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Synopsis 

The shear rate-dependent rheological properties of soft to rigid colloidal suspensions are studied 

using computational models. We show that a contact force defined based on an elasto-

hydrodynamic deformation theory captures an important rheological behavior of colloidal 

suspensions: While near hard-sphere particles exhibit a strong and continuous shear-thickening 

the evolves to a constant viscosity state, soft suspensions undergo a second shear-thinning 

regime at high Péclet numbers when the hydrodynamic stresses become larger than the modulus 

of the colloidal particles. We measure N1 and N2 to be large and negative in the shear-thickening 

regime; however, for soft spheres at the onset of second shear-thinning N2 reduces in magnitude 

and eventually becomes positive. We show that for near hard-sphere suspensions, colloidal 



pressure, shear stress, and normal stress difference coefficients tend to diverge near the 

maximum packing fraction while 1 2P N Nσ> > > . 

1. Introduction 

The non-Newtonian rheological response of colloidal suspensions in different flow regimes is 

perhaps one of the most discussed, and yet controversial subjects in the field of fluid dynamics 

and physics.  Of significant interest is the existence of shear thickening at high shear rates 

[Barnes (1989), Laun et al. (1992),Wagner and Brady (2009)] and this transition and its 

relationship to the rheology of non-Brownian suspensions is an ongoing discussion in the soft 

matter physics and rheology communities [see for example Brown and Jaeger (2014), Mari et al. 

(2014), Gurnon and Wagner (2015)]. This is in part motivated by applications [Lee et al. 

(2003)]. Regardless of the differences in the details of models and theories suggested to explain 

the rate-dependent rheology of suspensions, there is a consensus that as these macroscopic 

measures change under different flow conditions, the microstructure of the suspension undergoes 

transitions/changes correlatively [Mewis and Wagner (2012)]. 

Recent advances in the experimental capabilities, such as fast confocal microscopy [Cheng et al. 

(2011)] and neutron scattering measurements [Gurnon and Wagner (2015)] of the sheared 

suspensions have brought new insight into the microstructural state of a suspension under 

different flow regimes. At the same time, accurate measurements of the rheological properties 

were made possible by advanced normal stress transducers and controlled stress rheometry, 

enabling reliable rheological characterization of the suspensions [Cwalina and Wagner (2014)]. 

Computational studies have also contributed significantly to the current understanding of the 

microstructure-rheology relationship in colloidal suspensions. Recently, a series of simulations 



and theoretical reports [Fernandez et al. (2013); Seto et al. (2013); Mari et al. (2014)] based on 

frictional contacts have successfully reproduced the so-called Discontinuous Shear-Thickening 

(DST), with remarkable agreement compared to experimental results. On the other hand, the 

notions of hydrocluster formation and lubrication driven shear-thickening at high shear rates 

have been able to reproduce the proper microstructure and rheological properties with semi-

quantitative success compared to experimental measurements [D'Haene et al. (1993); Bender and 

Wagner (1996); Foss and Brady (2000); Kalman and Wagner (2009); Morris (2009); Jamali et 

al. (2013); Gurnon and Wagner (2015)]. In the following, we briefly discuss the various theories 

and some of the experimental studies on the rheological characterization and material properties 

of a colloidal suspension in the shear-thickened state. 

At equilibrium at rest, stable, hard-sphere like colloidal dispersions can exist as a liquid and thus, 

the microstructure of the suspension is isotropic. The total force on a colloid is dominated by the 

Brownian motion, excluded volume and any other colloidal forces. As the suspension is subject 

to shear flows, the microstructure and the rheological response changes. At low and intermediate 

shear rates, Brownian forces are not sufficiently strong to compete with the external forces, and 

the microstructure becomes anisotropic and the suspension shear-thins. At these shear rates the 

particles tend to follow each other’s path in the flow direction, which reduces the rate of energy 

dissipation during flow. At the macroscopic scale this results in shear-thinning of the suspension, 

as the Brownian contribution to the stress does not grow in proportion to the external forces 

driving the higher shear rates. This continues to the point where the average distance between the 

colloidal particles is small enough for the hydrodynamic interactions to dominate via lubrication 

stresses. Since the lubrication potential strictly depends on the surface separation distance of two 

interacting colloids, this effect is more pronounced for dense suspensions. At high shear rates, 



the external shear forces reduce the average distance between the colloidal particles. Since the 

lubrication forces are of dissipative nature and retard the relative motion of particles, as the 

particles get in close proximity interacting colloids become localized in small gaps forming 

larger so-called hydroclusters [Maranzano and Wagner (2001)]. These hydroclusters resist the 

flow and give rise to shear-thickening behavior (for a summary of shear-thickening, see 

Bergenholtz et al. (2002) and Wagner and Brady (2009)). At these shear rates, the net force on a 

colloidal particle and consequently the microstructure as well as the rheological response of a 

suspension is dictated by the hydrodynamic interactions. Since this versatile rate-dependent 

response of a suspension is governed by the competition between the hydrodynamic and 

Brownian forces, these distinct regimes are frequently presented as a function of a dimensionless 

quantity, the Péclet number,
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represents the strength of the hydrodynamic forces and the Brownian forces are represented in 

the denominator. 

