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Synopsis

The present study develops an extension of the approach pioneered by Farris [T. Soc. Rheol., 12,
281-301, (1968)] to model the viscosity in polydisperse suspensions. Each smaller particle size class is
assumed to contribute to the suspension viscosity through a weighting function in two ways. First,
indirectly, by altering the background viscosity, and second, directly, by increasing the contribution of
the larger particles to the suspension viscosity. The weighting functions are developed in a consistent
fashion as a power law with the exponent, h, a function of the relative volume fraction ratios and the

base, g, a function of the solid particle size ratio. The model is fit to available theoretical and

experimental results for the viscosity of several binary suspensions and shows good to excellent

agreement depending on the functions g and h chosen. Once parameterized using binary suspension

viscosity data, the predictive capability to model the viscosity of arbitrary continuous size distributions is
realized by representing such distributions with equivalent ternary approximations selected to match
the first six moments of the actual size distribution. Model predictions of the viscosity of polydisperse
suspensions are presented and compared against experimental data.

Keywords: Viscosity model, Polydispersity, Noncolloidal suspension, Huggins coefficient, Moment
approximation

3 Author to whom correspondence should be addressed; email: beris@udel.edu



I.  INTRODUCTION

The theoretical study of the rheology of suspensions has a long history. It dates back to the
seminal work by Einstein who first described theoretically the relationship between viscosity and the
solids volume fraction in dilute suspensions of solid spheres [Einstein (1906)]. Subsequent works on
understanding higher order effects in more concentrated systems include the work of Batchelor (1970)
and Happel and Brenner (1983) . It is clear from experimental evidence that the total solids fraction is
not the only factor affecting the rheological properties of suspensions [Jeffrey and Acrivos (1976)]. One
key factor is particle size polydispersity which has immediate consequences in numerous industrial
processes including the processing of slurries and in the food industry. In many applications it is
important to determine the particle size distribution that minimize the viscosity of a given particulate
formulation. Therefore, it is not surprising that attempts to model the limit of no-flow (maximum
packing) in particulate systems [Furnas (1931), Ouchiyama and Tanaka (1984)] and more generally
polydispersity effects on rheology [Mooney (1951), Farris (1968), Chong et al. (1971)] comprise a
longstanding area of inquiry. Over the past few years, there has been renewed interest in modeling the
effects of the particle size distribution on suspension viscosity. In particular, there have been a number
of recent publications that have proposed alternative models to describe the effects of polydispersity on
viscosity, including works by Qi and Tanner (2011), Dorr and Sadiki (2013) and Farr (2014).

Experimental measurements [Chong et al. (1971), Sweeny (1959), Poslinski et al. (1988), Chang
and Powell (1994)] and simulation results [Chang and Powell (1993)] show that polydispersity induces
significant changes in suspension rheology, when compared to monodisperse systems. For example,
computer simulations by Chang and Powell (1993) starting from initially random configurations indicate
that clusters of large and small particles are a plausible microstructural explanation for the changes in
rheology observed in bidisperse systems. At the moment, no first principles theory is available to predict

the effects of polydispersity except for certain limiting cases. More specifically, Wagner and Woutersen



(1994) presented exact calculations for the effects of polydispersity on the viscosity of Brownian
suspensions in the dilute regime. However, the development of first principles theories for concentrated
suspensions remains an open question despite being of great practical relevance. In the absence of such
theories, there are three main phenomenological approaches that have been used to understand and
model the effects of polydispersity on suspension rheology. These are the maximum packing fraction
approach, the Mooney approach [Mooney, (1951)] and the Farris approach [Farris (1968)].

From the theoretical point of view, there has always been an interest to evaluate the limit of
flowability in dispersed systems [Furnas (1931), Ouchiyama and Tanaka (1984)] leading to the
development of models to predict the maximum packing fraction of particulate systems. Based on these
models, rheologists have used the maximum packing fraction to model the viscosity of binary
suspensions [Chang and Powell (1994), Chong et al. (1971), Poslinski et al. (1988)]. In the first variant of
this approach, the viscosity is assumed to obey any one of the empirical or semi-empirical viscosity
correlations for monodisperse hard sphere suspensions [Eilers (1941), Maron and Pierce (1956), Krieger
and Dougherty (1959)]. A review of these and other viscosity correlations is presented by Faroughi and
Huber (2015). The auxiliary information on the particle size distribution (PSD) only enters into the
calculation via a modification of the maximum packing fraction based on various models [Furnas (1931),
Ouchiyama and Tanaka (1984), Sudduth (1993)]. Qi and Tanner (2011), identified shortcomings in the
maximum packing model by Ouchiyama and Tanaka (1984). In particular, this model yields unphysical
predictions in the limit of vanishing values of the small particle volume fraction in a binary suspension.
On the other hand, the model by Furnas (1931) is based on geometrical arguments and is inherently
limited to large size differences only. In the case of binary suspensions, this model predicts a single
maximum packing fraction that corresponds to the theoretical maximum attainable packing.

Qi and Tanner (2011, 2012) developed a model that provides a method to directly calculate the

suspension viscosity in binary and multimodal suspensions by consecutively accounting for the effects of



the different size classes on the overall viscosity in a multiplicative fashion. Starting from the larger size
particles, where the maximum packing fraction is assumed to be random close packing, each
subsequent smaller particle size is assumed to have an adjusted maximum packing fraction that depends
on the volume fractions and the particle sizes present in the system. The suspension viscosity is then
calculated as a multiplicative product of the contributions of each individual size class to the relative
viscosity of the suspension. Related to the Qi and Tanner approach is the work of Dorr et al. (2013) who
have developed an effective medium approach that considers the contribution of each size class to
suspensions viscosity explicitly. In their model the suspension viscosity is computed recursively based on
the addition of particles of a larger size class to an effective suspension of smaller size particles, unlike Qi
and Tanner (2011,2012) who use a multiplicative rule. Their model also uses a modified maximum
packing fraction that is associated with the stepwise addition of each size class and is computed based
on excluded volume arguments. However, like the Furnas maximum packing model [Furnas (1931)], this
model is currently limited to suspensions with large size differences between successive classes. A
unique additional contribution of this work is the matched asymptotic expansion to a generalized
viscosity correlation that allows one to arbitrarily choose the second order Taylor coefficient (Huggins
coefficient), in addition to satisfying the Einstein limit. This provides additional flexibility to account for
different inter-particle interactions present in real systems and introduces an interesting paradigm to
systematize the analysis of viscosity measurements across a wide variety of systems.

