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Synopsis 

 The shear flow of non-Brownian glass spheres suspended in a concentrated colloidal 
dispersion that exhibits non-Newtonian rheology is investigated.  At low volume fractions, the 
addition of non-Brownian spherical particles to the colloidal dispersion leads to an increase in 
the shear viscosity as well as the dynamic moduli. The flow curves of these suspensions are 
qualitatively similar to the suspending colloidal dispersion medium, and as such, in this semi-
dilute regime, the suspension data can be shifted on to that of the colloidal dispersion medium at 
constant shear stress with shift factors comparable to those for spherical particles in a Newtonian 
fluid.  At higher volume fractions of non-Brownian spheres, the flow curves change qualitatively 
and the shear thickening power law exponent becomes an increasing function of particle volume 
fraction.  This increase in the shear thickening power law exponent is shown to be consistent 
with the effects of confinement on the shear thickening colloidal dispersion and arises from the 
packing of the larger, non-Brownian particles. 

Introduction 

 Rigid spherical particles immersed in a fluid acquire translational and rotational motion 
as a result of an imposed bulk laminar shear flow.  The flow between particles in a shear field is 
complex as compared to laminar shear flow; however, if the fluid is Newtonian, a universality in 
the flow behavior exists such that the suspension viscosity at low particle Reynolds number 
becomes independent of the particle size and size distribution and only a function of the volume 
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fraction [Mewis and Wagner (2012)].  Einstein (1911) calculated the particle contribution to the 
viscosity in the dilute limit as the linear term in an expansion in particle volume fraction: 

              𝜂! = 1+ 2.5𝜙 + k2𝜙2        (1) 

where ηr is the relative viscosity of the suspension and 𝜙 is the volume fraction of spherical 
particles.  Beyond the dilute limit additional terms are needed to account for the contribution of 
particle interactions to the viscosity.  For the case of a randomized microstructure, Batchelor and 
Green (1972) calculated the value of k2 to be 5.2 for monodisperse hard spheres, which was later 
refined to a value of 5.0 by Wagner and Woutersen (1994).  A plethora of models have been 
proposed for more concentrated suspensions [Faroughi and Huber (2015)].  In particular, the 
semi-empirical model of Morris and Boulay (1999) can correlate the measured and simulated 
viscosity and normal stress differences, with coefficients recently reported by Cwalina and 
Wagner (2014).  Including Brownian motion introduces a time scale and the viscosity becomes 
dependent on the Péclet number, such that the low and high shear viscosities, as the well as the 
viscosity in the shear-thickened state can be defined [Brady and Morris (1997)] and are 
successfully described by semi-empirical models [Russel et al. (2013); Cwalina and Wagner 
(2014)].  This very brief introduction is meant to show that extensive research has mapped out 
the rheological properties of suspensions of hard spheres in Newtonian fluids with and without 
Brownian motion, although  much remains to be determined concerning the effects of size 
polydispersity, particle shape, the presence of any additional interparticle interactions such as 
friction [Mari et al. (2014)], particle inertia [Haddadi and Morris (2014)], as well as the effects 
of shear-induced particle migration and shear banding [Ovarlez et al. (2009)]. 

 Many real-world industrial processes involve the flow of suspensions of non-Brownian 
particles suspended in colloidal dispersions. Concrete—formed by mixing cement with water, 
sand, and gravel—is the most widely consumed construction material in the world [Aitcin 
(2000)]. Cement itself is comprised of colloidal particles that exhibit shear thinning and shear 
thickening rheology [Toussaint et al. (2009)].  Highways in the United States are made almost 
exclusively out of Portland cement concrete along with asphalt and bitumen wearing surfaces 
[Zapata and Gambatese (2005)].  In the energy sector, concentrated coal-water slurries are being 
investigated as replacements for petroleum-derived fuels [Mishra et al. (2002)]. Transporting 
these slurries through long pipelines has motivated a recent surge in the study of their non-
Newtonian flow properties [Chen et al. (2009)].  Additionally, large quantities of mineral tailings 
from mining operations must be pumped to disposal facilities where knowledge of non-
Newtonian flow behavior is essential for transport optimization [Nguyen and Boger (1998)].  On 
a more tasteful level, ice cream is formed from a liquid suspension containing tiny ice crystals 
and fat globules in a syrup of sugars and polysaccharides [Goff (1997)].  These applications are 
representative of the broad use of suspensions comprised of both Brownian and non-Brownian 
particles, which will benefit from a basic, quantitative understanding of how the flow properties 
of a non-Newtonian suspending medium comprised of a colloidal dispersion will be affected by 
the addition of non-Brownian spherical particles.  
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 Despite comprising some of the most significant materials used by man in terms of mass 
and volume, there is a notable absence in the literature of systematic studies of model 
suspensions of non-Brownian particles in shear thickening colloidal dispersions.  Liard et al. 
(2014) studied suspensions of > 50 µm glass beads in a shear thickening suspension of 
cornstarch and water but the cornstarch particles were outside of the colloidal size range. In 
contrast, there exists significant research into the rheology of suspensions of non-Brownian 
particles in viscoelastic fluids, such as polymer and surfactant solutions and polymer melts (for a 
review see Mewis and Wagner (2012)).  The non-Newtonian nature of the suspending fluid  has 
been shown to directly affect particle motion [Slattery and Bird (1961); Karnis and Mason 
(1966); Gauthier et al. (1971); D'Avino et al. (2008); D'Avino et al. (2008); Snijkers et al. 
(2009)].  The fore-aft symmetry between two approaching particles is lost [Fabris et al. (1999)], 
which can lead to a number of surprising microstructural changes for dilute suspensions under 
shear flow, including particle chaining [Michele et al. (1977); Lyon et al. (2001); Scirocco et al. 
(2004)].  With regards to shear thickening colloidal dispersions, a recent report documents the 
rheological and morphological properties of “suspoemulsions”, where at high colloidal 
dispersion concentrations the multiphase fluid can exist as an emulsion suspended in a colloidal, 
shear-thickening fluid [Fowler et al. (2014)].  There, the presence of dispersed emulsion droplets 
of low viscosity oil within the colloidal dispersion systematically shifts the mixture’s non-
Newtonian shear rheology. One important observation from that work is that the shear thickening 
transition for the suspoemulsions scales more closely with the applied shear stress than the shear 
rate.   