Recently, several studies have revisited the theory of dilatancy and frictional contacts in non-

Colloidal suspensions [Fernandez et al. (2013); Heussinger (2013); Seto et al. (2013); Brown 

and Jaeger (2014); Wyart and Cates (2014)]. The reports suggest that at very small separation 

distances, the lubrication layer breaks down and contact between the two particles occurs. As 

soon as this contact point is formed, the microstructure and the motion of the suspension is 

governed by the competition between the normal repulsive contact potentials and the tangential 

friction forces. Thus, a stick-slip mechanism based on the Amundsen’s law of friction is adapted 

to explain the frustrated motion of colloidal particles. Frustrated motion of colloidal particles is 

referred to a state where due to high packing of solid particles and high friction coefficient, 



colloidal particles are constantly rotated in opposing directions. In several reports based on this 

methodology, DST and S-shaped stress curves for suspensions were reproduced successfully by 

tuning the friction coefficient of the particles. It is unknown if this phenomena extends to 

colloidal dispersions where surface stabilization leads to very low friction coefficients [Gurnon 

and Wagner (2015)]. 

While viscosity is perhaps the most indicative rheological fingerprint of a suspension’s 

microstructure, drawing a comprehensive picture of the micro-macro relationship is only 

possible by considering the complete tensorial form of the stress, including the normal stresses. 

In other words, one can claim proper dynamics and the underlying physics only if the complete 

rheological characterization of a suspension is reproduced. In addition to the shear viscosity, the 

microstructural changes in a suspension under flow also affect the normal stresses. Under shear 

flow, the deviatoric stress tensor is characterized by the first and second normal stress 

differences, N1 and N2, which are generally of smaller magnitudes as compared to shear stresses 

[Macosko (1994)]. Hence, the number of experimental reports where these two parameters are 

accurately measured for colloidal suspensions are very limited; however, recent advances in the 

rheometry techniques has allowed reliable measurements of normal stress differences for dense 

suspensions at high shear rates [Cwalina and Wagner (2014)]. In addition to the experimental 

evidence (which will be briefly discussed later), one can predict the microstructure and the 

normal stresses of a suspension in different regimes based on the theoretical approaches 

explained before. The hydrocluster formation as a result of large lubrication stresses suggests 

that the colloids will be concentrated in the compression axis of the shear plane [Foss and Brady 

(2000)]. Subsequently, particles will form a highly anisotropic structure where the probability of 

finding a neighboring colloid in a close vicinity is much larger than other coordinates. This 



anisotropic microstructure leads to hydrodynamic contributions to the normal stress differences 

that are negative for both N1 and N2. A detailed explanation of the effect of microstructure on the 

sign and magnitude of normal stress differences (based on the hydrodynamics theory) can be 

found in Foss and Brady (2000) and exact calculations for Brownian hard spheres can be found 

in Bergenholtz et al. (2002).  On the other hand, the frictional contact model is based on the 

competition between the tangential and normal forces. At high friction coefficients, the 

tangential forces dominate the type of interaction between the two overlapping colloids and their 

frustrated movement gives rise to an effective transient contact network to be formed at high 

shear rates. This contact network is able to bear large amounts of stresses and thus DST can be 

reproduced by this method. In other words, shear-thickening is recovered only at the conditions 

where the tangential friction dominates the net force on a single colloidal particle. Obviously, at 

these conditions one can expect positive N1 and negative N2 to be measured due to the nature of 

frictional forces [Mari et al. (2014)]. 

Several experimental studies have reported measurements of these properties. One should be 

cautious when referring to these data, as in many cases the authors state that the results are 

associated with intrinsic instrument limitations. The first quantitative measurements of normal 

stress differences were done by Laun (1994), who reported the N1 of the same magnitude as the 

shear stress with a negative sign, and N2 with half of this magnitude and a positive sign, for a 

58.7 vol% suspensions of styrene/ethyl acrylate copolymer particles. Aral and Kalyon (1997) 

reported increasing negative first normal stresses differences by increasing the volume fraction 

of non-colloidal particles and the shear rate. Another example of the negative N1 in the shear-

thickening regime was reported by Lee et al. (2006) for near hard-sphere suspensions. Although 

experimental limitations prevented the authors from reporting quantitatively reliable second 



normal stress differences, it was stated that the magnitude of N2 is larger than the N1. Accurate 

normal stress measurements of colloidal suspensions were reported in a recent study by Cwalina 

and Wagner (2014), where negative normal stress differences were reported for a range of 

different volume fractions at the shear-thickening regime. N1 and N2 were found to be linearly 

increasing functions of shear rate in the shear-thickened state, which enabled the authors to 

define the shear-thickened state and consequently calculate the material properties such as first 

and second normal-stress different coefficients and the maximum packing fraction at the shear-

thickened state. 

