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Abstract 

 Many real-world industrial processes involve non-spherical particles suspended in a fluid 

medium.  Knowledge of the flow behavior of these suspensions is essential for optimizing their 

transport properties and designing processing equipment.  In the present work, we explore and 

report on the rheology of such concentrated suspensions under steady and dynamic shear flow.  

These suspensions exhibit a rich non-Newtonian rheology that includes shear thickening and 

normal stress differences at high shear stresses. Scalings are proposed to connect the material 

properties of these suspensions of cubic particle to those measured for suspensions of spherical 

particles.  Negative first normal stress differences indicate that lubrication hydrodynamic forces 

dominate the stress in the shear-thickened state.  Accounting for the increased lubrication 

hydrodynamic interactions between the flat surfaces of the cubic particles allows for a 

quantitative comparison of the deviatoric stress in the shear-thickened state to that of spherical 

particles. New semi-empirical models for the viscosity and normal stress difference coefficients 

are presented for the shear-thickened state.  The results of this study indicate that cubic particles 

offer new and unique opportunities to formulate colloidal dispersions for field-responsive 

materials. 

 

KEYWORDS:  Cubes, Rheology, Suspensions, Shear Thickening, Normal Stress Differences       
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1. Introduction 

 The viscosity of suspensions at low particle concentrations can be expressed as an 

expansion in the particle volume fraction as
1
: 

                ηr = 1 + kE� + kH�2
 + higher order terms          (1) 

In the equation above, ηr is the relative viscosity, � is the volume fraction, and kE and kH are the 

Einstein and Huggins coefficients expressed in terms of volume fraction,  respectively.  For hard-

spheres, Einstein
2
 calculated the isolated particle contribution to the viscosity to be kE = 2.5, and 

this result holds independent of the particle size or size distribution.  The quadratic term in the 

viscosity expansion accounts for pair interactions between particles, and the value of the Huggins 

coefficient can reveal information about the nature of the interparticle potential
3
.  Batchelor and 

Green
4
 calculated the value of the order �2

 coefficient to be 5.2 for random suspensions of hard-

spheres in shear flow.  This was refined to a value of 5.0 by Wagner and Woutersen
5
, and the 

introduction of Brownian motion between particles increases the value to 6.0
6
.   

 Brownian motion within a hard-sphere dispersion leads to a rich non-Newtonian rheology 

that includes shear thickening at high shear stresses
7, 8

.  The onset of shear thickening in these 

suspensions is well-established to be a stress-controlled phenomenon
9-11

.  Shear thickening is a 

direct consequence of the flow-induced microstructure
12-15

 that results in large lubrication 

stresses between particles.  For Brownian hard-sphere dispersions, in the limit of large Péclet 

(Pe) number, the theory of Brady and Morris
16

 predicts the emergence of a shear-thickened state.  

Such a state was confirmed to exist by the experiments of Cwalina and Wagner
8
, and the 

viscosity of the shear-thickened state was modeled using the Eilers equation with a maximum 

particle volume fraction of �max = 0.54.  Indeed, Cwalina and Wagner
8
 demonstrated that the 

semi-empirical model of Morris and Boulay
17

 quantitatively captured the scaling of the 

deviatoric stress in the shear-thickened state by modeling it as that of a non-Brownian suspension 

comprised of ‘hydroclusters’, which are stress-induced density fluctuations driven by lubrication 

hydrodynamic interactions.  Simulations by Morris and co-workers have demonstrated that the 

introduction of particle inertia
18, 19

 and interparticle friction in addition to lubrication 

hydrodynamics can enhance the shear thickening response
20

.   

   While the hard-sphere suspension has historically received much theoretical, 

experimental, and computational attention, many suspensions used in industrial applications 

consist of non-spherical particles such as fibers, disks, spheroids, etc.  For a review of the 

rheology of these suspensions containing non-spherical particles, see Mewis and Wagner
21

.  

Recently, there has been a significant advance in the ability to synthesize cubic particles with a 

variety of surface chemistries
22-40

.  This emerging class of particles contains facets as well as 

sharp edges and corners.  These shape features alter the fluid velocity and pressure fields around 

the particle, and as such, should directly affect the measured rheology. 
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 While the rheology of suspensions of anisotropic particles has been of significant 

technological and scientific interest (see, for example Egres and Wagner
41

, and for an overview, 

see Chapter 5 of Mewis and Wagner
21

), the flow behavior of suspensions of cubic particles has 

only recently begun to be investigated.  Simulations and experiments by Mallavajula et al.
42

 

examined the fluid flow around a cubic particle and the resulting suspension rheology in the 

dilute limit.  The authors calculated an Einstein coefficient of 3.1, which is larger than the value 

of 2.5 for hard-spheres.  The authors confirmed this result experimentally using dispersions of 

Fe3O4 nanocubes (kE = 3.1 ± 0.2) and the Einstein coefficient was shown to be independent of 

the particle size and size distribution.  Audus et al.
43

 employed three different computational 

methods and obtained very similar results.  Vickers and co-workers
44

 measured the steady shear 

rheology of a limited number of concentrated suspensions consisting of near monodisperse 

Co3O4 nanocubes.  Shear thinning and shear thickening were observed at low and high Pe 

numbers, respectively.  Finally, recent experimental work by Royer et al.
45

 on suspensions of 

‘superballs’, which are cube-like distortions of spheres, yielded a value of 2.54 for the Einstein 

coefficient, demonstrating that rounding of the edges and corners can lead to an Einstein 

coefficient only marginally higher than that for hard-spheres.  At higher packing fractions, these 

superballs also exhibited shear thickening under steady shear.  However, as we will demonstrate 

here, the lack of truly flat surfaces for superballs leads to a rheological response more akin to 

spherical particle suspensions.   