 Direct numerical simulation results for spherical particles suspended in viscoelastic 
media are available for a number of constitutive models for the suspending fluid, but such 
simulations are generally limited to investigating the detailed motion of a small number of 
particles.  The large disparity in time and length scales required for a direct particle simulation of 
a suspension of non-Brownian spheres in a dispersion of Brownian spheres that properly 
includes hydrodynamic interactions is beyond current computational capabilities [Flatt et al. 
(2004)].  Note that such systems cannot be merely viewed in terms of particle size 
polydispersity.  The treatment of a suspension of non-Brownian particles mixed with Brownian 
particles requires simulating particles separated by an order of magnitude or more difference in 
length scales, which translates into three orders of magnitude in mass for equivalent densities.  
The effect of mixing binary size mixtures of colloidal particles is well understood in terms of 
hydrodynamic effects [Bender and Wagner (1996)], whereas binary mixing of non-Brownian 
particles is also well understood in terms of the dependence on the maximum packing fraction 
[Chong et al. (1971); Shapiro and Probstein (1992)].    

 Remarkably, despite the complex local flows between particles, a plethora of 
experimental evidence shows the bulk viscosity of suspensions of non-Brownian spherical 
particles in viscoelastic fluids largely reflects the non-Newtonian viscosity of the suspending 
medium, and as a result, scaling laws have been proposed. Early work on polymer solutions by 
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Highgate and Whorlow (1970) first suggested that relative fluidities of suspensions could be 
scaled onto that of the suspending fluid with simple shift factors over a wide range of particle 
fractions.  Additional authors [Mewis and de Bleyser (1975); Kataoka et al. (1978); Chan and 
Powell (1984); Metzner (1985); Poslinski et al. (1988); Malkin (1990); Aral and Kalyon (1997); 
Zarraga et al. (2001)] investigated other types of viscoelastic suspending fluids and observed 
similar behavior.  Using an effective shear rate concept, Ohl and Gleissle (1993) formalized a 
general shifting procedure to shift suspension data onto that of the suspending medium at 
constant shear stress: 

                           Shift Factor = !(!!!)
!  (!)

|σ = !  (!)
!  (!!!)

|σ      (2) 

This shifting procedure works remarkably well to collapse suspension data across a broad range 
of volume fractions and for various types of viscoelastic media.  It is important to note that the 
premise for this shifting procedure is the treatment of the viscoelastic medium as a continuous 
fluid phase.  Although not formulated specifically for analyzing suspensions of non-Brownian 
particles in colloidal dispersions, this body of literature provides a possible framework in the 
absence of other theories.   

 In the present work, we explore and report on the shear flow behavior of non-Brownian 
spherical particles suspended in model, non-Newtonian colloidal dispersions.  This particular 
choice of suspending medium is of particular interest in that colloidal dispersions exhibit a rich 
shear-rate dependent rheology that includes a zero-shear viscosity [Russel et al. (2013)],  
viscoelasticity [Shikata and Pearson (1994)], shear thinning, a high-shear viscosity plateau, and 
shear thickening  at high shear rates [Laun (1984); Cwalina and Wagner (2014)].  In this study, 
the non-Brownian and colloidal particles are separated by more than order of magnitude in size 
and more than three orders of magnitude in mass.  As such, we explore treating the colloidal 
dispersion as a continuous fluid and test the applicability of the viscosity shifting hypothesis of 
Ohl and Gleissle (1993) to this particular class of suspensions in non-Newtonian fluids.  The 
dynamic moduli and normal stress differences are also investigated and their behavior compared 
to that observed for suspensions of non-Brownian particles in various other viscoelastic media.  