Mooney (1951) presented an alternative to the maximum packing theoretical model for
viscosity in suspensions by using a ‘crowding factor’. Using symmetry arguments as constraints, he
derived an expression to describe the suspension viscosity taking into account explicitly the
contributions of each size class. This was essentially a renormalization of the Einstein dilute limit result
to describe the relative viscosity in a monodisperse suspension through an exponential function of the

volume fraction. However, instead of the 2.5¢ dependence, the effective volume fraction is increased



up to@d/1—Ke¢, where k is a crowding factor that is selected phenomenologically to represent

concentration effects in monodisperse suspensions. For polydisperse suspensions, Mooney postulated a
dependence of the crowding factor on the relative particle sizes. Finally, the total suspension viscosity is
calculated from multiplicative contributions from each size class. Even though Mooney alluded to the
extension of his approach to polydisperse suspensions, he never completely addressed this aspect in the
original publication. Following Mooney’s work, Farr (2014) extended the original approach with two
main contributions. First, he proposed a model for how the crowding factor depends on size ratios for
arbitrary size distributions, completing an important aspect of Mooney’s original idea. Second, Farr
allowed for further additional complexity in the modeling of the suspension viscosity by including a
‘dispersity effect’ to account for the heterogeneity of particle interactions in a polydisperse suspension,
therefore introducing more flexibility to allow for better fits to experimental data. Faroughi and Huber
(2014) have also recently described a theoretical argument for a crowding-based rheological model for
binary suspensions. They establish the crowding effect as the reduction in the ‘dead fluid volume’ that is
associated with a given level of packing and are able to show good agreement with experimental data.
Farris (1968) described an alternative theoretical approach towards calculating the effect of
polydispersity on the suspension viscosity. His model was motivated by previous work on sedimentation
in binary suspensions [Fidleris and Whitmore (1961)], where the large particles in the presence of much
smaller particles are observed to behave in a manner that suggests that they are interacting with an
effective Newtonian viscosity corresponding to a suspension of the smaller particles. Under such
conditions, he assumed there are no interactions between particles of different sizes. The total
suspension viscosity is computed as a product of the relative viscosity of the large particles multiplied by
an effective viscosity of the renormalized medium. The attractive feature of this approach is that it
provides a methodology towards constructing the viscosity of a polydisperse suspension of particles by

explicitly considering the effect of each particle size class during the viscosity calculation. However, it is



currently limited to suspensions with large size differences between successive particle size classes.
Although Farris demonstrated the possibility of introducing ‘crowding factors’ to extend his model
applicability to systems with arbitrary size distributions, no systematic methodology was provided to
achieve this, leaving this modeling approach incomplete.

In our work, a modification and extension of the Farris approach is presented. As in the original
approach, we start by requiring the relative viscosity of the monodisperse suspension to be a function of
volume fraction represented by one of the many empirical formulae available, depending on the nature
of the suspension. Next, a systematic methodology is developed to weight contributions from different
size classes. On addition of a larger size particle to a suspension, the weighting functions relegate a
fraction of the already present smaller particles to interact directly with the added particle volume
fraction, with the remaining contributing towards increasing the effective background viscosity. A key
element of our approach is to use formulae that by construction preserve the consistency of the model
for all possible limiting cases. Still these constraints are not enough to uniquely define the weighting
function. Thus by necessity, the weighting function involves fitting parameters that need to be
determined empirically. This can be achieved using theoretical results as well as experimental and/or
simulation data on binary suspensions. Once parameterized based on binary viscosity data, our model
can predict the viscosity of suspensions containing particles with multiple sizes e.g. ternary suspensions.
This is analogous to the approach of Renon and Prausnitz (1968) to predict the excess Gibbs free energy
of multicomponent mixtures from binary data alone. The success of such an approach here indicates the
power of linking the complex behavior of systems to that of known limiting cases and of systematically
interpolating it in a consistent fashion based on a limited set of empirical parameters. This is an
especially useful first approach when faced with complex systems for which there is little guidance from

first principles theory on how to develop a comprehensive model of the phenomena to be described.



The rest of the paper is organized as follows: In Section Il, we present the relevant theory and
model development for binary and ternary suspensions, as well as the details of its implementation to
polydisperse suspensions. In Section Ill we describe the parametrization of the model based on
theoretical calculations of the Huggins coefficient by Wagner and Woutersen (1994). In the same section
we also show how the model can be parameterized based on either numerical simulations of spherical
particles on a monolayer or experimental viscosity data of a binary suspension. In Section IV, we validate
the model by comparing its predictions of binary suspension viscosities against those obtained with
recent alternative models from the literature. In Section V, we develop predictions of the viscosity of
polydisperse suspensions, comparing them against available experimental data, and we demonstrate

their insensitivity to the details of the implementation. Finally, our conclusions follow in Section VI.

II. MODEL DEVELOPMENT

A. Proposed approach and underlying physical picture

The general framework within which we have developed our viscosity model assumes the
presence within the suspension of multiple particle size classes with the viscous effects attributable to
hydrodynamic interactions only. Therefore, the model is currently limited to noncolloidal suspensions as
well as colloidal suspensions in the plateau viscosity region at high shear rates (or Peclet numbers).
Similar to the maximum packing fraction models, the starting point of the proposed constitutive
equation is provided by the relative viscosity relationship of a monondisperse suspension. A number of
such empirical and semi-empirical relationships exist [Eilers (1941), Maron and Pierce (1956), Morris and

Boulay (1999), Zarraga et al. (2000)]. For example, Singh and Nott (2003) fit the volume fraction (¢ )
dependence of the shear viscosity (77,) measurements in noncolloidal suspensions using Eiler's

equation
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max
with ¢max =(0.58. The model for the viscosity of polydisperse suspensions developed in this work allows

for flexibility in the choice of the functional form of 77, as needed for practical applications. The
particular relative viscosity model chosen (e.g. Eq. (1)) can then be used to define a hydrodynamic

function for a single-size particle suspension, fu ,as

17, = exp(f,). (2)

Through this definition, the Farris model [Farris (1968)] can now be recast using the formalism of
hydrodynamic functions.

The original approach used by Farris (1968) to calculate binary suspension viscosity assumed

that the smallest particles act to change the effective suspension medium in which the larger particles

exist. Mathematically, we can define a binary hydrodynamic function, f to represent Farris’

bi,Farris 7

approach as

fbi,Farris = 1:u (¢L) + fu (¢S )’ (3)

where

b = (1-w)g,
’ (1_¢D_W¢d) ,

(4)

¢|_ :W¢d +¢D .

The subscripts d and D denote the small and large particle diameters, respectively, in the suspension and
w is a suitable weight function that depends on the relative size ratio, d/D. The renormalized volume

fractions of the respective particle sizes appearing in the arguments of the hydrodynamic functions are

labelled as ¢d and ¢D for small and large particles respectively. The total volume fraction ¢ is computed



as the sum of these two quantities. ¢L and ¢s are intermediate variables that represent adjusted

volume fractions of large (L) and small (S) particle contributions to the effective viscosity of the

suspension. In Eq. (3), f describes the combined effective hydrodynamic effect in a binary

bi, Farris
suspension. Farris (1968) primarily discussed the case where w=0. This represents the limit of large
differences between the two particle size classes i.e. d/D<<1. The separation of length scales in such a
suspension implies that the large and small particles are non-interacting. Therefore, the viscosity in such
a suspension can be described based on excluded volume arguments alone [Farris (1968)]. The
equivalent calculation of the viscosity of a binary suspension as described by Farris (1968), in terms of

the binary hydrodynamic function is given by

nr,Farris - eXp( fbi,Farris ) (5)