 The objective of the present work is to expand our understanding of the rheology of 

suspensions containing cubic particles, particularly at higher volume fractions where shear 

thickening is evident.  Suspensions of industrially produced cubic particles are formulated and 

characterized.  Measurements were made under steady and oscillatory shear, along with the first 

measurements of the normal stress differences in the shear-thickened state for suspensions of 

cubic particles.  The material properties of these suspensions of cubic particles in a Newtonian 

fluid are compared to those of suspensions of spherical particles, with emphasis on the apparent 

high shear plateau and shear-thickened state
8
.  Importantly, the sensitivity of the suspension 

rheology to particle shape is explored by contrasting the results of the present study with those of 

a recent investigation by Royer et al.
45

 of superball suspensions. 

 

2.  Experimental Section 

Materials   

 Cubic aluminosilicate zeolite particles (Advera
®

 401) were obtained from PQ 

Corporation (Philadelphia, PA) and suspended in a Newtonian fluid (ηf = 0.05 Pa*s at 25
0
 C) of 

polyethylene glycol [average molecular weight = 200] (PEG-200) from Sigma-Aldrich 

(Allentown, PA).  The SEM image in Figure 1 reveals the nature of the particle shape, which 

includes facets and edges.  The particles are polydisperse, with an edge length (l) distribution 
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reported by the manufacturer to be: l10 = 1.3 µm, l50 = 3.0 µm, l90 = 5.8 µm.  The particle density 

in suspension determined from densitometry was ρp = 2.16 g/cm
3
. 

 

 

 

 

 

 

 

   

 

Figure 1. SEM image of cubic aluminosilicate zeolite particles used in this study.  The scale 

bar in the lower right is 1 µm. 

 

Rheological Characterization  

 Stress-controlled rheometry was performed using an AR-2000 Rheometer from TA 

Instruments (New Castle, DE) with a 40 mm 2
0
 cone and plate tooling at 25 

0
C.  An additional 

set of normal force measurements were obtained for a select number of suspensions using a 40 

mm 2
0
 cone and plate and a 40 mm parallel plate on a Discovery Hybrid Rheometer (DHR-3) 

from TA Instruments.  The Force Rebalance Transducer of the DHR-3 provides a normal force 

sensitivity of 0.005 N and a normal force resolution of 0.5 mN.  The effect of inertia on the 

normal force measurements was accounted for using the correction of Turian
46

.  Validation of 

this correction for the suspensions considered in this work can be found in Appendix A.  The 

largest particle Reynolds number encountered during measurement was on the order of 10
-3

, thus 

meeting the criterion for Stokes flow. 
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3.  Results and Discussion 

Dilute and Semi-Dilute Suspensions 

 The steady shear viscosity curves for volume fractions ranging from 0.023 to 0.137 are 

shown in Figure 2.    At the lowest concentrations, the measurements are almost entirely 

reversible and the steady shear viscosity is nearly Newtonian over a range of shear stresses that 

spans several orders of magnitude.  As the particle concentration increases, a very small but 

consistent hysteresis is observed.  For a given volume fraction, the magnitude of the relative 

viscosity is taken to be the average value measured across the range of shear stresses probed in 

both the ascending and descending directions. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Steady shear viscosity plotted as a function of the applied shear stress for dilute 

and semi-dilute suspensions of cubic particles in a Newtonian PEG-200 suspending medium.  

The filled and open symbols mark steady flow sweeps in the descending and ascending 

directions. 
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By plotting 
����

�   versus �, kE  and kH can be extracted from the y-intercept and slope, 

respectively.   The values of kE and kH for these cubic particle suspensions are regressed from 

Figure 3 to be 3.5 ± 0.3 and 23.7 ± 3.0, respectively.  The suspension relative viscosity is also 

plotted in Figure 3 as a function of the volume fraction.  Beyond a volume fraction of about 

0.025, the inclusion of the order �2
 term is necessary to capture the concentration dependence of 

the viscosity.  The value of the Einstein coefficient measured for the suspensions in this study is 

above that for hard-sphere suspensions (2.5) and slightly larger than that predicted for perfect 

hard cubes (3.1).  The value of the Huggins coefficient for the cubic particle suspensions is 

significantly larger than that for hard-sphere suspensions with (6.0) and without (5.0) Brownian 

motion.  At the present time, there is no theory for the value of the Huggins coefficient for cubic 

particles with which to compare.  However, the higher value of kH can be anticipated as the 

particles at not index-matched such that moderate attractive dispersion forces are expected.  

  

Figure 3. (Left) Data analyzed according to Equation 2 with values of kE and kH extracted 

from the y-intercept and slope, respectively.  (Right)  Concentration dependence of the 

suspension viscosity in the dilute and semi-dilute concentration regimes.  The dashed line 

contains the isolated particle contribution to the suspension viscosity and the solid line contains 

the additional �2
 dependence outside the dilute regime. 