 

Experimental Section 

Rheological Characterization 

 Rheological measurements were performed on a torque-controlled Discovery Hybrid 
Rheometer from TA Instruments (New Castle, DE).  A 20 mm parallel plate tool was used for 
steady shear and dynamic oscillatory measurements.  A cone and plate tooling was also studied 
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but difficulties were encountered due to large particle size relative to the truncation gap.  In 
steady shear measurements, the shear stress, σ, was extracted from Equation 3 as: 

σ = !
!!!!

3+ ! !"!
! !" !!

       (3) 

where M is the applied torque, R is the plate radius, and 𝛾! is the shear rate at the rim of the 
plate.  The difference between the first and second normal stress differences, N1 and N2 
respectively, was obtained as: 

N1 – N2 = !!
!"!

2+ ! !" !!
!  !"!!

     (4) 

where FZ is the axial thrust on the tool, and 𝛾! is the shear rate at the rim.  In oscillatory 
measurements, the dynamic moduli were computed as: 

G’(ω) = !!"#$%  !
!!!!

      (5) 

G’’(ω) = !!"#$%  !
!!!!

      (6) 

where H is the gap height, δ is the phase angle, and θ is the angular displacement [Morrison 
(2001)]. 

 Samples were loaded using a force-gap control with a constant rate of 5 µm/s and a 
maximum allowable axial force of 0.5 N.  Frequency sweeps were performed at 1% strain and 
data acquired over 10 cycles. In steady shear experiments, at a given applied torque, 10 seconds 
were allowed for equilibration and the viscosity and normal force were recorded over the 
following 60 seconds.  Particle migration can be a significant difficulty in the measurement of 
non-Brownian suspensions at high shear rates. However, the frequency sweeps and steady flow 
curves were found to be reversible, indicating that particle migration and sedimentation were 
negligible on the timescale of our measurements.    

Materials 

 Two different colloidal dispersions consisting of similar particles varying in size were 
formulated as suspending fluids.  The first consisted of silica nanoparticles (Seahostar KE-P10, 
Nippon Shokubai Co., Tokyo, Japan) dispersed in a polyethylene glycol (PEG) MW=200 
(Aldrich Chemical Company, Allentown, PA; 𝜂! = 0.05 Pa*s, ρ = 1.12 g/cm3) solvent.  The 
average particle radius was measured using small angle neutron scattering for the KE-P10 
particles and found to be a = 60 nm, and the particle density determined from densitometry was 
ρp = 1.89 g/cm3 [Kalman (2010)].  The second suspending fluid consisted of silica nanoparticles 
(Seahostar KE-P50, Nippon Shokubai Co., Tokyo, Japan) of radius a =260 nm and particle 
density, ρp = 1.96 g/cm3 [Kalman (2010)] in a PEG-200 solvent.  The colloidal dispersions were 
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prepared by roll mixing for one week and the suspending fluid compositions are reported in 
Table 1. 

 

Table 1. Composition of suspending fluids 

Dispersion WT% Solids ρ (g/cm3) 𝜙 
KE-P10 in PEG-200 0.50 1.41 0.37 
KE-P50 in PEG-200 0.54 1.46 0.40 

 

 The non-Newtonian behavior of hard-sphere colloidal dispersions is the result of a 
competition between thermodynamic Brownian forces and hydrodynamic forces resulting from 
the imposed shear flow that leads to shear-induced changes in the microstructure.  This has been 
extensively characterized for these colloidal dispersions by rheology and small angle neutron 
scattering under flow [Gurnon and Wagner (2015)].  The appropriate dimensionless group to 
gauge this competition is the Péclet number (Pe) given by: 

Pe = !!!!!!
!

!"
       (7) 

where ηs is the viscosity of the suspending fluid, 𝛾 is the shear rate, a is the particle radius, k is 
the Boltzmann constant, and T is the absolute temperature.  In oscillatory measurements, the 
shear rate can be replaced by the product of the strain amplitude and the frequency (𝛾 →   𝛾!𝜔). 
Measurement across a broader range of Pe number was achieved by recognizing that Pe scales as 
a3 and that the Brownian stress, and hence elasticity, scales inversely with a3 [Russel et al. 
(1989)].  Thus, the use of two colloidal dispersions with widely varying particle sizes as 
suspending fluids enables exploring a broad range of non-Newtonian phenomena associated with 
near hard-sphere dispersions, namely viscoelasticity at low Pe and shear thickening at large Pe.  
This also enables probing the effects of size ratio upon the addition of non-Brownian particles.  
The flow curves of both colloidal dispersions are shown together in Figure 1 as a function of the 
Pe number. The use of the two different dispersions allowed us to explore the non-Newtonian 
behavior of near hard-spheres dispersions over 8 orders of magnitude in Pe number within the 
measurement range of our rheometer and tooling.  The KE-P10 in PEG-200 dispersion has 
measureable viscoelastic moduli while the KE-P50 in PEG-200 dispersion allows exploring the 
high shear viscosity plateau and shear thickening behavior at higher Pe number.  At the largest 
Pe numbers explored in this study, the viscosity begins to tend toward a plateau value.  This 
plateau in the viscosity is the emergence of the colloidal shear-thickened state, predicted from 
theory [Brady and Morris (1997), Bergenholtz et al. (2002)], and recently confirmed to exist by 
the experiments of Cwalina and Wagner (2014).    
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Figure 1. Steady and complex viscosity as a function of the Pe number for the colloidal 
dispersions used as suspending fluids in this work. The dashed line is the predicted value of the 
viscosity plateau for a 𝜙 = 0.40 near hard-sphere colloidal dispersion [Cwalina and Wagner 
(2014)].  The solid line is a fit to a modified Cross model given by Galindo-Rosales et al. (2011) 
with model parameters reported in the Appendix.  