Although Farris (1968) postulated that the weighting function w appearing in Eq. (4) could be
generalized to represent suspensions in which the separation of length scales is not very large, he did
not provide a methodology to do so. In this work, we present an alternative formulation to
systematically develop a viscosity model that is applicable to suspensions with arbitrary separation of
scales, as well as polydisperse and continuous particle size distributions. The viscosity in such
suspensions may be calculated in a recursive fashion. We start from the consideration of the smallest
particle fraction, which is assumed to obey one of the monodisperse suspension viscosity rules such as
provided by Eq. (1). The effect of the next larger in size particle fraction is then considered. During this
construction step, a fraction ( ) of the already existing small particles is assumed to interact with the

added volume fraction of larger particles, resulting in an effective volume fraction of larger particles (

PP, + ). These are then assumed to exist in an effective medium whose hydrodynamic function is a

fraction (1— ) of the hydrodynamic function evaluated considering only the smaller particles. This

construction can be carried out repeatedly, adding larger and larger particle fractions to the suspension,



while renormalizing the volume fractions at each construction step with appropriate weighting function.
The essence of this approach is summarized in Fig. 1 for a binary suspension, and can be represented

quantitatively by a binary hydrodynamic function given by

fbiszu(/B¢d+¢D)J+ &fu(¢d)(1_ﬂ)9 (6)

/

A B
where, f is a weighting function that is assumed to depend on both the relative size ratio (d/D) and

composition (¢d /¢D) of the binary suspension. The viscosity of the binary suspension is then

calculated from
T pi = exp( f,). (7)
At the heart of this model is the weighting function, /3, that accounts for the two fold effect of

the smaller particles in (a) increasing the effective volume fraction of the larger particles (term A in Eq.
(6)) and in (b) enhancing the overall background viscosity (term B in Eq. (6)). Therefore, the

development of an appropriate form of the weighting function is the focus of the following section.

Gerr = (3%% * ¢D)

- N1 =) b
S @ Y

. =large particles (diameter D and volume fraction ¢y )

@® =small particles (diameter d and volume fraction ¢4)

FIG. 1: An illustration of the construction steps to renormalize a binary suspension allowing for the
calculation of the viscosity. The goal is to express the viscosity of the real binary suspension (far left) in
terms of an effective renormalized suspension (far right) consisting of an effective medium (shaded
background) and effective volume fraction (large circles).
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B. Model development for binary suspensions

The success of the proposed model depends on careful selection of the weighting function. This
selection is guided by observations from experimental measurements of the viscosity in binary
suspensions from literature [Chong et al. (1971), Poslinksi et al. (1988), Gondret and Petit (1997)]. The
only constraints explicitly considered in the selection of the weighting function are those originating
from the ability to recover characteristic limiting behaviors. More specifically, a binary suspension

behaves like a monodisperse suspension under certain limiting conditions of relative size and
composition of the constituent particles. Therefore, the binary hydrodynamic function fbi , described in

Eq. (6) must fulfill the 4 key limits outlined below

lim f, = f . (4) lim f,; = f, (¢)
B»O B»l ) (8)
(}Dlgno foi = 1, (¢d) ;diglo foi = T, (¢D)

Consequently, from the definition of fbi in Eq. (6), the weighting function,ﬂzlg{i,g’j_d] , for a
D ¢,

binary suspension consisting of small particles (d, @,) and large particles (D, @;) must obey the

following limits

: d ¢ d ¢
Jm, ﬂ[ j ! Jim, ﬂ[ “}0
D ¢D ¢D i (9)
2 ¢,
:Toc £ ( D4, j 1 111110 p { D4, j = constant

A robust and useful form of the weighting function £ that satisfies the above limits, is given by a power

law

efof2)[H -

11



where the exponent, h, is assumed to depend only on the particle volume fraction ratio, ¢d /¢D , and

the base, g, on the particle size ratio, d /D . These can therefore be interpreted to represent an
effective volume fraction ratio and an effective size ratio respectively. For consistency with the limiting

behavior of the weighting function given in Eq. (9), the functional forms of g(d/D)andh (¢, /¢, )

must, at a minimum, obey the following limiting behaviors:

. d
m (BJ =0
D
limg (EJ =
E*}l D
D

. (11)
lim h (¢—d] =1

It should be noted that the third limit in Eq. (11) can be any constant, but by selecting it to be a specific

fixed value (1 is chosen for simplicity) we can uniquely define the g and h functions.

The particular functional form of the weighting function, £, in Eq. (10) is chosen for

convenience, in order to facilitate the extension of the model to multimodal and polydisperse

suspensions (see Section Il C and D). In addition, the form of Eq. (10) allows us to separate the effects of
relative size (d / D) and composition (@, / @) on the viscosity of a binary suspension. This assertion

will be justified later on in this section. For the effective volume fraction ratio, we further shall assume

(8]
#o Ky + Pp

where the parameter K plays a similar role to the crowding factor in Mooney’s (1951) viscosity

expression. More sophisticated mixing rules are possible by allowing additional complexity (more

12



parameters) in the functional form ofh (¢d !/ ép ) On the other hand, the yet to be determined,
effective particle size ratio, g, accounts for all the dependence of the viscosity on the relative size ratio,
d / D, and is an increasing function of it. A parametric study of the weighting function [ described by
Egs. (10) and (12), as a function of the effective particle size ratio, g, 0 < g <1, is presented in Fig. 2 for
various values of @, /¢, and « . This result verifies that the limiting behaviors of the weighting function

outlined in Eq. (11) are preserved for the choice of h described by Eq. (12).

1.0

0.8

k=3

P 04/9,=0.01 |

0.6

. = = 0J0p=1
0.4 == 9495510
k=8 ]
02 — ¢/0,=0.01
o ¢’d/¢D=1
0.0 . . —_— %./%:.1 g
0.0 0.2 0.4 0.6 0.8 1.0

g

FIG 2: A parametric study showing the dependence of the weighting function £, defined in Eqg. (10), on

the effective size ratio, g, for different values of the parameter x and the volume fraction ratio, @, / ¢,

. All the limits of Eq. (9) are fulfilled for the functional form of the weighting function in Egs. (10) and
(12) irrespective of the values of the parameter k.

A key, implied property, of the form of the weighting function in Eq. (10) is the decoupling of the
effects of relative size and composition on the overall viscosity of a binary suspension. Therefore, it is

important to show that the parameter K appearing in Eq. (12) primarily controls the occurrence of the

13



viscosity minimum. This is demonstrated by assuming using a Krieger-Doherty viscosity relationship for a

monodisperse suspension given by

¢ 2.5 ma
n=\1=— ) (13)
( ¢max j

where the maximum particle volume for flow, ¢m, is typically assumed to be random close packing limit