 

Concentrated Suspensions 

 The rich rheology of a more concentrated �cubes = 0.295 suspension is displayed in 

Figure 4.  The rheology at this particular volume fraction will be discussed as an illustrative 

example with a larger data library including a range of concentrations to be discussed later.  The 

qualitative features of the rheology at this particular volume fraction are characteristic of the 
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behavior of the other concentrated suspensions.  Under steady shear, the viscosity is essentially 

Newtonian up until an applied shear stress of about σ = 1 Pa, with shear thickening evident at 

larger shear stresses.  Note that a characteristic stress from Brownian motion, σB, can be defined 

as σB ~ 
�

�� , which is of order 10

-4
 and thus, all rheological measurements are at a comparatively 

high relative stress or Péclet number. The viscosity reaches a maximum value in a plateau regime 

around σ = 100 Pa.  This constant viscosity plateau is characteristic of the shear-thickened state 

predicted from theory
6, 16

 and observed experimentally by Cwalina and Wagner
8
 for dispersions 

of spherical colloids in a Newtonian fluid.  While there is currently no theory that predicts the 

existence of a shear-thickened state for suspensions of cubic particles in a Newtonian fluid, the 

empirical observations here suggest that indeed a shear-thickened state exists for this class of 

suspensions.  The shear-thickened state is followed by a shear thinning regime at even higher 

stresses.  The weak shear thinning behavior is characteristic of suspensions of anisotropic 

mineral particles
41

 and has been successfully described by elastohydrodynamic theory
47

  (see 

Appendix B). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Relative steady shear viscosity (circles) and relative complex viscosity for a �cubes 

= 0.295 suspension measured at ω = 1 rad/s (triangles) as a function of the applied shear stress 

and shear stress-amplitude, respectively.  Sweeps in the ascending (filled symbols) and 

descending (open symbols) directions demonstrate the reversibility of the measurements.   

 

σ , σ* (Pa)
10

-2
10

-1
10

0
10

1
10

2
10

3
10

0

10
1

 

 

 Steady Shear - Ascending

 Steady Shear - Descending

 Oscillatory Shear (ω = 1 rad/s) - Ascending

 Oscillatory Shear (ω = 1 rad/s) - Descending

η
r ;

 η
*

r

φ
cubes

 = 0.295

Page 9 of 32 Soft Matter



8 

 

8 

 

 In contrast to the steady shear viscosity, at low shear stress-amplitudes, the complex 

viscosity shows thinning followed by dynamic shear thickening evident at larger shear stress-

amplitudes.  The magnitude of the complex viscosity in the low stress regime (before the onset 

of shear thickening) is below that of the steady shear viscosity at comparable applied shear 

stresses and shear stress-amplitudes.  This behavior is qualitatively similar to that reported 

previously for suspensions of spherical particles under oscillatory flow
48-58

.  McMullan and 

Wagner
59

 demonstrated through microstructure measurements that this decrease in the viscosity 

is the result of particle ordering facilitated by the oscillatory nature of the flow.  It is not 

unreasonable to postulate that the decrease in the viscosity under oscillatory flow observed for 

these cubic particle suspensions is also due to particle ordering, although measurements of the 

microstructure under flow will be needed to confirm this.  At large shear stresses and shear-stress 

amplitudes, the complex viscosity and steady shear viscosity are nearly coincident.   

 The transient flow behavior of these suspensions was investigated further in a series of 

peak hold experiments on the �cubes = 0.295 suspension.  In the first set of experiments, the flow 

was switched repeatedly between a steady shear peak hold at σ = 0.1 Pa and an oscillatory peak 

hold at σ* = 0.1 Pa and ω = 1 rad/s.  In Figure 5, after 300 seconds of oscillation, a steady shear 

peak hold at σ = 0.1 was imposed (time = 0).  From measurements on a Newtonian standard (see 

Appendix C) of a comparable viscosity, it was found that measurements of the viscosity under 

0.66 seconds after imposition of the steady shear peak hold were affected by instrument artifacts.  

Thus, only measurements of the viscosity after 0.66 seconds from the imposition of the steady 

shear peak hold are shown for four replicate experiments.  As seen from Figure 5, the viscosity 

reaches steady state on a relatively short timescale corresponding to 2 strain units.  This suggests 

the increase in viscosity upon switching from oscillatory to steady shear is due to an ‘order-to-

disorder’ transition as studied previously for spherical particle suspensions by Hoffman
60

. 
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Figure 5.  Viscosity measured for a �cubes = 0.295 suspension after imposition (time = 0) of a 

steady shear peak hold at σ = 0.1 Pa as a function of time (left) and strain (right) for four 

replicate peak hold experiments.  Preceding each of the steady shear peak holds was an 

oscillation for 300 s at σ* = 0.1 Pa and ω = 1 rad/s.  The magnitude of the complex viscosity 

prior to the imposition of the steady shear peak holds is shown by the dashed line in the left 

figure (Note these are not actual data points; the line marks the magnitude of the complex 

viscosity during the 300 seconds of oscillation).   

 

 These steady shear peak holds are contrasted with the experiments depicted in Figure 6, 

where the imposition of the steady shear stress of σ = 0.1 Pa (again at time =0) was performed 

after the sample was left on the rheometer overnight to allow for particle sedimentation.  This 

experiment was performed in both a cone and plate (40 mm, 2
0
, 62 µm truncation gap) and 

parallel plate (40 mm, 500 µm gap) tooling.   As seen from Figure 6, the magnitude of the 

viscosity immediately after the imposition of steady shear is significantly below that of the 

previous experiment where the steady shear peak hold was imposed after 300 s of oscillation.  In 

the steady shear peak holds at σ = 0.1 Pa after sedimentation, the viscosity never recovers its 

steady state value after 48 hours.  Considering that the Shields number 
�

���� , where ∆ρ is the 

density mismatch between particles and solvent, g is the gravitation constant, and D is the 

characteristic particle length scale, at this shear stress is of order 1, it is likely that the relatively 
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equal competition between viscous and buoyant forces hinders any viscous resuspension
61, 62

. It 

is interesting to note the difference in the measured viscosity using a cone and plate tooling, 

which contains significant noise, and the parallel plate tooling, which has little variation in its 

value over a significant duration of time.  The noise in the cone and plate data is anticipated to 

result from the fact that the local particle volume fraction under the truncated cone apex is higher 

than that outside of this region.  In the parallel plate geometry, an even layer of sediment exists 

across the entire tooling and the particle volume fraction is uniform across the sample.  