 

 The non-Brownian spherical particles used in this study were polydisperse (d10 = 5 µm, 
d50 = 10 µm, d90 = 21 µm) hollow fused borosilicate glass (Sphericel® 110P8, Potters Industries 
LLC, Valley Forge, PA) with a manufacturer reported particle density, ρp = 1.10 g/cm3.  The 
non-Brownian particles (abbreviated “NBP” in subscripts to follow) are nearly density matched 
to the PEG-200 such that gravitational settling is not a factor on the timescale over which 
rheological characterization takes place.  The non-Brownian particles have an average diameter 
20 times that of the KE-P50 particles and are 4000 times more massive.  Additionally, they are 
approximately 80 times larger and 300,000 times more massive than the KE-P10 particles.  
Suspensions were prepared by the addition of the non-Brownian particles to the colloidal 
dispersions and roll mixing for one week.  Suspensions were formulated by weight and the 
volume fractions calculated using the measured densities.  Throughout the remainder of this 
paper, the volume fraction of non-Brownian particles, 𝜙NBP, is calculated as the volume of non-
Brownian particles divided by the total volume of the suspension, noting that the volume fraction 
of the colloidal particles in the suspending liquid medium remains constant. The suspension 
compositions studied are reported in Table 2.   
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 Although the particles were nearly neutrally buoyant, particle inertia can create shear 
thickening for a particle Reynolds number (Rep) on the order of 10-1 or larger [Kulkarni and 
Morris (2008)].  The particle Reynolds number is defined using the particle radius as the relevant 
length scale: 

Rep = !!
!!
!!

       (8) 

During rheological measurement, the largest particle Reynolds number encountered in any of the 
suspensions was on the order of 10-3 so particle inertia was not a contributing factor to the 
measured suspension viscosity. 

 

Table 2.  Suspension compositions used in this study.  

Suspending Fluid:  KE-P10 (a = 60 nm) in PEG-200 (𝜙  = 0.37) 
Suspension WT% NBP ρ (g/cm3) 𝜙NBP  𝜙KE-‐P10   𝜙Total  Solids  

1 0.04 1.41 0.05 0.35 0.40 
2 0.08 1.40 0.10 0.33 0.43 
3 0.12 1.38 0.15 0.31 0.46 

   
Suspending Fluid:  KE-P50 (a = 260 nm) in PEG-200 (𝜙 = 0.40) 

Suspension WT% NBP ρ (g/cm3) 𝜙NBP  𝜙KE-‐P50   𝜙Total  Solids  
1 0.03 1.44 0.04 0.39 0.43 
2 0.07 1.42 0.09 0.36 0.45 
3 0.12 1.40 0.15 0.34 0.49 
4 0.30 1.33 0.36 0.26 0.62 
5 0.38 1.30 0.45 0.22 0.67 
6 0.41 1.29 0.48 0.21 0.69 

 

 

Results and Discussion 

Linear Viscoelastic Regime 

  Brownian motion within a colloidal dispersion gives rise to viscoelasticity [Shikata and 
Pearson (1994)] as evidenced by the dynamic moduli of the 𝜙 = 0.37 dispersion of KE-P10 in 
PEG-200 shown in Figure 2.  The effect of adding small amounts of non-Brownian spheres is 
overlaid.  At a given frequency, the addition of non-Brownian particles results in a vertical shift 
of both dynamic moduli curves while the shape of the curve reflects that of the colloidal 
dispersion as the suspending medium.  This result is consistent with measurements of the 
dynamic moduli in other viscoelastic suspending fluids [Chan and Powell (1984); Schaink et al. 
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(2000); See et al. (2000); Le Meins et al. (2002); Pasquino et al. (2008)].  As non-deformable 
spherical particles are added to the colloidal dispersion medium, the local strain amplitudes in 
the colloidal dispersion are, on average, greater than the applied strain amplitudes.  
Consequently, the dynamic stresses are higher and when divided by the applied deformation, 
yield higher moduli.   