(0.64). This expression is used to define the monodisperse hydrodynamic function defined by Eq. (2).
The occurrence of the viscosity minimum in a binary suspension can be calculated from the first

derivative of the binary hydrodynamic function in Eq. (6) with respect to the fraction (by volume) of

small particles in the suspension, y = ﬁ This is expressed as
s T %o
of..
- =0, (14)
al Zmln

where ¥, .. represents the solid volume fraction of small particles in the total solids loading at which

the viscosity minimum is observed. Using Egs. (2), (10), (12) and (13) to define fbi in Eg. (6), the

extremum condition represented by Eq. (14) can be written explicitly as,

¢ (6_1)+azmin + 1-6 _aln[l_lmin¢J:O ) (15)
¢(Zmin (0_1)+1) ¢Zmin _¢max max
where,
—x1 0
, 48 __ —xIn(g) ) 16)
dl Zmin ((K‘_l)/llmin + 1)
and
[1_ KX min J
9 — g KZmin+(1_7(min) (17)
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The behavior of Eqg. (15) is now studied parametrically for two scenarios. In the first scenario, we
consider the relationship between ¥ . and g for various values of K while holding the total volume
fraction (@) fixed. The results in Fig. 3 suggest that the position of the viscosity minimum is a strong
function of the choice of K and depends only weakly on the relative size ratio (d/D), which is implicit in
the g function. In the second scenario the relationship between y,. and g at fixed values of K for
various values of @ is examined. The calculations, summarized in Fig. 3, suggest that the occurrence of
the viscosity minimum is only weakly dependent on ¢ . Furthermore, for k¥ =6 we observe that the
value of y,_. at which the viscosity minimum is seen lies between 0.25 and 0.35. This choice of K is
consistent with empirical observations where, for a fixed size ratio (d/D) and total solids loading (@),

the viscosity minimum is seen to occur when 25-35% of the total solid particles by volume are small

[Mewis and Wagner (2012)].
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FIG 3: A parametric study of the relationship between the minimum viscosity solid particle volume
fraction, ¥,.,, and the effective size ratio, g, defined by Eq. (15), at two different values of the

parameter & and at various total solids volume fractions, ¢ .

The ability of the model to decouple the size and composition effects in a binary suspension is
demonstrated. This means that two pieces of information are needed to parametrize the model. The
parameter K may be chosen such that the viscosity minimum predicted by the model occurs over the
desired composition range that is observed experimentally. On the other hand, to determine the

functional form of the effective size ratio, g, one needs measurements of binary suspensions viscosity

as a function of size ratio (see Section Ill). While the analysis presented in Eqs. (14)-(17) can be applied

to any choice of the monodisperse viscosity correlation, the final closed forms solution may be more
complex depending on the particular choices of 77, and h (¢d / $o ) Therefore, in subsequent sections,
K will be treated as an additional fitting parameter whenever a Krieger-Dougherty viscosity relationship

is not used for 7}, and/or no data on the viscosity minimum are available.
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C. Model extension to ternary suspensions

The ability to calculate the viscosity of a ternary suspension requires the development of an

appropriate hydrodynamic function, ftri , such that the viscosity of the ternary suspension is given by

nr,tri - exp( ftri ) (18)
We achieve this by considering the effect of adding another larger size particle DD>D at volume fraction

¢DD to an existing binary suspension of particle sizes d and D>d and corresponding volume fractions ¢d

and @, . To be consistent, f_, must reduce to the relevant binary and monodisperse limits, as the

ternary suspension degenerates into either a binary and monodisperse one. The trimodal hydrodynamic

function must therefore obey the following limits

lim fri =T lim fr: = Jlim fri =1,

——>1 ——)l —>l

D DD D DD

;dlg(l) fri = Ty };210 fri = Ty ¢l1DIEo fri = T _ (19)
lim f _ =f lim f_ =f lim f_ =f
by . —0 Tri u b Bop —0 Tri u by dop —0 Tri u

Considering these limits, the binary hydrodynamic function from Eq. (6) is extended to develop

an analogous expression for a ternary suspension of successive particle diameters d<D<DD and

respective volume fractions ¢, ¢, and @, given by

ftri = 1Eu (182 (:Bl¢d +¢D)+¢DD)+ fu (181¢d +¢D)(1_ﬂ2) + fu (¢d )(1_:81)- (20)

The corresponding extended weighting functions, ,3,, are given by

d 4 g \Plat)
IBI ﬂ( * ¢D ¢DDJ :{g(ﬁj} ’ (21)

and
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where
D 4 D ¢
op it Joo {1 gt
o* = b 4 b 4 , (23)
'B[DD’gzﬁDD]% +(l_ﬂ[DD’¢DD]J(¢d)
¢*=Lby+p (24)
h [«f_J [ILJ 25)
@5 + oo K@y + P + Iop
and

2 I
h2{¢ooj_(l K¢*+¢DDJ . 26)

The functional form for ﬂl and ,6’2 appearing in Egs. (21) and (22) is similar to that defined for binary

suspensions in Eq. (10). The set of expressions in Eqgs. (21)-(26) appear to be more complex, but are

strictly consistent with all known limits of the monodisperse and binary suspensions. For example, by
setting ¢DD equal to 0 in these equations, we recover from Eq. (20) the binary hydrodynamic function in

Eg. (6). Note that the formulae above only require information that can be obtained from bimodal data.
The model can be further extended to quaternary suspensions in a straightforward fashion as
shown in Appendix A. Similarly one can proceed in a recursive fashion, to extend the model to arbitrary
multi-n-ary suspensions. However, the formulae are complex, and as will be argued shortly,
unnecessary. Finally, it is noteworthy that the extended weighting functions described by Egs. (21)-(26)
(as well as Egs. (49)-(51) for quaternary suspensions in Appendix A) incorporate the same parameters

appearing in the weighting function defined for binary suspensions in Egs. (10) and (12). This means that
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the ternary suspension model only requires binary suspension data to specify the form of the weighting
function. This feature gives the model predictive power with respect to estimating the viscosity of

ternary and polydisperse suspensions (see Section V).

D. Implementation of the model to polydisperse suspensions

Suspensions of practical relevance such as coal slurries [Rosin and Rammler (1933)] are
comprised of continuous size distributions® such that is desirable to be able to predict the viscosity of
such suspensions. One approach is to discretize the continuous size distribution and proceed with
modeling it as a multi-n-ary distribution following the method outlined above. However, as we shall
show, this is not necessary. Instead, it suffices to simply discretize the continuous particle size
distribution with a small but sufficient number of finite size classes in such a way as to fit the first few
moments of the actual distribution. Wagner and Woutersen (1994) proposed that just three particle size
classes (or fitting the first 6 moments) are adequate to represent the rheological properties of a
suspension with a continuous particle size distribution. This means that a continuous size distribution
can be described by an equivalent ternary suspension. Therefore, the ternary hydrodynamic function
developed in Eq. (20) can be used to predict the viscosity in polydisperse suspensions.