Theoretically, at the very close distances between the colloidal particles and at high shear rates, 

where the shear stresses are extremely large, the particles start to deform elasto-

hydrodynamically [Meeker et al. (2004)]. To explain this phenomenon, one has to take into 

account the fact that colloidal particles in real experiments have finite hardness or modulus, and 

thus will begin to deform as soon as the normal stresses exerted on them exceeds this modulus. 

Kalman [Kalman and Wagner (2009) and Mewis and Wagner (2012) (section 8.3.5)] showed 

that by taking this deformation into account one can semi-quantitatively explain the second 

shear-thinning regime, which is usually observed for soft suspensions [Hoffman (1972), Laun 

(1984), Barroso et al. (2010)]. Kawasaki et al. (2014) recently reported a series of Brownian 

Dynamics simulations on soft repulsive particles without hydrodynamic forces that reproduced 

shear rheology of soft latex dispersions and oil-water emulsions at high packing fractions. 

Nevertheless, the computational models to date have not been able to precisely study and 

examine the elasto-hydrodynamic theory. This is because in numerical approaches, a hard short-

ranged repulsive force is usually employed to define the hard-sphere identity of a colloidal 

particle. To explore the effects of particle hardness on suspension rheology, we present a 



computational approach based on a modified Dissipative Particle Dynamics formalism that 

captures the deformability of a colloidal particle. By using this method, we study the 

microstructural changes of a suspension at different flow regimes that lead to the bulk 

rheological response. The model employs a simple squeezing mode lubrication hydrodynamics 

and neglects other modes of hydrodynamics such as tangential lubrication, as well as frictional 

contacts. Consequently, continuous shear-thickening is reproduced and studied as opposed to 

discontinuous shear-thickening and dilatancy which may require inclusion of frictional contacts 

and tangential forces. 

2. Simulation Background 

Dissipative Particle Dynamics (DPD) was introduced initially [Hoogerbrugge and Koelman 

(1992)] for simulation of colloidal suspensions under flow conditions. The explicit solution of 

the equation of motion for solvent particles, and a built-in thermostat that forms the canonical 

ensemble, and a series of pairwise interactions that ensure conservation of momentum in a 

system, enables the long range hydrodynamics to be naturally preserved in the DPD formalism. 

However, the early attempts on shear rheology of suspensions using DPD had a limited success 

as the hydrodynamics breaks down at the close separation distances [Whittle and Dickinson 

(2001)]. As the distance between two interacting colloidal particle becomes smaller than the size 

of a solvent particle, when these colloids move towards each other the solvent is expelled from in 

between the two, and thus the hydrodynamics breaks down. Another reason for the shortcoming 

of DPD in simulation of sheared suspensions is the size/mass differences between the solvent 

and colloidal particles. In traditional DPD, all particles regardless of their type have the same 

size and mass. Consequently, to reproduce a realistic suspension where colloidal particles are 

many times larger than the solvents, many DPD particles are linked to each other to form a larger 



aggregate to represent a single colloid. However, in this process, the smooth definition of the 

colloidal surface is lost and calculation of forces that are strictly dependent of the surface-surface 

separation distances becomes problematic. In our modified DPD model, inspired by the model 

proposed by Whittle and Travis (2010), we use an arbitrary-sized rigid core to represent the 

colloidal particle, with additional lubrication potentials to compensate for the short-ranges 

lubrication interactions. Thus, the equation of motion for a colloidal particle in this formalism is 

written based on 5 main pairwise interaction potentials. 

C D R H Contacti
i ij ij ij ij ij
dm
dt

= + + + +∑v F F F F F  (1) 

This equation reduces to the first 3 forces for the solvent particles, where only conservative, 

random and dissipative interactions are solved. The first force, conservative, is the extent of 

pressure between the interacting species and for the solvents is parametrized based on the 

compressibility of water at ambient temperature, 
1 1
0.2ij Ba k T κ

ρ

− −≈  [Groot and Warren (1997)], 

where ρ  is the number density of DPD particles. Equation 2 shows the expression for the 

conservative force, where aij is the conservative parameter, ( )ij ijrω  is the weight function based 

on the separation distance between the interacting particle pair, and ije  is the unit vector as

ij
ij

ij

r
r

=e . 

(r )C C
ij ij ij ij ija ω=F e  (2) 



The random force generates the thermal fluctuations in the system using a random function, ijΘ , 

of zero mean value and unit variance. tΔ  in equation 2 is the time step used in the simulation, 

and ijσ  is the strength of the thermal fluctuations in the system. 