Regardless of the tool geometry, the viscosity during the steady shear peak holds after 

sedimentation is obviously below that measured after a small amplitude oscillation is performed 

for a relatively short duration of time (Figure 5).  Ultimately, this combined set of steady shear 

peak hold experiments after different initial conditions provides strong evidence that the decrease 

in the viscosity observed under oscillatory shear is a material property and not a result of any 

particle sedimentation.       

 

 

Figure 6.  Viscosity measured for a �cubes = 0.295 suspension during a steady shear peak hold at 

σ = 0.1 Pa following overnight sedimentation performed in cone and plate (left) and parallel 

plate (right) geometries.  For comparison, the magnitude of the steady shear viscosity before 

sedimentation is given in Figure 5.  
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 The steady shear viscosity and complex viscosity measured at ω = 1 rad/s as a function of 

the shear stress and shear stress-amplitude, respectively, are shown in Figure 7 for a wide range 

of particle volume fractions.  Above a critical value of the shear stress, the suspensions exhibit 

reversible shear thickening that becomes more pronounced with increasing volume fraction.  

Shear thickening in concentrated colloidal dispersions of spherical particles is well-known to be 

a stress-controlled phenomenon
9-11

, and the results here indicate that shear thickening in these 

suspensions of cubic particles is likewise stress-controlled.   

 

Figure 7.  Steady shear viscosity as a function of the applied shear stress (left) and complex 

viscosity measured at 1 rad/s as a function of the applied shear stress-amplitude (right).  All 

measurements were reversible, but only sweeps in the ascending direction are shown (see Figure 

4 for a demonstration of the reversibility). 

 

 As witnessed in Figure 4 for the �cubes = 0.295 suspension, the magnitude of the complex 

viscosity and steady shear viscosity differ in the low shear regime.  To gain a possible 

mechanistic insight into this behavior, the divergence of the complex viscosity and steady shear 

viscosity was studied as a function of the cubic particle volume fraction.   Under steady shear, 

the viscosity is essentially Newtonian prior to shear thickening.  However, under oscillatory 

shear, there is noticeable thinning of the complex viscosity prior to the onset of dynamic shear 

thickening.  As such, for the sake of consistency, the steady and dynamic “low shear” viscosity 

will be taken as the value of the viscosity at the onset of steady or dynamic shear thickening (i.e., 

at the critical shear stress or critical shear stress-amplitude).   The steady and dynamic low shear 

viscosity is plotted as a function of the cubic particle concentration in Figure 8.   
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Figure 8.  Low shear steady (closed) and complex (open) viscosity as a function of the 

volume fraction of cubic particles.  The solid and dotted lines are fits to the steady shear 

viscosity and complex viscosity, respectively, using a modified Eilers equation with an 

adjustable power law exponent.  The half-filled circles mark the low shear viscosity under steady 

shear for suspension of superballs as measured by Royer et al.
45

.   

 

 A plethora of semi-empirical models exist for correlating the viscosity data for 

suspensions of spheres in Newtonian fluids.  For a recent review see Faroughi and Huber
63

.  A 

common feature of many of these models is a power law divergence on approach to maximum 

packing with an exponent of -2.  As we are probing the response of these suspensions at shear 

stresses well above the characteristic stress from Brownian motion, the viscosity is expected to 

be dominated by hydrodynamic interactions
64

.  The hydrodynamic theory of Brady
65

 predicts a 

divergence with a power law exponent of exactly -2 for the low shear viscosity of suspensions of 

spherical particles; however, we are unaware of any rigorous models suitable for cubic particles. 

Consequently, a broad range of models for suspensions of spheres were explored; however, none 

produced a satisfactory fit to the viscosity data for these cubic particles.  To obtain a higher 

quality fit, the value of the power law exponent was permitted to be an additional adjustable 

parameter.  The best fit to the data was obtained with a modified Eilers equation: 

                     ηr = �1 + 1.5� �1 − �
����

��� 
!

                   (3) 

where the maximum packing fraction, �max, is the traditional adjustable fitting parameter, and n 

is now taken to be an adjustable power law exponent.  The best fit to the steady shear and 
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dynamic shear data was obtained with n = 3.  There is presently no theoretical basis for a power 

law exponent of -3; it is an empirical result.  Nevertheless, the fits obtained in Figure 8 are of 

sufficient quality to extract estimates of �max under the different flow conditions.   

 Under steady shear, the viscosity diverges at a maximum packing fraction of 0.69.  This 

value of �max is slightly above random close packing for monodisperse spheres, �RCP,spheres = 

0.64, and below random close packing for monodisperse cubes, �RCP,cubes = 0.78
66

.  Given that 

the cubes are polydisperse and that �max generally rises with increasing polydispersity, the value 

of �max obtained for the suspensions of cubic particles suggests that, under steady shear, the 

cubes carve out an effective volume that corresponds to an equivalent sphere.  This could be 

expected from the rotation and tumbling of the cubes in the flow, although future studies will be 

needed to investigate cubic particle motion under steady shear.  That the divergence of the 

suspension viscosity under steady shear is slightly above that for random close packing of 

spheres could possibly be attributed to particle polydispersity and shape imperfections. 