The information to determine the equivalent ternary suspension first needs to be extracted
from the volume-weighted continuous size distribution. The moments of the continuous distribution are

defined by

m = [Rf,(R)dR, (27)
0

where f, (R)dR represents the normalized volume-weighted number density of non-colloidal particles

with radii between sizes R and R+dRand M, is the k¥ moment of the distribution. The first 6

! Continuous size distributions as discussed here refers to single peaked distributions with relatively short tails.
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moments of the continuous volume-weighted size distribution (M ; 0<i<5) are then used to

generate an equivalent ternary approximation based on the following equation
2 k
m =Y ol , (28)
i=1

where @ and |_| are the /" weight and sizes of the equivalent ternary system respectively. The relevant

modeling information is then obtained from these weights and sizes using the following relationships:

b=—2p =2 fo=— g, (29)
2.0 2o >
d=L, D=L, DD=L,. (30)

In Eq. (29), ¢ is the total solids volume fraction and d, D and DD represent the small, medium and large

particles respectively in the system with¢d,¢D and ¢DD the respective volume fractions. Using the

equivalent, but approximate, ternary representation of a continuous size distribution, all the variables
appearing in Egs. (20) - (26) can be defined based on Egs. (27) - (30). The sensitivity of the model to the
number of discrete size classes is examined in Section V to justify the 6-moment approximation

proposed for continuous size distributions in the context of the model developed in this work.

lll.  BINARY SUSPENSIONS: COMPARISONS AGAINST EXISTING THEORY AND
EXPERIMENTS TO DETERMINE MODEL PARAMETERS

To develop the weighting function outlined in Eq. (10), the constituent functions representing

the effective size ratio and effective volume ratio, g and h respectively, must be specified. For the

effective volume ratio (h ) specified in Eq. (12), only the parameter K needs to be determined. On the

other hand, the effective size ratio (g ) is an unknown function whose dependence on the size ratio
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(d/D) must be determined. In this section, we present a theoretical development of the effective size

ratio (g ) as well as an alternative empirical development based on simulation or experimental data of

the viscosity of binary suspensions.
A. Determining model parameters from the Huggins coefficient in dilute
limit
In dilute hard sphere colloidal suspensions, the Huggins coefficient, kH, accounts for pair
interactions and therefore provides information on colloidal interactions [Russel (1984)]. In practice, the

Huggins coefficient is related to the ¢2 coefficient in a Taylor expansion of the viscosity with respect to
the volume fraction

7, =l+2.5¢+c¢2¢52 F... (31)
For the Krieger-Doherty relationship in Eqg. (13), C¢2 turns out to be equal to 5.0 for monodisperse

particles if we assume @ =0.67. This is exactly the value computed by Wagner and Woutersen

max
(1994) for a random configuration of hydrodynamically interacting spheres. The corresponding measure
for binary and polydisperse suspensions has also been determined for a random binary suspension of

hydrodynamically interacting unequal spheres [Wagner and Woutersen (1994)] as

2 2
C¢2:2.5+Zz;(i;(le(ﬁ,,j). (32)

j=l i=1

where y,and ,represent the composition of small and large particles in the suspension with

X+ =1and /1].]. =d, /d].. I, (/1iJ )accounts for the hydrodynamic pair interactions between spheres

computed from previous theoretical results of Jeffrey’s resistivities [Jeffrey (1992), Wagner and
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Woutersen (1994)] and is defined to be equivalent upon /1”- —)1/2,”- substitution. The calculations of

C¢2 from Eq. (32) are presented schematically in Fig. 4, for different compositions and size ratios.
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N"’ —— d/D=0.624
% — d/D=0.5
——d/D=0.2
456 _ ' — d/D=0.1
0.0 0.5 1.0

Fraction of small particles (x1)

FIG 4: Calculated values of C¢2 using Eq. (32) and the values of |, (d / D) provided by Wagner and

Woutersen (1994) of as a function of the solids fraction of small particles for different size ratios (d/D).

Using our modeling approach, we calculate the binary suspension viscosity (nr’bi ), as described

in Section Il, by assuming the Krieger-Doherty relationship in Eq. (13) as the model for the monodisperse
suspension viscosity. The Taylor expansion of 7, . defined by Eq. (7), is then given by

25( (m(B(9.2)-1)+1) + 22 (1-5(9. 1))

. =1+2.5¢+7 y +25|4+0(4'), (33)

where

B(9.2)= g[l’“ﬁ”] , (34)
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and ¢mis assumed to be 0.67 to preserve the consistency with the Wagner and Woutersen (1994)
relation in the monodisperse limit. By equating the expression for C¢2 provided by Eq. (32) and the ¢2

coefficient in Eq. (33), the relationship between the relative size ratio ( g ) and the size ratio (d/D) can be
determined once the parameter Kis determined. Following the procedure described in Section Il B, K is

computed independently using Egs. (15)-(17) together with the observation that the minimum in C¢2
always occurs at Ki.min equal to 0.5 (see Fig 4). From this procedure, the value of Kis determined to be

0.54. Next, by enforcing equality of Eq. (32) and the ¢2 coefficient in Eq. (33), the effective size ratio
values ( g ) that best parametrize the results of Wagner and Woutersen (1994) (see Fig. 4) are extracted

and are presented in Fig. 5. These can be fit to a power law given by

d 0.18
= — . 35
o-(2) -
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FIG. 5: The empirically determined g function values and their dependence on (d/D) obtained by

enforcing equality of Eq. (32) and the ¢2 coefficient in Eq. (33). Solid points represent g function values

applied to generate the fits at the different size ratios (d/D) shown in Fig. 5. The solid line is a
parameterization of the g function values obtained by fitting to a power law.

The full weighting function defined in Egs. (10) and (12) corresponding to the effective size ratio

provided by Eq. (35) is then given as
0.544,
d h[:f] g \*'* [lfmj
=9 (B] = (Bj : (36)
The corresponding comparison for Cqu of the model predictions based on this weighting function and the

theoretical results from the calculations by Wagner and Woutersen (1994) using Eq. (32) is then shown

in Fig. 6.
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FIG. 6. Comparison of calculations of the ¢2 coefficient following the theoretical results from Wagner
and Woutersen (1994) (symbols) and the calculations from the model (lines) using Egs. (33) and (36).

The approach outlined in this section represents one way to determine the components of the

weighting function, g and k', that appear in the definition of the binary hydrodynamic function. The

ability of the model to capture the semi-dilute behavior (the ¢2 coefficient) as provided by an

alternative, first-principles, approach, provides some justification for the form of the weighting function
used, as well as the definition of the bimodal hydrodynamic function. However, it should be noted that
the theoretical results from Wagner and Woutersen (1994) assume that the particle configurations are
random. This is not necessarily true for suspensions under flow, even if one starts from a random
configuration [Batchelor and Green (1972), Chang and Powell (1993), Mewis and Wagner (2012)]. For
example Chang and Powell (1993) reported formation of clusters of large and small particles in
simulations of non-Brownian binary sphere suspensions despite starting from a random configuration of
particles. Therefore, alternative, necessarily empirical, weighting functions must be developed to reflect

the actual microstructure that develops under flow, especially for non-colloidal suspensions. In the
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following section, we discuss how to develop such empirical weighting functions by comparison against

either numerical simulations or experimental data on the viscosity of binary suspensions.

B. Estimating weighting function using concentrated binary suspensions
data

The evaluation of the weighting function defined by Eq. (10) can proceed in two ways depending

on the available data. Like the previous section, if the relative viscosity as a function of the composition

of small particles ( %, ) is known and displays a viscosity minimum at y, .. , then an approach analogous

to that described in Egs. (13)-(17) (Section Il B) may be used to independently determine K.

Subsequently, the relationship between g and d/D can be estimated by fitting the viscosity model to

binary suspension viscosity at different d/D ratios. Otherwise, if such data is not available, K should be

considered as a fitting parameter, together with g, to be determined from the binary suspension

viscosity data. Therefore at a minimum, one must have binary suspension viscosity data taken over
multiple d/D ratios to parametrize the model. In this section, the latter approach is used to determine

the weighting function.