(r ) ,ijR R
ij ij ij ij ijt

σ ω
Θ

=
Δ

F e  (3) 

The dissipative force acts against the relative velocity of particles, ij i j= −v v v  as the heat sink 

and dissipates the generated heat in the random force and ensures the proper thermodynamics to 

be reproduced. Hence, the dissipative parameter (frequently referred as friction parameter), ijγ  

has to be coupled to the random parameter in equation 3 [Espanol and Warren (1995)]. This is 

done via the so-called fluctuation-dissipation theorem and consequently the dimensionless 

temperature in the system is defined as
2

2
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B
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k T
σ
γ

= . Additionally, the weight functions used in 

these forces are inter-related via the equation 5. In fact, all of the DPD potentials are calculated 

via this weight function which starts at unity and decays to zero at a distance called the cut off. In 

the standard DPD method, the interparticle potentials are so soft that often the cut off distance is 

assumed as the diameter of a DPD particle, as the particles are allowed to overlap and pass 

through one another. 
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One of the hallmarks of DPD is that although the random force is the main source of Brownian 

motion in a DPD fluid, since together with the dissipative force, they conserve the momentum 

both locally and globally, the two forces also preserve the proper long-range and multi-body 

hydrodynamics. In addition to these forces, which are used for solving the equation of motion for 

both solvent and the colloidal particles, the short-range lubrication potential, H
ijF , and the contact 

forces, Contact
ijF , are also introduced for the colloidal particles. The former is based on the pair 

drag term, H
ijµ , in squeeze mode hydrodynamics [Ball and Melrose (1995)], which diverges at 

the surface-surface contact point, 0ijh =  (equation 6). R is the radius of the colloidal particle and 

0η  is the viscosity of the suspending fluid. Since the lubrication potential is singular at the 

contact, a small gap, δ , is introduced to the pair drag term to regularize this force. At these 

distances, the lubrication potential becomes independent of the surface-surface distance between 

the two interacting colloids. 

( )

2
0

2
0

3 , 0
2

. ; ,
3 ,
2

ij

H H H
ij ij ij ij ij ij

ij
ij

R h

R h
h

πη δ
δ

µ µ
πη δ

⎧⎛ ⎞
< ≤⎪⎜ ⎟

⎝ ⎠⎪= − = ⎨⎛ ⎞⎪ >⎜ ⎟⎪⎜ ⎟⎝ ⎠⎩

F v e e  (6) 

Silbert et al. (1999) showed that at high shear rate, the dominant mode of hydrodynamic 

interactions in dense suspensions is the squeezing mode lubrication in normal direction which 

diverges at contact with 1

ijh
 where hij is the surface-surface separation distance between two 

colloidal particles. On the other hand, tangential lubrication potential is also singular at contact 

point, however it diverges with 1log( )
ijh

. Thus, it has been shown that the normal lubrication 



potentials are predominantly playing the main role in defining the hydrodynamic interactions at 

close gaps and neglecting the tangential lubrications does not significantly affect the behavior of 

the suspension. 

The contact force, Contact
ijF , defines the rigid nature of the colloidal particles and prevents the 

overlap between the two cores, and vanishes cubically at a small separation distance, Δ , 

comparable to the roughness of the surface of a colloidal particle in real experiments. 

Additionally, since the real particles have finite modulus the softness and hardness of colloids 

can be adjusted by tuning the magnitude of the contact modulus, Contactf . 
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Based on the definition of the contact potential, which only acts on distances comparable to the 

surface roughness of a colloidal particle, one can assume Δ to be in the range of 1 nm. On the 

other hand DPD parameters can be systematically correlated to the real units, adapting the 

method proposed by Ghoufi and Malfreyt (2012). By doing so, the correspondence of contact 

modulus to real units is 3
Contact Bk Tf

Δ
, where kB is the Boltzmann constant, and T is ambient 

temperature in Kelvin. Thus, shear moduli of 400 MPa and 100 GPa corresponding to Contactf  of 

the softest (100) and the most rigid (25000) particles in our simulations. Consequently, shear 

moduli of real particles reported by Kalman (2010) are estimated to be 250Contactf ≅  for PMMA 

particles (1 GPa) and 11000Contactf ≅ for Silica particles (44 GPa). 



In our methodology we assume elasto-hydrodynamic deformation of colloidal particles at close 

gaps. In other words, instead of assuming a contact that breaks the lubrication layer and allows 

particles to stick to one another, we assume that as the particles get closer to each other the 

hydrodynamic stresses continue to increase and eventually will elastically deform the particles. 

Thus, in the event of overlap between the colloidal cores, the contact force increases linearly. It 

has been previously shown that the stress level between the particles at this condition, depends 

directly on the value of the shear modulus of colloids [Kalman (2010), Mewis and Wagner 

(2012) section 8.3.5]. This is in contrary to the model adapted in recently developed frictional 

contact models [Seto et al. (2013)], where a stick-slip scenario is considered based on the 

frictional contact models of granular physics. In our model, the contact forces are only applied in 

the normal direction and tangential forces are neglected (both in contacts and the lubrication). 