 Under oscillatory flow, the low shear viscosity is found to diverge at a maximum packing 

fraction very close to unity, although some caution is in order as the extrapolation to obtain the 

maximum packing fraction will depend on the model used and the last data point fit to the model 

is fairly removed from the predicted volume fraction of the divergence.  Nonetheless, this 

observation provides additional support for the ordering hypothesis under small amplitude 

oscillatory shear postulated previously.  This suggests the cubes are aligned into ordered 

structures resembling layers of close-packed cubes.  Given that these particles are polydisperse 

and have shape imperfections, it is not anticipated that these particles could form a space-filling 

structure and the actual maximum packing fraction is likely to be less than unity.  Nevertheless, 

the propensity to order into layers would not be unexpected based on the previous work with 

spherical particle suspensions
59

, which also show a tendency to order under large amplitude 

oscillatory flow.  Measurements of the microstructure will be needed to confirm this behavior, 

but the results here suggest it may be possible to form tightly packed structures under oscillatory 

flow using cubic particles, which could have broad far-reaching applications.    

 Also included for comparison in Figure 8 are the recent measurements of Royer et al.
45

 

for suspensions of ‘superballs’.  Such particles are intermediate between spheres and cubes with 

a three-dimensional shape in (x, y, z) space described by the equation: 

     x
m
 + y

m
 + z

m
 = a

m       
 (4) 

where m = 2 for spheres and m = ∞ for cubes.  The superballs considered in this study had a 

shape exponent of m = 2.85 ± 0.15 and were of similar size to the particles considered in the 

present study.  The authors used the Kreiger-Dougherty model to determine that the low shear 

viscosity under steady shear for their superball suspensions diverged at a maximum packing 

fraction of 0.68 ± 0.07.  This is remarkably close to the maximum packing fraction for the cubic 

particles of the present study.  This suggests the cubic particles in this study and the superballs 
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have a similar packing behavior under steady shear.  However, as seen in Figure 8, the low shear 

viscosity of superball suspensions under steady shear is less than that measured for the cubic 

particles of the present study, and the difference between the measurements becomes greater at 

higher packing fractions.  Given that the cubic particles and superballs have a similar maximum 

packing fraction under steady shear, it must be deduced that the difference lies in the interactions 

between particles, which is reflected in the different values of the power law exponent.  Royer et 

al.
45

 synthesized superball shells to minimize attractive dispersion forces.  It may also be 

expected that the rheology is sensitive to the exact nature of the particle shape, which influences 

the velocity and pressure fields between particles.  Superballs, by definition, lack the true facets 

and edges that are characteristic to the cubic particles here, and the shape exponent of the 

superballs was only slightly higher than that of spheres.  Accordingly, the concentration 

dependence of the superball low shear viscosity is closer to observations for suspensions of 

spherical particles.  

 A similar analysis of the viscosity in the shear-thickened state was performed.  The 

viscosity in the shear-thickened state was taken to be the maximum value attained before the 

onset of any shear thinning at the highest stresses. These values are plotted as a function of the 

particle volume fraction in Figure 9.  The viscosity in the shear-thickened state is almost 

identical regardless of whether the flow is steady or dynamic, with some deviations evident at the 

highest packing fractions.  His suggests a similar microstructure in the shear thickened state 

regardless of the degree of order present at lower shear stresses.  The magnitude of the viscosity 

in the shear-thickened state for the cubic particle suspensions lies significantly above the 

measurements of Cwalina and Wagner
8
 for suspensions of spheres, which is shown by the model 

line that accurately describes this data.  This difference increases at higher packing fractions.  

For example, at � = 0.40, the shear-thickened state viscosity for the cubic particle suspensions is 

an order of magnitude larger than that for suspensions of spherical particles.  This finding is of 

significant practical interest as it suggests the magnitude of the viscosity in the shear-thickened 

state can be engineered and controlled through not just the packing fraction, but also the particle 

shape.  
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Figure 9. Steady shear viscosity (filled symbols) and complex viscosity (open symbols) 

measured in the shear-thickened state for suspensions of cubic particles.  The solid line is the 

model fit to the measured viscosity of the shear-thickened state for suspensions of spherical 

particles from Cwalina and Wagner
8
.  The dashed line is the predicted value of the viscosity in 

the shear-thickened state for suspensions of cubic particles where the lubrication squeeze flow is 

modified from spheres to cubes (Equation 11).  The half-filled circles are the viscosity in the 

shear-thickened state measured by Royer et al.
45

 for suspensions of superballs.  

 

 For a possible explanation of the differing concentration dependence of the viscosity in 

the shear-thickened state between suspensions of cubes and spheres, we consider the lubrication 

squeeze flow between two spherical particles and two cubic particles with equivalent radii/half-

lengths as illustrated in Figure 10. 
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Figure 10. Lubrication squeeze flow between two spherical particles (left) and two cubic 

particles (right) with an identical characteristic half-width, R. 