 Visual inspection suggests that a single scalar shift should be sufficient to shift the 
dynamic moduli data onto that of the colloidal dispersion medium and form a master curve.  
Indeed, such a single vertical shift factor for a given volume fraction of non-Brownian spheres 
successfully forms a master curve for the dynamic moduli data as shown in Figure 3.  
Furthermore, the dynamic moduli can be collapsed onto the values of the colloidal dispersion 
medium with roughly the same shift factor as seen in Figure 4.  This result has already been 
demonstrated for suspensions of non-Brownian spheres in Newtonian fluids where the 
suspension relative viscosity and elastic modulus have been shown to collapse onto a master 
curve when plotted against the proximity to maximum packing [Chong et al. (1971); Mewis and 
Wagner 
(2012)].   

 
   

 

 

 

 

 

 

 

 

 

Figure 2.  Dynamic moduli of suspensions of non-Brownian glass spheres in a 𝜙 = 0.37 KE-
P10:PEG-200 colloidal dispersion.	  	   
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Figure 3. Shifted dynamic moduli curves. Symbols are identical to those used in Figure 2.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Shift factors required to collapse dynamic moduli data onto that of the colloidal 
dispersion medium as a function of the volume fraction of non-Brownian spheres.  
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 In Figure 5, the purely hydrodynamic component of the loss modulus (ωη’∞) has been 
subtracted off to give only the contribution from Brownian and interparticle interactions, and as 
such, a characteristic relaxation time can be defined from the crossover frequency.  The value of 
the crossover frequency is shown to be independent of the concentration of non-Brownian 
particles in this semi-dilute concentration regime.  The high frequency viscosity relative to that 
of the underlying colloidal dispersion medium is plotted as a function of the volume fraction of 
non-Brownian particles in Figure 7 along with the results expected for non-Brownian particles in 
a Newtonian fluid.  As observed, the high frequency viscosity for these suspensions in a non-
Newtonian colloidal dispersion medium can be well approximated by these equations in this 
semi-dilute concentration regime.    

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Dynamic moduli of suspensions of non-Brownian glass spheres in a 𝜙 = 0.37 KE-P10 
in PEG-200 colloidal dispersion with the hydrodynamic component of the loss modulus 
subtracted off to give the Brownian and interparticle contribution.  The dashed vertical line 
marks the crossover frequency which is independent of the concentration of non-Brownian 
particles. 
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High Shear Plateau and Shear Thickening Upturn: Semi-Dilute Regime 

 To access the high shear plateau and a significant shear thickening regime within the 
measurement range of the rheometer we studied the same non-Brownian spheres suspended in 
the colloidal dispersion comprised of the larger KE-P50 (a = 260 nm) colloidal particles, also in 
PEG-200.  The viscosity of suspensions at multiple non-Brownian particle volume fractions is 
displayed in 
Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Viscosity of non-Brownian glass spheres suspended in a shear thickening colloidal 
dispersion of KE-P50 (a = 260 nm) particles in PEG-200 as a function of the shear stress.  Solid 
lines are extensions to power law fits to the high shear plateau and shear thickening upturn. 

  

 When plotted against the shear stress, the addition of non-Brownian particles shifts the 
viscosity curves vertically, but parallel, to higher stresses.  Note that the exponent of the power 
law fits to the viscosity in the shear thickening regime remains nearly constant.  The critical 
stress for shear thickening can be defined as the intersection of the high shear plateau with this 
power law scaling.  From Figure 6 it is evident that the onset of shear thickening occurs at a 
nearly constant value of the shear stress independent of the volume fraction of non-Brownian 
spheres.  The onset of shear thickening in dispersions of spherical colloids is well-established to 
be stress-controlled [Bender and Wagner (1996); Maranzano and Wagner (2001); Shenoy and 

100 101 102 1030.2

0.4

0.6

0.8

1

 

 

 0.15
 0.09 
 0.04 
   0 

η 
(P

a*
s)

σ (Pa)

φNBP



13	  
	  

13	  
	  

Wagner (2005)], and the data here suggests that the onset of shear thickening in suspensions of 
non-Brownian particles in these shear-thickening colloidal dispersions is also stress-controlled.  

 The fact that the onset of shear thickening occurs at the same shear stress regardless of 
the volume fraction of non-Brownian spheres suggests a reduction of the viscosity curves to a 
universal behavior using a single, vertical shift factor.  Such a reduction is indeed possible as 
shown in Figure 7, which also plots the shift factor required to achieve a master curve as a 
function of the volume fraction of non-Brownian particles.  These results for the shear viscosity 
are consistent with the hypothesis of Ohl and Gleissle (1993). This shift factor is the viscosity of 
the suspension relative to that of the colloidal dispersion medium (a type of relative viscosity) at 
constant shear stress.  As such, it is tempting to compare this relative viscosity to that known for 
suspensions in Newtonian fluids (given by Equation 1 with k2 = 5.0).	    To a first approximation, 
the equations derived for particles in a Newtonian fluid can be used to estimate the viscosity in 
this concentration regime, although the relative steady shear viscosities measured in this study 
clearly lie above these predictions.  Similar behavior has been observed with suspensions in 
other viscoelastic media such as Boger fluids [Tanner et al. (2013)], silicone oil [Mall-Gleissle et 
al. (2002)], and polydimethylsiloxane [Pasquino et al. (2008)] over very similar particle 
concentrations.  