Having the individual pairwise interactions at hand, one can calculate the pressure/stress tensor 

by the Irving and Kirkwood (1950) method, and consequently measure the rheological properties 

such a: the shear viscosity from the shear component of the stress tensor as 12Sη
γ

=
&

, and the first 

and second normal stress differences as ( 1)( 1)i ii i iN S S + += − . 
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In practice, we have performed simulations on suspensions with different volume fractions of the 

total number density of 3.0 and dimensionless temperature of 1.0Bk T =  in the calculation box of

, , 25i x y zL R= = . Colloidal particles with 1.0R =  were reproduced with the mass of 34
3

m Rρπ= in 

order to ensure the density matching between the solvent and the colloidal particles. It should be 



mentioned that in order to avoid strong ordering under shear known to be present for 

monodisperse suspensions, a volumetric ratio of 1:1 of larger colloidal particles with 1.4R =  

were added to the mixture. The dissipative parameter was set at 50.0ijγ =  and correspondingly 

giving the random parameter of 10.0ijσ = , with conservative parameter of 25.0ija =  for all 

interacting species. The clearance gap used for the regularization of the lubrication potential was 

set at 610 Rδ −=  and the surface roughness of the colloidal particles at which the contact 

potential is neutralized is set to 310 R−Δ =  in order to reproduce the most realistic representation 

of a colloid. Although the contact force prevents overlap between the rigid cores of interacting 

colloids to occur, since finite time steps are used in discrete particulate simulation method, the 

event of overlap cannot be completely avoided. However, in order to reduce these events and the 

numerical instabilities in the calculations very small time steps of 65 10 C
B

mt r
k T

−Δ = × were used in 

our simulations. All of the simulations were performed over 10 million time steps to ensure 

steady and stable statistical results. The contact modulus was varied over a wide range to 

reproduce soft to rigid colloidal particles with 100 25000Contactf = − . 

3. Results and Discussion 

3.1. Flow Curve 

The general flow curve for suspensions with different volume fractions is shown in Figure 1, 

where each point represents a steady state. The suspensions show a general shear-thinning 

followed by shear-thickening at higher shear rates, regardless of the contact modulus and the 

volume fraction. At low volume fractions, the viscosity is nearly independent of the contact 

modulus and all suspensions exhibit the expected shear-thinning and weak shear-thickening; 



however, differences arise for the denser suspensions with small values of contact modulus, 

where a second shear-thinning regime is observed at elevated Péclet numbers.  This behavior is 

not observed for rigid particles. The onset of second shear-thinning is observed when the total 

stress exceeds the contact modulus of colloidal particles. In other words, the hydrodynamic 

stresses that give rise to shear-thickening of the suspension at high shear rates continue to 

increase to a point where they eventually become comparable to the elastic modulus of the 

colloidal particles. At this state, the hydrodynamic stresses begin to elastically deform the soft 

colloids, leading to shear thinning [Kalman and Wagner (2009), Mewis and Wagner (2012) 

section 8.3.5], while near hard-sphere particles only exhibit shear-thickening that becomes more 

pronounced with increasing shear rate. 

Finally a graph is presented with the relative viscosity of the most rigid particles (

25000Contactf = ) for different fraction of solid particles compared to experimental measurements 

of Cwalina and Wagner (2014) and Stokesian Dynamics simulations of Foss and Brady (2000).  

The present model shows a comparable viscosity to the more accurate Stokesian Dynamics 

simulations in the low to moderate Pe number regime, but a stronger shear thickening than SD 

that is more comparable to experiment.  



 

Figure.1. Viscosity vs. Péclet  for different volume fractions and contact moduli. The bottom right graph compares the present 

work (contact modulus of 25000) with the experimental data by Cwalina and Wagner (2014) and Stokesian Dynamics 

simulations by Foss and Brady (2000). 



Figure 2 shows the relative viscosity of the suspensions, ηr =
σ
η0 !γ

, for different shear rates as a 

function of colloidal volume fraction and the results clearly show the difference between the soft 

and rigid particles. At low and intermediate shear rates, the viscosity v. volume fraction of 

colloidal particles curves is very similar for the soft and rigid suspensions; however, by 

increasing the shear rate the behavior of the dense regime is significantly different. Based on the 

empirical models to fit the viscosity curves in the figure 2 one can calculate the maximum 

packing fraction of each system at different shear rates.  

 

Figure 2. Relative viscosity against fraction of colloidal particles for: left) Soft colloid with modulus of 100, and Right) Rigid 

colloids of the modulus 25000. 

Figure 3 shows the maximum packing fractions calculated based on two different models of  

Maron and Pierce (1956) (equation 9) and Eilers (1941) (equation 10): 

2

1 ,r
Max

φη
φ

−
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  (9) 
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Figure 3. Maximum packing fraction calculated by different models versus the Péclet number for soft and rigid suspensions. 

The expressions given in equation 9 and 10 are the empirical models that are often used to 

correlate experimental measurements of non-Brownian suspensions. Since at high shear rates, 

Brownian contribution to the viscosity can be neglected for our colloidal systems, we employ the 

same equations to fit our viscosity data. As the results are not statistically different using these 

two functionally different equations, the important trends observed are deemed significant and 

not dependent on the choice of extrapolation model.   One can clearly correlate the calculated 

maximum packing fractions in Figure 3 with the general flow curves in Figure 1. In the shear-

thinning regime, the maximum packing slightly increases as the suspensions are dominated by 

the Brownian forces at zero shear rate and a maximum packing of ~0.57 is expected [Russel et 

al. (2013)] and progressively become dominated by hydrodynamic interactions with increasing 

shear rate [de Kruif et al. (1985)]. However, at the onset of shear-thickening, the maximum 



packing starts to decrease as the viscosity is mainly driven by short-range lubrication in this 

regime. For the rigid particles that continue to thicken by increasing the shear rate, this 

maximum packing fraction is reduced steadily. This in agreement with findings of Cwalina and 

Wagner (2014), who calculated a constant maximum packing for the shear-thickened-state of 

suspensions, at lower fractions compared to the high shear maximum packing fractions for near 

hard-sphere particles. It should be mentioned that in our results there is no clear second plateau 

to define a clear shear-thickened state, which explains the continuously decreasing curve of Maxφ  

as opposed to a constant value at high Péclet numbers. On the other hand, the maximum packing 

of the soft suspensions starts to grow as the second shear-thinning regime is observed.  