The following methodology was used to fit the parameters. First, an appropriate monodisperse
viscosity relationship, such as Eq. (1), specific to the particular system, needs to be selected such that it
best describes the monodisperse suspension viscosity. The next step is to determine the empirical
weighting function. For this section, we limit ourselves to the simple expression for h that involves a
single parameter K (see Eq. (12)). As such, for a selected K value we fit the corresponding J for any
given d/D ratio so that the error is minimized. This procedure is repeated iteratively until the overall
relative error between the calculated viscosities from Eq. (7) and the experimental binary viscosities is

minimized. At the end of the fitting process, there are as many ¢ values as there are d/D ratios and a
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single K'value. Finally, a parametrization for g vs. d/D is developed, allowing us to interpolate for all

possible effective size ratios. This parametrization must fulfil the limits outlined in Eq. (11) for d/D equal
to 0 and 1. This approach to develop the weighting function in Eq. (10) is now demonstrated using

simulation data as well as experimental measurements on binary suspension viscosity.
1. Simulations of monolayers of non-colloidal suspensions

The various components of the weighting function, g and x, can be determined by fitting the

bimodal suspension viscosity model to the Stokesian Dynamics simulation results by Chang and Powell
(1993). These simulations emulate binary suspensions of spherical particles in a monolayer. Owing to
their two-dimensional nature, these simulations do not incorporate all the features of a real suspension.
Nevertheless they provide a good test bed to develop insights on the form of the weighting function.

The monodisperse viscosity relation for the simulation data used is given by

7.13
0.22¢
= ]1+— 0<¢<0.6
7, [+ s /0.78)j $<0.6 (37)

where @ is the areal fraction with a maximum packing of 0.78. Using Egs. (6) and (7) to define the binary

hydrodynamic function, the simulated binary suspension viscosity results are fit to the viscosity model.
The best fit value of Kis 3.13 and the best representation of the relationship between effective size

ratio ( g ) and the true size ratio (d / D ), shown in Fig. 7, is given by

1.67
g :1_(1_ij . (38)

The corresponding weighting function is given by

p= {g (%ﬂhm - {1 —(1 —%jw }[lm] , (39)

and the resulting model fits are compared to the simulated binary viscosity data in Figs. 8 and 9.
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Chang and Powell (1993) reported formation of clusters in their 2-D simulations. This departure
of the 2-D suspension from ideal binary suspension behavior can be quantified by comparing the
effective size ratio, g, in Eq. (38) to that in Eq. (35) (which is assumed to represent an ideal random
binary suspension). This comparison is summarized in Fig. 7. The effective size ratio from Eqg. (38) is
consistently smaller than that of Eq. (35) as well as the monodisperse value of g =1. This suggests that
the effect of polydispersity in mitigating hydrodynamic interactions is far larger in the non-random
binary suspensions simulated by Chang and Powell (1993), when compared against the calculations by

Wagner and Woutersen (1994) on random binary suspensions.

0.8 -

0.4 .

0.0 ¥———————————————
0.0 0.2 0.4 0.6 0.8 1.0

d/D

FIG. 7: The empirical relative size ratio ( g ) as a function of the true size ratio (d/D) determined from the

2-D monolayer simulations of Chang and Powell (1994). The solid points represent the empirically
determined relative size ratios fit to the simulation data shown in Fig. 8 and 9. The continuous line
represents (Eq. (38)) the parameterization that is most consistent with the fit values of the relative size
ratios. For comparison, the dotted line (Eq. (35)) corresponds to the parametrization based on the
effective Huggins coefficient of random suspensions (see Fig. 5).
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FIG. 8. Model fit compared to simulation data from Chang and Powell (1993) showing the dependence
of the relative viscosity on the particle size ratio (d/D) with the fraction of small spheres is fixed at 0.27
for binary all cases. The weighting functions for the fits were calculated using the effective size ratio
values (g ) in Fig. 7and x =3.13. Monodispersed d/D=1, Binary d/d=0.5 and d/D=0.25.
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FIG. 9. Relative viscosity of binary suspensions at different compositions and particle size ratios. Total
areal fraction is fixed at 0.5. Model fit (solid lines) compared to simulation data from Chang and Powell
(1993) showing the dependence of relative viscosity on fraction of small particles in the suspension for
different particle size ratios (d/D). The weighting functions for the fits were calculated using the g

function values in Fig. 7 and x = 3.13. Monodispersed, d/D=1; Binary d/D=0.5 and d/D=0.25.
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In this case, the binary viscosity model shows its ability to represent the behavior of the
simulated two-dimensional binary suspensions providing an analytical parameterization of all the
simulation data. Nevertheless, for practical applications, it may be necessary to develop an alternative
parameterization of the model based on more realistic, three-dimensional binary experimental data.
The penalty incurred is that the resulting model lacks full predictive capability regarding the estimation
of the viscosity of real binary suspensions. However, it will be shown that this shortcoming is mitigated
by the fact that once the model is parametrized, it can be extended to truly multimodal or polydisperse

noncolloidal suspensions without the need to add any new parameters as discussed in Section Il C.

2. Experimental measurements of concentrated non-colloidal suspensions

The experiments by Chong et al. (1971) on binary suspensions of glass spheres are taken as a
model system to develop an alternative set of model parameters. Chong et al. (1971) reported that the
relative viscosities of the monodisperse systems that were ultimately blended to form the binary
suspensions displayed relative viscosities independent of size and temperature, depending only the total
solids fraction. This suggests that the system is a reasonable representation of an ideal noncolloidal
suspension. A viscosity correlation from Morris and Boulay (1999) is adopted to define the

monodisperse viscosity of experiments by Chong et al. (1971):

7 =142.5¢(1-9/ ¢ ) +m(¢/ b ) (107 ) (40)

The parameters m=0.41 and @, =0.607 are determined by fitting the monodisperse viscosity data

from Chong et al. (1971). Subsequently, the binary hydrodynamic function is defined and the parameter
K and relative size ratio g are obtained by fitting the model to the experimental data using Egs. (2), (6),
(7), (10) and (12). The resulting fitting parameter Kis estimated to be 2.46 and the effective size ratio, g

, that best describes the experimental data, shown in Fig. 10, is given by
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q 324\l 91
=1-{1-— )
g ( [ Dj ] (41)

The overall weighting function is then given by

OIS (C

The associated model fit and comparison to the binary suspension viscosity data of Chong et al. (1971)

| 2464,
1.91 2.4644 +4p

(42)

~

are presented in Fig. 11 for comparison.

popc - -
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FIG 10: The effective size ratio ( g ) as a function of true relative size ratio (d/D) from fitting the viscosity
model to experimental data by Chong et al. (1971). The solid points represent the g values that were
used to fit the experimental results in Fig. 11. The solid line represents the parameterization of the ¢

values obtained by fitting to the data in Fig. 11. For comparison, the dotted line is the effective size ratio
previously extracted from the 2-D simulations of Chang and Powell (1994) (see Fig 7).
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FIG 11. Relative viscosity as a function of total volume fraction. Viscosity model fit (solid lines) are
compared to simulation data from Chong et al. (1971) for different particle size ratio (d/D). The fraction

of small spheres ( ;) is fixed at 0.25 for binary all cases. Monodisperse, d/D=1; Binary d/D=0.477,
d/D=0.313 and d/D=0.138.

