of MATLAB to Continuous Functions and Operators. SIAM J Sci 

Comp.  2005; 25: 1743 - 1770. 

50. De Souza Mendes P, Thompson R. A unified approach to model elasto-viscoplastic thixotropic yield-stress 

materials and apparent-yield-stress fluids. Rheologica Acta. 2013; 52: 673-694. 

51. Rogers S, Lettinga P. A sequence of physical processes determined and quantified on LAOS: An 

instantaneous local 2D/3D approach. J Rheol. 2012; 56: 1129-1151. 

52. Radhakrishnan R, Underhill P. (2014) Oscillatory Shear Rheology of Dilute Solutions of Flexible Polymers 

Interacting with Oppositely Charged Particles. AIChE J. 2014; 60: 1365 -1370. 

53. Deshpande AP, Krishnan M, Sunil-Kumar PB. Oscillatory shear rheology for probing nonlinear 

viscoelasticity of complex fluids: Large amplitude oscillatory shear (LAOS) in Rheology of Complex 

Fluids. New York: Springer-Verlag, 2010. 

54. Macosko CW. Rheology Principles, Measurements, and Applications. New York, NY: Wiley VCH, 1994. 

55. Mandel J.  The statistical analysis of experimental data.  New York, NY: Dover Publications, 1984. 

56. Mukherjee J, Beris AN.  Qualitative Lattice Simulations of the Dense Amorphous Phase in Semicrystalline   

Polymers: Size and Energy.  arXiv:0805.0382, 2004. 

57. Dormand JR, Prince PJ. A Family of Embedded Runge Kutta Formulae. J Comp Appl Math. 1980; 6: 19-

26. 

58. Feagin TA. Tenth-Order Runge Kutta Method with Error Estimate. Proceedings of the IAENG Conf. on 

Scientific Computing. 2006.   

59. Feagin TA. Higher Order Explicit Runge-Kutta Methods Using m-Symmetry. Neural. Parallel & Scientific 

Computations. 2012; 20: 437-458. 

60. Fehlberg, E. Classical Fifth, Sixth and Seventh Order Runge Kutta formulas with Step Size Control.  

NASA. 1968; 1-82. 

61. Gear B. The Simultaneous Numerical Solution of Differential Algebraic Equations. SLAC-PUB-723. IEEE 

Trans. on Circuit Theory. 1970; 1-21. 

Page 51 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

52 
 

62. Kristensen MR. Parameter Estimation in Nonlinear Dynamical Systems. Masters, Technical University of 

Denmark. [Thesis] 2004. 

63. Kristensen MR, Jorgensen JB, Thomsen PG, Michelsen ML, Jorgensen SB. (2005)  Sensitivity Analysis in 

Index-1 Differential Algebraic Equations by ESDIRK Methods. IFAC. 2005; 6: 1-9. 

64. Butcher JC. Numerical Methods for Differential Equations. Great Britain: John Wiley and Son, 2008. 

65. Mathews JH, Fink KD. Numerical Methods Using MATLAB. Upper Sadle River, NJ: Pearson Prentice Hall, 

2004. 

66. Townsend A, Trefethen L. (2013). An Extension of Chebfun to Two Dimensions. SIAM J Sci Comp. 2013; 

35: 95–C518. 

67. Sasena MJ, Papalambros P, Goovaerts P. Exploration of Metamodeling Sampling Criteria for Constrained 

Global Optimization.  Eng. Opt. 2001; 34: 263-278. 

68. Bronshtein IN and Semendyayev KA.  Handbook of Mathematics. Third Edition. New York: Van Nostrand 

Reinhold, 1985.  

69. Kazemi M, Wong GC, Rahnamayan S, Gupta K. Metamodel-based optimization for problems with 

expensive objective and constraint functions.  J Mech Design. 2011; 133: 1-7.  

70. Tjoa I, Biegler L. Simultaneous Solution and Optimization Strategies for Parameter Estimation of 

Differential-Algebraic Equation Systems. Ind Eng Chem Res. 1991; 30: 376-385. 