The properties of the soft to rigid suspensions can be further examined by comparing the relative 

viscosities of suspensions with different moduli at a constant shear rate. Thus, in Figure 4 we 

plot the relative viscosities at the highest Péclet number in our simulations, Pe=320, and the 

maximum packing fractions calculated from these curves using the Eilers model (equation 10) 

against the hardness of colloidal particles. Furthermore, we have examined the role of lubrication 

interactions by running the same simulations without the hydrodynamics force in the equation of 

motion. Thus, the open symbols in the relative viscosity curve (and throughout the paper) 

correspond to the simulations where short-ranged hydrodynamic interactions are not included in 

the simulations. The relative viscosity at high Péclet numbers (Figure 4) clearly reflects the 

effect of particle softness, and the maximum packing fraction is significantly decreased by 

increasing the modulus of the colloidal particles. Also, the viscosity of the suspensions without 

the lubrication interaction clearly shows that the rheological response at high shear rates are 

dominated by the lubrication forces. 



 

Figure 4. Left) Relative viscosity versus the colloidal fraction for a range of contact modulus values at high shear rate, Pe=320, 

and Right) Maximum packing fraction calculated from the relative viscosity as a function of modulus.  Open symbols correspond 

to simulations without lubrication hydrodynamic interactions.  

These findings are in agreement with the predictions of the elasto-hydrodynamic theory for the 

limiting viscosity of a suspension in the second shear-thinning regime. The elasto-hydrodynamic 

theory suggests that when the stresses exerted on a particle become sufficiently large, particles 

are elastically deformed. However, as the particles are made stiffer, a point is reached where the 

stresses generated in the suspension at a given shear rate are never large enough to overcome the 

rigidity of the particle and thus, the viscosity becomes independent of the particle rigidity. This is 

evident in Figure 4.right where a plateau is reached as the particle rigidity is increased further. 

Based on the modulus of a colloidal particle, applied shear rate and the viscosity of suspending 

fluid one can predict the limiting viscosity of an elastically deforming suspension at high Peclet 

numbers [Kalman (2010); Mewis and Wagner (2012)]. According to this model, viscosity of a 

suspension is bound to the measured values in equation 11 in the elasto-hydrodynamic regime. 

ηEH =CEH !γ
−1
2 η0G0( )

1
2 ,   (11) 



Where EHη  is the limiting viscosity in the elasto-hydrodynamic regime, EHC  is the prefactor 

depending on the volume fraction and the microstructure of the suspension and 0G is the shear 

modulus of colloidal particles. The model predicts a second thinning regime and a positive 

dependence on the elasticity of the colloidal particles with scaling of ½. Figure 5 shows the 

predictions of elasto-hydrodynamic model for measured viscosities in 58% suspensions of 

different moduli. The expression given in equation 11 for the limiting viscosity is based on the 

elasto-hydrodynamic stresses generated in the system and do not include the hydrodynamic 

stresses. Our softest colloid enters the elasto-hydrodynamic regime at lowest stress values and 

thus it is safe to assume that the stresses measured in these conditions are virtually hydrodynamic 

in nature. Hence by subtracting the viscosity of the softest system from the others, one can 

presumably track the changes in elasto-hydrodynamic viscosity. Thus assuming that the high 

Peclet limit viscosity of the softest suspension gives a pure hydrodynamic contribution to the 

stress, we have plotted the viscosity data after subtracting the value of the viscosity at the highest 

shear rate for the modulus of 100. Results of the figure 5 shows that not only the model can 

successfully predict the limiting viscosities at high shear rates, but also the viscosity of 

suspensions in the elasto-hydrodynamic regime scales with the modulus of colloidal particles 

with predicted power of ½. 



 

Figure 5.Reduced viscosity (subtracted by its value for suspension with modulus of 100 at shear rate of 10) of 58% suspensions 

as a function of: Left) Dimensionless shear rate and, Right) Particle modulus at shear rate of 10. Dashed lines represent the 

predictions of elasto-hydrodynamic model (equation 11). 