 

 For particles moving along their lines of center at a relative velocity, V, in a Newtonian 

fluid of viscosity, ηf, the lubrication force between the spherical and cubic particles is given, 

respectively, as: 

   F
spheres

 = 
"#$�%&'

(          (5) 

                F
cubes

 = 
)#$�%&*

(�       (6) 

The ratio of the squeeze flow lubrication forces is: 

                  
+,-./0

+012/�/0 = 
�
3 �(

&��3
      (7) 

A geometric model for the average separation distance between particle surfaces in suspension is 

given by 
9, 67

: 

                 
(
& = 2������

� ��/) − 1                          (8) 

Substitution of Equation 8 into Equation 7 yields: 
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+,-./0

+012/�/0 = 
�
5 ������

� ��/) − 1 
�3

         (9) 

For spheres and cubes with an equivalent characteristic particle half-width (R), the suspension 

viscosity should be expected to scale with the lubrication force, 
�,-./0

�012/�/0 ~ 
+,-./0

+012/�/0 , such that: 

  6789:;~  
�012/�/0

5 ������
� ��/) − 1 

�3
     (10) 

Thus, the modified lubrication model for the viscosity in the shear-thickened state for 

suspensions of cubic particles is given as: 

6789:; = 
�
5 �1 + 1.5� �1 − �

����
��� 

3
������

� ��/) − 1 
�3

   (11) 

The value of �max, is taken to be 0.54 to be consistent with the previous modeling of Cwalina and 

Wagner
8
.  Using this lubrication hydrodynamics scaling, the predicted volume fraction 

dependence of the shear-thickened state viscosity for the cubic particle suspensions is compared 

to the data in Figure 9.  To a first approximation, this scaling captures the concentration 

dependence of the shear-thickened state viscosity for the cubic particle suspensions.  This scaling 

suggests that the observed shear thickening in the cubic particle suspensions can be attributed to 

a mechanism where lubrication hydrodynamic interactions contribute significantly to the stress.     

 Figure 9 also contains data of the shear-thickened state viscosity for suspensions of 

superballs from Royer et al.
45

.  Clearly, the viscosity in the shear-thickened state for the 

superballs suspensions is less than that of the cubic particle suspensions in this study.  It can been 

seen that the measurements of the shear-thickened viscosity for the superballs lie closer to the 

model prediction for suspensions of spherical particles
8
.  This is not entirely surprising given that 

the shape exponent of the superballs is close to that of spheres.  These results demonstrate that 

the magnitude of the suspension viscosity in the shear-thickened state is very sensitive to particle 

shape—slight rounding of the facets can lead to a significant reduction of the shear-thickened 

viscosity that is more closely described using a model for spherical particle suspensions.   

 The shear-thickened state of these cubic particle suspensions is also characterized by 

measurable normal stress differences as seen in Figure 11.  Similarly to Stokesian Dynamics 

simulation predictions
68

 and experimental measurements
8
 of dispersions of spherical colloids 

suspended in a Newtonian fluid, both the first and second normal stress differences, N1 and N2, 

respectively, are measured to be negative in sign in the shear-thickened state.  Furthermore, both 

normal stress differences are the same order of magnitude.  However, in contrast to the 

measurements of suspensions of spherical colloids, the magnitude of the second normal stress 

difference is slightly less than the first normal stress difference at a given volume fraction for a 
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particular shear rate or shear stress in the shear-thickened state for the suspensions of cubic 

particles.  In suspensions of spherical colloids, the normal stress differences at high shear rates 

arise as a consequence of anisotropy in the microstructure coupled to lubrication hydrodynamic 

interactions between particles
15

.  The measured negative normal stress differences in these 

suspensions of cubic particles support the hypothesis that lubrication hydrodynamic interactions 

between particles at high shear rates drive the observed shear thickening in this class of 

suspensions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  First (top) and second (bottom) normal stress difference as a function of the shear rate 

(left) and shear stress (right) for selected volume fractions.  

 

 When plotted as a function of the shear rate on linear axes in Figure 12, the normal stress 

differences scale linearly with the shear rate in the shear-thickened state.  This finding is similar 

to the scaling of the normal stress differences in the shear-thickened state predicted 
16

 and 

measured 
8
 for suspensions of spherical colloids in Newtonian fluids where hydrodynamic 

interactions form the dominant contribution to the stress. This linear scaling of the normal stress 
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differences means the first and second normal stress difference coefficients for suspensions, ϒ1 

and ϒ2, respectively, can be defined as follows: 

ϒ1 = 
�=>
�%?@        (12) 

ϒ2 = 
�='
�%?@        (13) 

The value of the normal stress difference coefficients for the suspensions of cubic particles 

considered in this work as a function of the particle volume fraction are compared in Figure 13 

with the experimental measurements of Cwalina and Wagner
8
 for suspensions of spherical 

colloids. 

 

 

 

 

Figure 12.  First (filled symbols) and second (open symbols) normal stress differences in the 

shear-thickened state plotted as a function of the shear rate on linear axes. 
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Figure 13.  First (filled symbols) and second (open symbols) normal stress difference coefficients 

for suspensions in the shear-thickened state as a function of the particle volume for the 

suspensions of cubic particles in a Newtonian fluid considered in the present work (squares) and 

those measured previously for spherical colloids in a Newtonian fluid by Cwalina and Wagner
8
.  

Error bars are smaller than data points.   

 

 From Figure 13, it is evident that, as a function of particle volume fraction, the normal 

stress difference coefficients for the suspensions of cubic particles in a Newtonian fluid lie above 

those for dispersions of spherical colloids in a Newtonian fluid.  At � ≈ 0.30, there is an order of 

magnitude difference between the normal stress difference coefficients, which grows to nearly 

two orders of magnitude at � ≈ 0.40.  