 

Figure 7.  (Left)  Shifted viscosity curves for suspensions of non-Brownian spheres in a colloidal 
shear thickening fluid. (Right) Steady shear (squares) and high frequency (circles) viscosity for 
suspensions in colloidal dispersion media as a function of the concentration of non-Brownian 
spheres.  The dashed line is the Einstein viscosity equation (Equation 1, k2 = 0) for dilute 
suspensions of non-Brownian spheres in a Newtonian fluid and the solid line contains the 
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additional 𝜙2 term of k2 = 5.0 [Wagner and Woutersen (1994)] .  Error bars are smaller than data 
points.   

 

Extension to Higher Particle Concentrations 

 In Newtonian fluids, at higher particle concentrations, many-body interactions become 
important to the calculation of the suspension viscosity such that additional higher order terms 
beyond the 𝜙2  term in Equation 1 are required.  The semi-empirical model of Morris and Boulay 
(1999) has been shown to be successful at describing the viscosity of suspensions of non-
Brownian spheres in a Newtonian fluid:   

         𝜂! =   1+ 2.5𝜙 1− !
!!"#

!!
+ 𝐾!

!
!!"#

!
1− !

!!"#

!!
  (9) 

In the equation above, 𝜙max is the maximum packing fraction and Ks is a constant.   

 The flow curves of suspensions containing high volume fractions of non-Brownian 
spheres are presented in Figure 8 and the model of Morris and Boulay (1999) is applied to the 
high shear viscosity data in Figure 9.  As seen, this semi-empirical model can describe the shift 
in relative viscosity in the high shear plateau with one adjustable parameter, 𝜙max, equal to 0.58 
which has been commonly reported as the maximum packing fraction in a number of 
suspensions of non-Brownian spherical particles in Newtonian fluids [Zarraga et al. (2000); 
Singh and Nott (2003); Boyer et al. (2011; Tanner et al. (2013)].  This value of 𝜙max is below the 
expected value of 0.638 for random close packing of monodisperse spheres. As our particles are 
polydisperse, the maximum packing fraction is expected to be larger, and the discrepancy may 
reflect weak attractive interactions, particle roughness, or particle shape anisotropy.  
Nonetheless, this model developed for suspensions in Newtonian fluids yields an excellent 
description of the suspension viscosity data in the high shear plateau at σ = 10 Pa.   

 At these higher concentrations of non-Brownian particles, a single, vertical shift factor 
cannot produce a master curve for all shear stresses and deviations from the shifting procedure 
become apparent in the shear thickening regime as illustrated in Figure 9.  At higher volume 
fractions of non-Brownian particles, the shear thickening power law exponent of the suspensions 
appears to increases with the concentration of non-Brownian particles as seen in Figures 8 and 9.  
Recall that the particle Reynolds number for these suspensions is on the order of 10-3 in the shear 
thickening regime, and as such, particle inertia is not contributing to the measured viscosity.  To 
quantitatively determine the power law exponent, we fit the data for each volume fraction in the 
range of σ = 100 to 400 Pa to the power law given by.   

σ = k 𝛾!       (10) 
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where k is a constant and n is the power law exponent.  In this range of shear stresses, all of the 
dispersions exhibit a power-law shear thickening upturn before the viscosity begins tend toward 
the constant viscosity plateau of the shear-thickened state.  The shear thickening power law 
exponent in this regime is shown to be an increasing function of the volume fraction of non-

Brownian spheres in Figure 10.  

 

Figure 8. Flow curves of suspensions of non-Brownian particles in a concentrated colloidal 
dispersion as a function of the shear stress (left) and shear rate (right). 
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Figure 9. (Left) Viscosity curves for suspensions shifted onto the high shear plateau of the 
colloidal dispersion medium at σ = 10 Pa. (Right) Suspension viscosity relative to that of the 
colloidal dispersion at σ = 10 Pa. The solid line is a fit of the semi-empirical model of Morris and 
Boulay (1999) with Ks = 0.94.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Shear thickening power law exponent as a function of the volume fraction of non-
Brownian spheres.  Error bars are smaller than data points. 

 To understand this increase in the shear thickening power law exponent, it is useful to 
consider the average separation distance between non-Brownian spherical surfaces in suspension 
as a function of the volume fraction.  A simple geometric model as given by [Boersma et al. 
(1990); Bender and Wagner (1996)] yields: 

!
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=    !!"#

!