3.2.Normal Stress Differences and Pressure 

As discussed in the introduction, a complete rheological analysis including the normal stress 

measurements is crucial for understanding the underlying mechanisms. Thus, Figure 6 shows the 

measured N1 and N2 values for a range of volume fractions and contact modulus values. There 

are several observations to be made from the first and second normal stress difference 

measurements in Figure 6. Firstly, N1 stays negative throughout the whole range of Péclet 

numbers regardless of the volume fraction and contact modulus of the colloidal particles. The 

only exception for this is at very low shear rates, where positive values are measured but remain 

negligible when compared to the total pressure of the system. At high shear rates and in the 

shear-thickening regime N1 increases linearly with the Péclet number (shear rate), as observed by 

Cwalina and Wagner (2014). The second normal stress differences is also negative in the range 

of Péclet numbers examined; however, there is a clear change of behavior for soft and rigid 

colloidal particles at high shear rates. As the second shear-thinning occurs for the soft 



suspensions, the magnitude of N2 begins to decrease and eventually the sign of N2 reverses to 

positive values at very high shear rates for the soft colloids. The magnitude of both quantities, 

1N  and 2N , increases by increasing the particle volume fraction. Also one can argue that while 

at low volume fractions first normal stresses are substantially larger than the second normal 

stress differences, then 2N increases faster by increasing the volume fraction and eventually 

becomes larger than the 1N  at elevated fractions. Another important conclusion from the Figure 

6 is that, regardless of the colloidal fraction or the contact modulus, 1N  and 2N  remain small 

and independent of these parameters when lubrication potentials are excluded in the simulation, 

which confirms that hydrodynamic interactions dominate the rheological properties at these 

shear rates. In order to compare these results with prior reports on the near hard-sphere 

suspensions we plotted the N1 and N2 versus the shear stress in Figure 7 for the highest modulus 

in our simulations, 25000Contactf = . 

One can define the first and second normal stress coefficients for suspensions based on the shear 

stress of the suspending fluid and the measured N1 and N2: 

ϒ1,2 =
−N1,2
η0 !γ

,    (11) 

The first and second normal stress difference coefficients for near hard-sphere colloids, 1ϒ and

2ϒ , show the same dependencies on the volume fraction of the solid content as the relative 

viscosity of the suspensions given in Figure 2. However, since N2 exhibits an unexpected change 

of magnitude for the soft suspensions in the second shear-thinning regime, the typical divergence 

near the maximum packing fraction is not observed for 2ϒ  of soft suspensions. In order to show 



this behavior, we have plotted the first and second normal stress difference coefficients of the 

suspensions with different modulus values, at the highest shear rate examined in our simulations 

(Figure 8). One should note that as the contact modulus is increased, this data reveals the 

material properties for suspensions in the second shear-thinning (soft) to strong shear-thickening 

(hard) regime. Once again, we have plotted the same data for the simulations without the 

lubrication interactions, and represented the results with open symbols. 



 

Figure 6. First (left) and second (right) normal stress differences versus the Péclet number for a range of volume fractions and 

contact modulus values. Open symbols correspond to simulations without lubrication hydrodynamics. 



 

Figure 7. First (left) and second (right) normal stress differences versus the shear stress for different volume fractions of near 

hard-sphere suspensions (contact modulus of 25000). The insets show the data on a linear scale.  

 

Figure 8. First (left) and second (right) normal stress difference coefficients versus the volume fraction of colloidal particles for 

a range of modulus values at highest shear rate (Pe=320). The open symbols are for simulations without hydrodynamic 

interactions.  

Theoretically, the total pressure of the suspension should diverge near the maximum packing 

fraction, similarly to the relative viscosity and normal stress difference coefficients. The total 

pressure of the dense suspensions (58%) for different particle modulus values (Figure 9 left) 



shows that while in the shear-thinning regime the pressure is rather unchanged, it begins to 

exponentially increase at the onset of shear-thickening. Nonetheless, in the case of soft particles 

pressure becomes constant in the second shear-thinning regime. The pressure at high shear rates 

(Pe=320) shows similar behavior when compared to the relative viscosities in Figure 4, as shown 

in Figure 9 right). 

 

Figure 9. Total pressure of: Left) 58% suspensions versus the Péclet number, and Right) suspensions at Pe=320 vs. the solid 

particle volume fraction. 

3.3. Microstructure 

As noted in the introduction section, the rheological response of a suspension to different flow 

conditions is associated with changes in the microstructural configuration of colloidal particles. 

These microstructural changes are usually presented in the form of pair correlation function 

projected into specific planes of flow. The radial distribution function g(r), is calculated in an 

isotopic fluid by calculating the probability of finding a neighboring particle at center-to-center 

distance r, i.e., the pair correlation function, without angular dependence.  Pair correlation 

functions under flow become anisotropic and hence, angularly dependent.   Here, the simulation 

box is divided into small layers (with sizes of less than the particle diameter) aligned in a specific 



flow plane. Figure 10 plots the 2-D pair correlation functions of the soft (modulus of 100) and 

rigid (modulus of 25000) at different shear rates in the velocity-gradient plane.  These structures 

show many features qualitatively similar to recent measurements, and even show evidence of 

four-fold symmetries as recently identified in shear thickening colloidal dispersions [Gurnon and 

Wagner (2015)]. 

 

Figure 10. Pair correlation function in velocity-gradient direction for the softest and most rigid 58% suspensions over a range of 

shear rates. 