 For dispersions of spherical colloids, Cwalina and Wagner
8
 demonstrated that the semi-

empirical model of Morris and Boulay
17

 captured the scaling of the normal stress difference 

coefficients  in the shear-thickened state as a function of the proximity to maximum packing, 

�/�max: 

ϒn  =  Kn � �
����

�3 �1 − �
����

��3
      (14) 

0.1 0.2 0.3 0.4 0.5 0.6
10

-2

10
0

10
2

10
4

 

 

 ,  Cubes in Newtonian Fluid (Present Work)

 ,  Spheres in Newtonian Fluid (Cwalina and Wagner, 2014)

ϒ
1
 [

fi
ll

ed
] 

; 
ϒ

2
 [

o
p
en

]

φ

Page 22 of 32Soft Matter



21 

 

21 

 

where n = 1 or 2 and Kn is a constant.  Given the success of the lubrication modification 

(Equation 9) in describing the concentration dependence of the viscosity in the shear-thickened 

state for the suspensions of cubic particles, we apply the correction for enhanced lubrication 

hydrodynamic interactions to Equation 14 to yield the following semi-empirical model for the 

normal stress difference coefficients for suspensions of cubic particles: 

 ϒn  =  Kn � �
����

�3 �1 − �
����

��3 ������
� ��/) − 1 

�3
     (15) 

Note that in this form the prefactor of  
�
5  from the lubrication modification has been subsumed in 

with the constant Kn.  The fit of the limited normal stress difference coefficient data for the cubic 

particle suspensions to Equation 15 is shown in Figure 14.  The value of �max was taken to be 

0.54 to be consistent with the aforementioned modeling of the viscosity in the shear-thickened 

state for the cubic particle suspensions. From these fits, the values of K1 and K2 for the 

suspensions of cubic particles using this modified lubrication model are 0.34 and 0.28, 

respectively.   
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Figure 14. First (closed symbols) and second (open symbols) normal stress difference 

coefficients for suspensions of cubic particles in the shear-thickened state as a function of the 

proximity to maximum packing.  The solid line is a semi-empirical model of the first normal 

stress difference coefficient for dispersions of spherical colloids in the shear-thickened state from 

Morris and Boulay
17

 with the model prefactor coefficient reported by Cwalina and Wagner
8
 

(Equation 14).  The dashed line is the model fit to the first normal stress difference coefficient 

data for suspensions of cubic particles using the modified lubrication form (Equation 15).  The 

model fits of the second normal stress difference coefficient data for suspensions of spheres and 

cubes are not shown as they both differ from their respective first normal stress difference 

coefficient models only by small values of the prefactor constants.  

 

 We close the discussion by placing the present work within the context of shear 

thickening in suspensions at low particle Reynolds number.  Continuous shear thickening in 

colloidal dispersions has been shown to be a consequence of shear-induced concentration 

fluctuations driven by the divergence of lubrication hydrodynamic interactions.  This 

mechanism, termed ‘hydroclustering’, is supported by rheo-optical measurements
12, 69

, neutron 

scattering experiments
13-15, 70-72

, Stokesian Dynamics simulations
68, 73, 74

, Dissipative Particle 

Dynamics simulations
47

, stress jump techniques
75

, and direct confocal microscopy
76

.  An 

important signature of this mechanism is a negative first normal stress difference in the shear-

thickened state, which has been confirmed and quantified for dispersions of colloidal spheres
8, 15

.  
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Conversely, granular flows under confinement exhibit shear thickening resulting from frictional 

contacts due to frustrated dilatancy.  This has been observed experimentally for suspensions of 

non-Brownian particles
77

 and modeled by simulations
20, 78

.  For suspensions, importantly, the 

frictional contribution is only significant for systems with strong lubrication hydrodynamic 

interactions, high packing fractions, and large friction coefficients.  As frictional contacts are not 

symmetric with respect to the direction of the normal force acting between particles, they 

naturally lead to a positive first normal stress difference, in stark contrast to the behavior 

dominated by lubrication hydrodynamics.  Given the particle morphology shown in Figure 1 for 

our cubic particles, and the lack of any stabilizing surfactant or polymer on the aluminosilicate 

surface, one might anticipate that these particles would be exceptionally ‘rough’ and that 

concentrated suspensions of these cubes would show evidence of particle roughness leading to a 

positive contribution to the first normal stress difference.  In contrast, we find that the normal 

stress differences are even more negative than for dispersions of spherical particles.  

Furthermore, we can quantitatively account for the differences in the material functions as 

compared to dispersions of spherical particles by accounting for the enhanced lubrication stresses 

acting between the flat surfaces of cubic particles.  Thus, despite the significant roughness of 

these aluminosilicate cubic particles and lack of surface modifications, there is no evidence of 

particle friction contributing to the rheology.  Additional research into the novel rheological 

properties of suspensions of cubic particles is warranted to determine how they flow starting 

from an even more glassy state
79

.  

 

4.  Conclusions 

 This work expands our understanding of the flow behavior of suspensions of cubic 

particles in a Newtonian fluid at low particle Reynolds number by reporting the steady and 

dynamic shear viscosity and steady first and second normal stress difference coefficients over a 

broad range of particle concentrations and applied stresses.  At low concentrations, the Einstein 

coefficient is found to be slightly larger than predictions for perfect cubes, and the Huggins 

coefficient, for which there is no theory at present, is large enough to suggest the existence of 

weak interactions, consistent with expectations.   

 At higher concentrations, pseudo-Newtonian rheology is observed at the lowest shear 

stresses probed, which are above the characteristic stress for Brownian motion.  Importantly, the 

volume fraction dependence of the low shear viscosity is observed to diverge with a maximum 

packing fraction closer to that expected for spherical particles, but with a stronger power law 

dependence.  The magnitude of the low shear viscosity is smaller under oscillatory shear than 

steady shear, and shear thinning is evident under oscillatory flow.  Comparison with literature 

reports for spherical particle dispersions indicates that this behavior is indicative of particle 

ordering.  This is further supported by modeling of the volume fraction dependence of 
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suspension viscosity, which indicates that oscillatory shear flow orders particles such that they 

can fill space.   