The effective size ratio (g) and parameter (k) determined here are similar to the
parametrization of the 2-D simulation data in section Ill B-1. In Fig. (10), the two different
parametrizations of gare seen to be closely related. In addition, the K values from these two
parametrizations are 2.46 and 3.13 respectively. At this point, the differences in parameters arising from
the fits to the simulation and experimental data sets can be attributed to the different microstructures
that govern the rheological behavior of the two systems, reflecting the 2-D and 3-D nature of the two
data sets. Therefore, additional flexibility in fitting the weighting function should be allowed in the
choice of weight function to reflect such effects as well as the additional complexity that is encountered

in real systems, caused by particle interactions and non-universal particle configurations.

IV. COMPARISON TO EXISTING MODELS IN LITERATURE

In this section, the binary suspension viscosity model developed from the parametrization based on

experiments by Chong et al. (1971) (see Section Ill B-2) is compared to a model developed by Qi and
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Tanner (2011). The latter model is parameterized based on experiments by Chang and Powell (1994) on
binary suspensions. Also included is a comparison against the results obtained from a model for binary
suspension recently developed by Farr (2014). For consistency with the work of Qi and Tanner (2011),
we adopted here the same viscosity expression for the monodisperse suspension that was used in their

work

(1
nr(¢)—( 1_C¢j, (43)

where cis given by

1-0.639
c=————. (44)
0.639

These expressions together with the weighting function developed in Section Ill B-2 is used to calculate
the binary suspension’s viscosity. The model developed by Farr (2014) has its own viscosity relationship

and is used as-is.

A comparison of these three models is presented in Fig. 12. In the same figure, the three models
are also compared against experimental data by Chang and Powell (1994) and Chong et al. (1971). Fig.
12 shows that our model predictions capture the experimental trends but lack the asymmetry seen in
the experimental data. It should be noted that the model of Tanner and Qi (2011) has a total of 7

parameters and it explicitly enforces a viscosity minimum at a fraction of small particles of 0.27. By
admitting extra complexity in the interpolating functions, especially for the form ofh(¢5d /¢D), an

equally good fit may also be obtained from our model as well (see Appendix B). On the other hand, the
model by Farr (2014) that has 2 parameters has the poorest fit to the data seen in Fig. 12. Therefore, our

model compares favorably to existing works in the literature, in relation to the desired complexity.
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FIG 12. Relative viscosity as a function of the fraction of small particles in the suspension. Comparison of
calculated viscosity from model of Qi and Tanner (2011) (dotted line) to predictions from our model
(solid lines) and Farr’s model (dashed lines). Circle symbols correspond to data from Chang and Powell
(1994). Square symbols correspond to data from Chong et al. (1971). (1), (2) and (3) represent the
viscosities calculated corresponding to the experimental conditions given by the circle, triangle and
square symbols respectively for the three models.

V. PREDICTING THE VISCOSITY OF POLYDISPERSE SUSPENSIONS: RESULTS
AND DISCUSSION

In this section, the ternary viscosity model developed in Sections Il C and D is applied to predict
the viscosity of several suspensions characterized by continuous polydispersity using the framework
outlined in Sections Il C and D. The model predictions in this section are based on the weighting
function developed in Section Ill B-2 based on the fit to the binary data set by Chong et al. (1971). The
results in this section are based on the assumption that a continuous size distribution may be

represented by an equivalent ternary suspension as explained in Section Il D. This assumption is also
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validated in this section. Finally, Eiler’s viscosity correlation in Eq. (1) with @ =0.58 [Singh and Nott

max
(2003)] is used to define the monodisperse suspension viscosity for all the predictions shown in this

section.

A. Coal slurry application

The first application involves a coal slurry studied by Papachristodoulou and Trass (1984). The
volume-weighted cumulative particle size distribution for this system has been characterized and may
be approximated by a Rosslin-Rammler distribution (Rosin and Rammler 1933, Vesilind 1980) defined by

A
F(X) = 1—exp —0.693(%] , (45)

50

with a median size (Dso) of 37um and A equal to 1.6 as shown in Fig. 13. The volume fractions are

calculated using the density of bituminous coal which is 1346 kg m™ and that of the light # 6 oil which
was reported to be 978 kg m™ by Papachristodoulou and Trass (1984). Since coal slurries typically
behave like Bingham fluids at high solids loadings, special care should be taken because of the presence
of a yield stress. The yield stress should be subtracted off from the rheological measurements such that
we model the Bingham viscosity. Papachristodoulou and Trass (1984) reported the Bingham viscosities,
derived by fitting the rheological data to a Bingham equation and therefore, in principle, accounted for
the yield stress effect discussed above. Therefore the experimental viscosities reported in Fig. 14 that
are compared with the model predictions are the reduced Bingham plastic viscosities. In general, the
model predictions agree well with the experimental measurements providing validation of the approach

taken in deriving the model as well as the size moment truncation of the continuous size distribution.
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FIG. 13. Cumulative size distribution of a coal slurry. The experimentally measured particle size
distribution for a coal slurry from Papachristodoulou and Trass (1984) is fit to a Rossin-Rammler
cumulative size distribution with a median size of 37 um. The bar charts in the background represent the
three mode approximation of the continuous size distribution Egs. (22)-(24).
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FIG. 14. Relative viscosity as a function of the volume fraction of coal particles in a coal slurry.
Comparison of predictions from our model (solid line) to experimental data for coal slurry with a Rosslin-
Rammler distribution from Papachristodoulou and Trass (1984). Monodisperse viscosity calculated from
Eiler’s viscosity relationship in Eq. (1) (dashed line) is also presented for comparison.
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A convergence study is now presented in order to justify the choice of the 6 moment truncation
(trimodal appproximation) applied to model the viscosity of polydisperse suspensions as presented in
this work. For this, a comparison of various approximations up to the 8 moment approximation
(quaternary approximation--see Appendix A) of the coal size distribution is presented in Fig. 13. The
results show that by the 6-moment (ternary) approximation the results have essentially converged and
indicate that three moment approximation is a sufficient representation for a continuous particle size
distribution. Ultimately, the level of approximation is a matter of choice and any level of approximation
can be easily included into the model by systematically extending the hydrodynamic functions to

incorporate more size classes.
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FIG. 15. Study of the effect of the various moment approximations on the model predictions of the
relative viscosity as a function of total solids loading. The viscosity predictions arising from the 2-
moment (monodisperse), 4-moment (binary), 6 moment (ternary) and 8-moment (quaternary)
approximations of the coal slurry particle size distribution in Fig. 13.

B. Distributed particle sizes application

The second application tests the sensitivity of this model to different particle size distributions.