!/!
− 1                (10) 

where h is the characteristic separation distance of particle surfaces, a is the particle radius, 𝜙 is 
the particle volume fraction, and 𝜙max is the maximum packing fraction, which is taken to be 
0.58 to be consistent with the previous modeling.  Figure 11 shows the shear thickening power 
law exponent as a function of the separation distance between non-Brownian particles (hNBP) 
normalized by the diameter of the colloidal particles (2acolloids).  This parameter physically 
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represents the number of colloidal particles that could span the characteristic gap between non-
Brownian spherical surfaces.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Shear thickening power law exponent as a function of the characteristic separation 
distance between non-Brownian spheres. 

 Geometric confinement of a colloidal fluid is known to enhance shear thickening as 
demonstrated by the narrow-gap Couette measurements of Chow and Zukoski (1995).  The 
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of the colloidal dispersion medium between non-Brownian spherical surfaces may become 
relevant when the characteristic gap between the non-Brownian particles becomes on the order 
of a few colloidal particles diameters.  The shear thickening power law exponent in our 
suspensions remains nearly constant for characteristic separation distances above roughly 15 
colloidal particle diameters.  Below this spacing threshold, the power law exponent begins to 
increase.  These results are likewise consistent with recent simulation studies of suspensions 
under confinement by Bian et al. (2014).  In these simulations, 2-dimensional hydrodynamically 
interacting particles are sheared between parallel plates.   Reducing the plate separation distance 
below 16 particle diameters was shown to induce formation of hydrodynamic clusters of larger 
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size, and hence, increase the shear thickening power law exponent.  In the present experimental 
work, at high concentrations, the large non-Brownian spheres provide local confinement of the 
colloidal particles.  Thus, as the colloidal fluid is made to flow between the narrow gaps of non-
Brownian spheres at higher volume fractions, it is reasonable to anticipate that this local 
confinement can promote the formation of larger hydroclusters and stronger shear thickening.  
Note that this confinement between spherical non-Brownian particles is much less constrained 
than for parallel plates as in the simulations, and as such, the effects in suspension are not 
expected to be as dramatic.  

Normal Stress Differences 

 Negative normal stress differences have been reported by authors on a number of 
suspensions consisting of non-Brownian spheres in Newtonian fluids [Gadalamaria and Acrivos 
(1980); Zarraga et al. (2000); Couturier et al. (2011); Dai et al. (2013)].  Negative normal stress 
differences have also been observed for shear thickening in colloidal dispersions, both in 
Stokesian dynamics simulations [Foss and Brady (2000)] and early experimental measurements 
[Laun (1994); Lee et al. (2006)].  Cwalina and Wagner (2014) recently reported measurements 
of the first and second normal stress differences for a model shear thickening colloidal dispersion 
of near hard-spheres.  Both N1 and N2 were found to be negative in the shear-thickened state with 
|N2| slightly larger than that of |N1| for the most concentrated dispersions.  The normal stress 
differences in colloidal dispersions are a consequence of the highly anisotropic microstructure 
that develops under flow at high Pe due to lubrication hydrodynamic interactions between 
particles [Bergenholtz et al. (2002)]. 

 An extensive literature also exists for the measurement of normal stress differences in 
suspensions of non-Brownian spheres in viscoelastic media [Highgate and Whorlow (1970); 
Mewis and de Bleyser (1975); Chan and Powell (1984); Aral and Kalyon (1997); Zarraga et al. 
(2001); Mall-Gleissle et al. (2002); Tanner et al. (2013)].  The normal stress differences exhibit 
power law behavior when plotted against the shear stress on logarithmic axes and shift parallel to 
each other as the particle concentration is varied.  It is important to note that the normal stress 
differences in these suspensions arise from the elasticity of the underlying suspending fluid 
whereas the normal stress differences for suspensions in Newtonian fluids are a consequence of 
viscous hydrodynamic forces between particles.  

 The difference between the first and second normal stress differences were obtained 
according to Equation 4 for suspensions of non-Brownian particles in the colloidal dispersion of 
KE-P50 particles in PEG.  For guidance on the expected magnitude of N1-N2 for the colloidal 
dispersion suspending medium, we used the semi-empirical model of Morris and Boulay (1999) 
along with the model coefficients determined by Cwalina and Wagner (2014).  For systems 
dominated by hydrodynamic interactions, the normal stress differences are modeled as: 

!!
!!!

 = -K1
!

!!"#

!
1− !

!!"#

!!
     (11) 
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         !!
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           (12) 

Combination and rearrangement of Equations 11 and 12 gives: 

 N1 – N2 = K! − K!
!

!!"#

!
1− !