 At high shear stresses, these concentrated suspensions exhibit strong shear thickening, 

both under steady and oscillatory shear flow.  The magnitude of the viscosity in the shear-

thickened was found to be well-described by a modification to an existing model for suspensions 

of spheres that takes into account the stronger lubrication forces between flat cubic particle 

surfaces compared to the curved surfaces inherent to spherical particles. Furthermore, negative 

normal stress differences are measured in the shear-thickened state, but in contrast to spherical 

particle suspensions, the magnitude of the second normal stress difference is found to be slightly 

less than that of the first normal difference.  The normal stress difference coefficients are also 

well-modeled when the stronger lubrication forces between facets of cubic particles are 

accounted for.  These observations strongly support lubrication hydrodynamics and hydrocluster 

formation as the mechanism of shear thickening in these suspensions of cubic particles. These 

measurements and the semi-empirical models for the material properties in the shear-thickened 

state provide novel responses for use in technologies that utilize the field-responsive nature of 

shear thickening fluids
80, 81

.  The rheological measurements and analysis also motivate a need to 

measure the microstructure in these cubic particle suspensions to connect the suspension stress to 

the flow-induced microstructure under both steady and dynamic shear flow.   
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Appendices 

Appendix A: Validation of the Normal Force Inertia Correction 

 Inertia is known to create a negative contribution to the measured axial thrust at high 

shear rates.  The correction of Turian
46

 was used to account for the effect of inertia on the 

measured axial thrust: 

(FZ)inertia = -0.075BρΩ
2
R

4
      (A.1) 

where (FZ)inertia is the contribution to the axial thrust from inertia, ρ is the fluid density, Ω is the 

angular velocity, and R is the tool radius.  In Figure A.1, experimental axial thrust data from a 40 

mm 2
0
 cone and plate tooling is reported for the Newtonian PEG-200 solvent over the range of 

Page 26 of 32Soft Matter



25 

 

25 

 

shear rates probed in this study.  Equation A.1 is also overlaid, thus validating it as an 

appropriate correction for the contribution of inertia to the measured axial thrust. 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Measured axial thrust as a function of the applied shear rate for a Newtonian 

PEG-200 solvent using a 40 mm 2
0
 cone and plate tooling.  The solid line is the expected 

contribution to the axial thrust from inertia given by Equation A.1. 

 

 

Appendix B:  Elastohydrodynamic Scaling at High Stresses 

 As illustrated in Figure 4, a shear thinning regime follows the shear-thickened state at 

higher applied shear stresses.  Here, a scaling argument for the shear thinning behavior observed 

at the highest shear stresses probed in this study is proposed.  The elastohydrodynamic model 

originally proposed by Meeker
82, 83

 for single particle deformation near a wall in pastes was 

extended to colloidal dispersion rheology by Kalman
84

.  In this model, the lubrication stresses 

that give rise to hydrocluster formation are thought to become large enough at high stresses to 

cause elastic (but not inelastic) deformation of the particle surface.  The detailed analysis for the 

elastohydrodynamic scaling for particles in suspension can be found in Kalman
84

.  Ultimately, 

the limiting value of the viscosity in this shear thinning regime is modelled as: 

η = C C@ ��/3D6EFGH�/3
     (B.1) 
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where Go is the particle modulus and C is a constant that accounts for the on-average proportion 

of particles in suspension that are in a hydrocluster.  The distinguishing feature of this model is 

the power law scaling of the viscosity with C@ ��/3. 

 In Figure B.1, the steady shear viscosity is plotted as a function of the applied shear rate.  

The open and closed symbols represent steady flow sweeps performed in opposite directions.  

This indicates the shear thinning at high shear stresses is reversible and not a consequence of 

sample ejection, edge fracture, or irreversible particle deformation.  The expected 

elastohydrodynamic power law scaling is shown for the viscosity.  The ability of this scaling to 

capture the behavior of the viscosity at high shear rates suggests elastic deformation of the 

particles is occurring and is due to the strong lubrication stresses between particle surfaces.  

 

 

  

 

 

 

 

 

 

 

 

Figure B.1 Predicted elastohydrodynamic scaling (dashed lines) for the relative viscosity as a 

function of the shear rate for concentrated suspensions of cubic particles. 

 

 

 

 

 

10
-1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

 

 

η
r

γ (s
-1
)

 ;  0.437

 ;  0.388

 ;  0.341

 ;  0.295

.

φ
cubes

Page 28 of 32Soft Matter



27 

 

27 

 

Appendix C: Steady Shear Peak Holds  

 In Figure 5, the time-dependent viscosity of a �cubes = 0.295 suspension is reported after 

the imposition of a steady shear peak hold at σ = 0.1 Pa starting from an alternance state.  This 

identical experiment was performed on a Newtonian viscosity standard (Cannon) of similar 

viscosity to the suspension in Figure 5 on the same instrument (AR-2000) and the results are 

reported in Figure C.1.  As shown, there is a lag of approximately 0.66 seconds after the 

imposition of the steady shear peak hold (time = 0) before the viscosity reaches its accepted 

Newtonian value.  Thus, the data reported in Figure 5 is only for times after 0.66 seconds where 

it can be assured that instrument artifacts are not contributing to the measured viscosity.  

 

 

 

 

 

 

 

 

 

 

 

Figure C.1 Steady shear peak hold performed at σ = 0.1 Pa on a Newtonian viscosity 

standard (Cannon) following 300 seconds of oscillation at σ* = 0.1 Pa and ω = 1 rad/s.  Two 

replicate experiments were performed to establish the lag time of the instrument.  
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