The pair correlation functions in figure 10 show the different rheological regimes of each 

suspension. At the lowest Péclet number, both suspensions are in the shear-thinning regime 

where identical isotropic structures are observed. At the onset of shear-thickening, Pe=16, the 

microstructures start to show anisotropy, which continues to grow to be more evident at higher 

Péclet of 32. One can clearly observe similar microstructures for the soft and rigid suspensions in 

these regimes; however, at even higher shear rates, where the soft suspension exhibits a second 

thinning behavior, the pair correlation functions are significantly different. The rigid suspensions 

continue to form highly anisotropic structures where the colloidal particles are concentrated in 

the compressional axis. On the other hand, the soft particles are deformed in the flow direction at 



high shear rates and the microstructural anisotropy is substantially smaller compared to the g(x,y) 

of the rigid colloids. This is consistent with experimental reports Kalman (2010). Figure 11 

shows the pair correlation functions of the suspensions with different moduli, at the highest 

Péclet numbers of 320 in different planes. 

 

Figure 11. Pair correlation function of the 58% suspensions with different moduli, at Pe=320. 

The pair correlation function graphs given in figure 11 clearly show the pronounced anisotropy 

as the colloidal particles become more rigid. Since large and negative second normal stress 

differences in near hard-sphere suspensions are due to highly anisotropic microstructures that are 

formed at high shear rates within the hydroclusters (for detailed discussion refer to Foss and 

Brady (2000)), one can explain the reduced in magnitude and eventually positive N2 for the soft 

particles based on the reduced anisotropies observed at high shear rates for particles with lower 

moduli. One can clearly observe that softer particles are deformed under flow along the 

compressional axis where the lubrication stresses are high. This in turn suppresses the highly 

anisotropic structures that are signatures of lubrication forces (top right microstructure in figure 



11) and give rise to large (in magnitude) and negative normal stress differences. Additionally, 

layered structures evident in vorticity planes for the rigid particles are absent for the lower 

moduli, where particle deformation is the dominant mechanism in defining the microstructure of 

the suspension. 

4. Conclusions 

In this work, a comprehensive rheological analysis is reported for a range of soft to rigid 

suspensions, including measurements of the shear stress, pressure, and normal stress differences 

is reported for the first time. The corresponding rheological parameters are correlated to the 

microstructural changes in each suspension by means of pair correlation function graphs. Our 

simulation model includes along line of centers lubrication hydrodynamics and predicts a 

continuous and strong shear-thickening behavior at high shear rates for the near hard-sphere 

suspensions, while suggesting a second shear-thinning regime at very high shear rates for soft 

suspensions. This is in agreement with experimental measurements of Kalman (2010) for 

PMMA and Silica particles. The results of our normal stress measurements suggest that the N1 

remains negative and a linearly increasing function of the shear rate at high shear rates, with a 

slight dependency on the softness/hardness of colloidal particles. N2 shows a strong dependency 

on the contact modulus of the solid particles: in the shear-thickening regime N2 is negative and 

linearly increases (in magnitude) with shear rate; however, at the onset of second thinning 

regime for soft particles N2 begins to decrease in magnitude and eventually reverses its sign at 

elevated shear rates. This is not observed for near hard-sphere particle suspensions, which only 

exhibit large and negative N2 values. Both normal stress differences show strong dependencies 

on the fraction of colloidal particles. Furthermore, our results show that while at low volume 

fractions 1 2N N>  for rigid particles, 2N  grows faster by increasing the colloidal fraction and 



eventually in the dense regime it becomes larger than the N1. Our study suggests that at high 

shear rates and for the near hard-sphere suspensions, 2 1P N Nσ> > > . Using the stress of the 

suspending fluid at different shear rates, first and second normal stress coefficients, 1ϒ  and 2ϒ , 

and relative viscosity of the suspension, rη , were defined and for the rigid particles, all three 

quantities, as well as the pressure of the suspensions found to diverge near the maximum packing 

fraction. By fitting into empirical models of Eilers and Maron-Pierce we calculated the 

maximum packing fraction of colloidal particles with different moduli, and correlated it to the 

rheological response of the suspensions. We showed that the maximum packing fraction 

decreases at high shear rates as hydroclusters are formed, in agreement with recent experiments 

[Cwalina and Wagner (2014)]. The maximum packing fraction decreases with increasing particle 

hardness at high Peclet numbers and the limiting viscosity can be well described by a scaling 

model for elastohydrodynamics [Kalman (2010)]. The pair correlation functions of the soft 

suspensions show clear evidence of particle deformation in the flow direction at high shear rates 

and in the second shear-thinning regime; one can also correlate the positive N2 elasto-

hydrodynamically-deformed structure formation for soft colloids at high shear rates, where the 

deformation of particles mitigates the anisotropy generated from the hydrodynamic interactions. 

As with previous simulations, the use of a simple lubrication hydrodynamics model that neglects 

tangential interactions provides a semi-quantitative description of experimental observations on 

model suspensions. Tangential lubrication hydrodynamics and interparticle friction are neglected 

here in agreement with surface forces measurements of very low coefficients of friction for 

colloidal particles, however further research is warranted to explore whether they play a role in 

dilatant behavior, which is not explored here.   
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