!!"#

!!
𝜂!𝛾   (13) 

The values of K1 and K2 were reported by Cwalina and Wagner (2014) to be 0.177 and 0.240, 
respectively, and the limiting behavior of N1 – N2 in the colloidal shear-thickened state for the 𝜙 
= 0.40 colloidal dispersion is shown in Figure 12.   The shear-thickened state only begins to 
appear at the highest shear rates probed in this study as the parallel plate tooling limits the 
maximum shear rate attainable before sample ejection. Nevertheless, at the highest accessible 
shear rates, the measured values of N1- N2 approach the predicted limiting values of the colloidal 
shear-thickened state.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Measurements of N1 – N2 over a broad range of suspension volume fractions plotted 
against the shear rate.  The solid line is the predicted value of N1 – N2 for the colloidal dispersion 
medium (𝜙NBP = 0) in the shear-thickened state using the semi-empirical model of Morris and 
Boulay (1999) and the model coefficients reported by Cwalina and Wagner (2014).  The dashed 
lines mark the resolution of the instrument.  
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the underlying suspending fluid.  However, at higher volume fractions large positive values of N1 
– N2 are measured that greatly exceed the limiting value for the colloidal fluid in the shear-
thickened state and appear at shear rates at least an order of magnitude below that of the colloidal 
dispersion medium.  The measured normal stress differences for the suspensions are shown in 
Figure 13 plotted logarithmically against the shear stress in the spirit of the previous 
measurements made for suspensions in other viscoelastic media.  The normal stress differences 
for these concentrated suspensions exhibit a power law scaling with the stress and the power law 
exponent is relatively constant, independent of the concentration of non-Brownian particles.  
Note that, when plotted against total shear stress, the normal stress differences are much more 
comparable than when viewed as a function of shear rate.  This again highlights the importance 
of shear stress in controlling the shear thickening behavior of the colloidal dispersion.  This 
normal stress difference increases when non-Brownian particles are added, but the trend when 
viewed at constant shear stress is not simple. At present, the origin of the normal stress 
differences in these mixed suspensions is not fully understood and it is not known if the 
confinement effects that increase the shear thickening viscosity will have a comparable effect on 
these normal stress differences.  Nonetheless, these new measurements on this model system 
provide data that can be useful for critically testing models and simulations of such mixed 
suspensions.  

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure  13. Measured normal stress differences plotted as a function of the shear stress. 
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Conclusions 

 Measurements of the dynamic and steady shear rheology of model suspensions of non-
Brownian spheres in a non-Newtonian suspending medium comprised of a colloidal shear 
thickening dispersion are found to strongly reflect the underlying rheological properties of the 
colloidal dispersion.  The linear viscoelastic material functions are found to directly scale with 
the suspending colloidal dispersion such that the characteristic relaxation time of the suspension 
remains unchanged upon the addition of non-Brownian spherical particles.  In a similar manner, 
at low volume fractions of non-Brownian spheres, the steady shear viscosity curves in the high 
shear plateau and shear thickening upturn are found to superimpose through a vertical shift when 
plotted against the shear stress.  This behavior is often reported for suspensions in molecular 
non-Newtonian fluids and is consistent with the hypothesis of Ohl and Gleissle (1993).  
Deviations from this simple shifting are observed at higher volume fractions where the shear 
thickening power law exponent is found to be an increasing function of the concentration of non-
Brownian spheres and the normal stress differences are significantly enhanced.  This violation of 
the simple scaling can be attributed to the known effect of confinement on enhancing shear 
thickening in colloidal dispersions [Chow and Zukoski (1995)].   

 This experimental investigation of model suspensions of non-Brownian spherical 
particles in a non-Newtonian colloidal dispersion suspending medium reveals a relatively simple 
and predictable rheological response for stresses corresponding to the shear thinning regime and 
high shear plateau of the colloidal dispersion.  However, when shear thickening is evident in the 
colloidal dispersions, local confinement effects become evident at a higher concentration of non-
Brownian spheres.  Such confinement effects may be even further enhanced in the presence of 
discontinuous shear thickening colloidal dispersions and future work will address this as well as 
the role of particle shape.   

 We note that recent work on novel shear thickening suspoemulsions by Fowler et al. 
(2014) has also shown unanticipated effects in emulsion morphology when the colloidal 
dispersion is in the shear-thickened state.  Previous investigations of non-Brownian particles in 
non-Newtonian media typically employ shear thinning polymer solutions and melts, wormlike 
micelles, or Boger fluids where particles have been observed to chain along the flow direction 
[Michele et al. (1977); Lyon et al. (2001); Scirocco et al. (2004)].  As such, the present work 
compliments the existing literature reports for suspensions in non-Newtonian media and 
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motivates a need to further explore the motion of suspended non-Brownian particles in a shear 
thickening colloidal dispersion. 
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Appendix 

 In Figure 1, a modified Cross model is fit to the experimental flow curves.  The 
modification of the Cross model for shear thickening fluids is provided by Galindo-Rosales et al. 
(2011).  The best fit model parameters are reported in the table below. 

 

Table A.1.  Modified Cross model parameters used in Figure 1. 

Parameter Value 
η0 11.66 
ηc 0.28 
ηmax 0.47 
n1 0.36 
n2 0.83 
λ1 2.13 * 107 

λ2 3.76 * 10-3 
𝛾! 234.45 
𝛾!"# 1821.17 
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