71. Biegler L, Damiano JJ. Nonlinear Parameter Estimation: a Case Study.  AIChE Journal. 1986; 32: 2-54. 

72. Cizniar M, Podmajersky M, Hirmajer T, Fikar M, Latifi AM. Global optimization for parameter estimation 

of differential-algebraic systems. Chemical Papers. 2009; 63:, 274 – 283.  

73. Armstrong MJ, Beris AN, Rogers, SA, Wagner NJ. Dynamic Shear Rheology of a Thixotropic Suspension: 

Comparison of Improved Structure-Based Models with Large Amplitude Oscillatory Shear Experiments. J. 

Rheology. 2016; 60(3): 433-450. 

 
 
 

Page 52 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

  

 

 

Figure 1. Schematic of a typical simulated annealing cooling schedule; here “Time” is proportional to MC 
steps.  

 

81x60mm (300 x 300 DPI)  

 

 

Page 53 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

  

 

 

Figure 2. Plot of pdfs for the state quantity p=k1 reaction rate constant based on normal probability density 
distribution fits using statistics data (  ) drawn from Catalytic Cracking of Gas example 6 as shown in Table 
1.  The Boltzmann energy levels corresponding to the pdf curves shown are indicated on the right of the 

figure.  
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Figure 3. Autocorrelation function for a) EB=1 and b) EB=10-5 (*red arrow indicates ).  
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Figure 4. Parallel tempering graphic depiction. Arrows depict the flow of  information between parallel MC 
runs whereas the color indicates      qualitatively the Boltzmann energy level magnitude at which each run is 

being carried out, red being higher, i.e. “hotter” and blue lower i.e. “colder.”  
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Figure 5.  Schematic of the proposed algorithm where PA  and  PB are given by Eqs. (20) and (24), 
respectively.  
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Figure 6. Local vs. global min. (1-D):  Objective function (y) vs. parameter values (x) for the 1D algebraic 
system described in Algebraic Examples section  
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Figure 7. Local vs. global min. (2-D): Objective function (F) vs. parameter values (x,y) for the 2D algebraic 
system described in Algebraic Examples section  
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Figure 8. Solution to the catalytic cracking problem for the parameter values k1=12, k2=8 and k3=2  
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Figure 9. Sensitivity of Fobj,best and CPU time on a) the number of EB,i levels, NRUN  
81x60mm (300 x 300 DPI)  
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Figure 9. Sensitivity of Fobj,best and CPU time on b) the EB,Hot/EB,Cold ratio for the catalytic cracking problem.  
81x60mm (300 x 300 DPI)  
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Figure 10.  Sensitivity of  Fobj,best and CPU time on a) the maximum error, ErrorMax  
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Figure 10.  Sensitivity of  Fobj,best and CPU time on b) the factor Nmin for the catalytic cracking problem  
81x60mm (300 x 300 DPI)  
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Figure 11. The dependence of Fobj within the 15 parallel MC runs on the iteration (MC step) number for the 
catalytic cracking problem.  The legend values on the right show the normalized  Boltzmann Energy levels 

used in the parallel tempering.  
368x228mm (100 x 100 DPI)  
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Figure 12. Time evolution for the three species concentration as obtained from the solution for the reversible 
chemical reactions problem for the parameter      values k1=4, k2=2, k3=40 and k4=20.  
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Figure 13.  Plot of iterations vs. error of different initial guess values for irreversible chemical reaction  
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Figure 14. Complex dynamic rheological parameter oscillatory behavior shown in the form of Lissajous-
Bowditch plots for two different stress amplitudes as shown in the figures: a) τa= 5 Pa  

 

81x60mm (300 x 300 DPI)  

 

 

Page 70 of 137

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

  

 

 

Figure 14. Complex dynamic rheological parameter oscillatory behavior shown in the form of Lissajous-
Bowditch plots for two different stress amplitudes as shown in the figures: b) τa= 10 Pa  
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Figure 15. Sensitivity of the Fobj,best and CPU time on the magnitude of perturbation applied to the initial 
guess  
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Figure 16. Sensitivity of the Fobj to the magnitude of the noise applied to empirical data  
81x60mm (300 x 300 DPI)  
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Figure 17. Evolution of Fobj and stoppage criteria with CPU time during the parameter fit of the complex 
dynamic rheological data.  
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