Probstein et al. (1994) performed rheological measurements of the shear viscosity for polydisperse
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suspensions of noncolloidal suspensions obeying different particle size distributions. In particular, they
examined a log-normal particle size distribution as well as a uniform particle size distribution as shown
in Fig. 16. The theoretical cumulative distributions fit to these two experimental particle size

distributions are provided by a lognormal distributions with £ =4.58 and o =0.36 as

1 1 hmxy—yj
F(X)=—+—erf | ————
(X) 5t5 ( e ) (46)

and a uniform distribution with a=36.95um and b=215.46um as

_In(x)—In(a)
In(b)-In(a)

F(X)

(47)

These two distributions are illustrated in Fig. 16. Fig. 17 illustrates the equivalent ternary

representations of the lognormal distribution.
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FIG. 16. Comparison of the lognormal and uniform size distributions of the particles in the suspension fit
to theoretical distribution in Egs. (46) and (47) respectively. Experimental measurements from Probstein
et al. (1994).
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FIG 17: Experimentally measured lognormal particle size distribution (solid line) and its theoretical fit

from Eq. (46) compared to the equivalent ternary approximation that is used in the calculation of the
weighting function for the prediction of the suspension viscosity shown in Fig. 18.

The experimentally measured viscosities by Probstein et al. (1994) from the log-normal
distribution are seen to be consistently larger than those derived from the uniform particle size
distribution for a given total solids loading. In Fig. 18, the model predictions of the viscosity are seen to
follow the experimentally observed trends well. These results provide further validation of the modeling
scheme adopted in this work. Furthermore, this also illustrates the sensitivity of the model to closely
related but slightly different broad size distributions. This example shows that the model can distinguish
between closely related distributions and provides differences in the predictions that closely follow

those observed in the experiments.
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FIG. 18. Comparison of model predictions and experimental data of polydisperse suspensions based on
the ternary representation of the experimental size distributions in Fig. 16. Experimental measurements
from Probstein et al. (1994).

VI. CONCLUSIONS

In this work, we have presented the development of a new self-consistent model to describe the

effects of polydispersity on the viscosity of noncolloidal, hard sphere suspensions. The elements of the

model are the viscosity function for the monodisperse noncolloidal suspension (77, ) and the weighting

function ( £), describing the effects of the size ratio (d/D) and the volume fraction ratio (¢d /¢D) in a

binary suspension. The success of the model is in separating these two effects through two different

functions g (d/D)and h(g,/¢,) such that[)’E[g(d/D)]h(%%). At a minimum, each of the

constituent functions, gand h, contains a single parameter that can be estimated from binary

suspension viscosity data. It is demonstrated that through a careful choice of these constituent

functions, the proposed model can fit a variety of binary suspension data as well as current existing (and
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more recent) models developed following other alternative approaches, like the Qi and Tanner (2011)
model which incorporates a maximum packing fraction and the Farr model [Farr 2014] which is based on
the Mooney approach [Mooney (1951)].

The model developed in this work is also shown to quantitatively predict the viscosity of
polydisperse suspensions of noncolloidal particles, based on parameters obtained solely from
monodisperse and binary suspensions viscosity data. This is made possible by first implementing a
discretization of the smooth continuous distribution to its ternary equivalent, so that the first 6
moments are preserved, following the suggestion by Wagner and Woutersen (1994). Through a
sensitivity analysis study, this approach has been demonstrated to be sufficient to describe the effects
of polydispersity on suspension viscosity. Nevertheless, the approach presented in this work is not
limited to ternary suspensions and formulae for higher order discrete suspensions can also be
developed in a straightforward fashion, albeit there is a significant increase to their complexity. This may
be necessary for studying the viscosity of more complex mixed continuous-discrete size distributions or
multimodal distributions.

The semi-empirical model to describe the effect of polydispersity on the viscosity of non-
colloidal suspensions presented in this work has been developed here on the basis of accounting for
purely hydrodynamic effects. However, to describe real suspensions one may also need to include other
effects, such as friction [Morris (2015)]. Ultimately, some of these effects may be absorbed in the fitting
parameters; however, others may need to be introduced explicitly by suitably modifying the model. For
example, in the case of polymer-stabilized suspensions, one may consider improvements to account for
the effective volume of the particles in the various size classes due to the presence of adsorbed polymer
on the particle surface. Other potential applications of the proposed model may include the
determination of the ideal continuous particle size distribution that results in the minimum viscosity, a

problem that is of relevance to industrial processing. Furthermore, the proposed model may also be
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applied towards understanding the evolution of viscous stresses in aggregating suspensions that do not
display a yield stress. Extensions to account for such aggregation effects can easily be incorporated by
coupling the model developed in this work to a population balance equation using the method of
moments [Randolph and Larson (1962), Hulburt and Katz (1964)]. In this way, the model has potential

applications to an even wider class of problems of engineering relevance.
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APPENDIX A: HYDRODYNAMIC FUNCTION FOR QUATERNARY DISTRIBUTIONS

The tetra-modal hydrodynamic function must fulfil the following limits:
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The following expression, derived by extending the tri-modal expression in Eq. (15) is given by,
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Finally, the relative viscosity of the suspension is calculated as,

77r = eXp(25 1:Tetra) .
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APPENDIX B: MODIFIED WEIGHT FUNCTION TO FIT COMPLEX EXPERIMENTAL DATA

The viscosity model based on the parameterization in Sec. Il (B-2) seems to capture the trends in
the data by Chang and Powell (1994) and Chong et al. (1971) well, but it does not capture all the details,
such as the asymmetry seen at higher volume fractions (see Fig. 12). The good fit seen in the model by
Tanner and Qi (2011) is not surprising if we consider the number of parameters in their model
(considering constants to be parameters). By admitting extra complexity in the interpolating functions
used in our model, we can also achieve this effect. Indeed, a better fit to the experimental data can be
obtained by defining the weighting function, [ = gh , using

0.9 \141

d d
Bl [ I N O D
g(Dj ( Dj ' 52

h[¢—d] = 1.68(¢—dj —2.01(¢—dj+1 (l—ﬂj (53)
P Py + 9 ¢y + o 2.5¢, + ¢,

The model now has 6 parameters (counting the constants appearing in Egs. (52) and (53), excluding

and

those necessary to fulfil the limits in Eq. (10)). The calculated viscosity using this weighting function and
the viscosity relationship in Eq. (43) is presented in Fig. 19 along with a comparison against the Chang
and Powell (1994) data as well as the model predictions of Tanner and Qi (2011). The agreement of the
model with both is excellent. Furthermore, our model better predicts the convergence in the measured
viscosities seen at the two largest volume fractions when the system is dominated by large particles (
2 =0.1).

It is therefore clear that by modifying the weighting function, while still keeping the basic
structure of the original equations, a wide variety of suspension viscosity behavior may be simulated.

Furthermore, the newly defined weight function still enjoys all the original properties of the model i.e.
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all the limits are fully obeyed. Finally, the weighting function can be extended to ternary suspensions

without introducing any new parameters.
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Figure 19: Comparison of calculated viscosity from model of Tanner and Qi (2011) (dotted line) and our
model using weighting functions defined by Eqgs. (52) and (53). Blue (®) and black (o) symbols
correspond to data from Chang and Powell (1994). The red (m) symbols correspond to data from Chong
etal (1971).
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