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Abstract

Recently, atypical static features of microstructural ordering in low-salinity Lysozyme protein

solutions have been extensively explored experimentally, and explained theoretically based on a

short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein

dynamics and the relationship to the atypical SALR structure remains to be demonstrated. Here,

the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity

in isotropic particle suspensions to low-salinity Lysozyme protein solutions is tested. Using the in-

teraction potential parameters previously obtained from static structure factor measurements, our

results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that

they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen

(ZH) scheme is used to describe the static structure factor, S(q), which is the input to our calcula-

tion schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η.

The schemes account for hydrodynamic interactions included on an approximate level. Theoretical

predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental

results at small protein concentrations obtained using neutron spin echo measurements. At higher

concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions

are overestimated. We attribute the differences for higher concentrations and lower temperatures

to translational-rotational diffusion coupling induced by shape and interaction anisotropy of par-

ticles and clusters, patchiness of the Lysozyme particle surfaces, and the intra-cluster dynamics,

features not included in our simple globular particle model. The theoretical results for the solution

viscosity, η, are in qualitative agreement with our experimental data even at higher concentra-

tions. We demonstrate that semi-quantitative predictions of diffusion properties and viscosity of

solutions of globular proteins are possible given only the equilibrium structure factor of proteins.

Furthermore, we explore the effects of changing the attraction strength on H(q) and η.

∗ j.riest@fz-juelich.de
† (
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I. INTRODUCTION

Experimental and theoretical studies of sophisticated bio-particle systems have become

an important part of soft matter science. In particular, the understanding of concentrated

protein solutions has attracted much attention due to its importance for both biological sys-

tems and pharmaceutical industrial products.[1–17] However, arguably, it is still extremely

challenging in colloidal science to accurately describe the structure and dynamics of concen-

trated protein solutions, as many proteins can have irregular shapes, complex protein-protein

interactions, and heterogeneous surface properties. Therefore, much effort has been devoted

to study globular proteins which can be approximated as spherical objects with isotropic

interaction potentials,[2, 5, 6, 9, 12] through which useful insights can be obtained for more

complex protein systems, such as monoclonal antibodies.[14–16] Among the various prop-

erties of protein solutions, there is recent interest in understanding the short-time diffusion

coefficients, ds, and the viscosity, η, of concentrated protein solutions for both academic

research and industrial applications.[4–6, 8, 11, 13] The short-time diffusion coefficients

obtained by neutron spin echo and backscattering techniques have been useful for under-

standing the cluster formation of protein solutions and corresponding viscosity.[4, 7, 13, 17]

The prediction of viscosity of complicated protein solutions is critically important for the

pharmaceutical industry to develop more effective drug delivery strategies for some cancer

treatment therapeutic proteins.[14, 16, 17]

Calculating ds and η has been extensively studied for colloidal systems with hard-sphere

interaction. The viscosity behavior of hard-sphere systems can be satisfactorily described

by mode coupling theory (MCT).[18–21] The change of ds in hard-sphere systems has been

investigated both experimentally[22] and theoretically [20]. Short-time dynamics of charged

colloidal systems with electrostatic repulsions have been examined using existing theories,

which is compared with accelerated Stokesian dynamics (ASD) simulations to investigate

the applicability and accuracty of various theoretical expressions.[23]

However, despite the importance in calculating ds and η for protein solutions, there are

very limited studies of using colloidal theories to understand protein solutions. At low salt

concentrations, it has been shown that the interaction potential between BSA proteins can

be well described by a hard-sphere potential with an additional electrostatic repulsion.[9]

At this condition, the short-time diffusion coefficient of BSA proteins has been studied by
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quasi-elastic neutron scattering, and is shown to follow the prediction of a system with

purely hard- sphere interaction.[13] The experimental viscosity of BSA protein solutions has

been used to examine different theories. [8]

However, for many proteins in solution, it is common that the interaction contains both

a short-range attraction and long-range electrostatic repulsion (SALR), such as in lysozyme

and some monoclonal antibody protein solutions at low salt concentration.[1, 5, 11, 14] SALR

systems demonstrate interesting solution structures, as the competition of the attraction

and repulsion can introduce intermediate range order (IRO).[5, 24] Depending on different

combinations of the attraction and repulsion contributions in protein solutions, different

types of IRO structures can be introduced.[11, 25–28] When the attraction has a very short

range, which is the case for many protein systems such as lysozyme, a recent work has shown

that there can be different liquid states including dispersed fluid states, clustered fluid states,

random percolated states, and cluster percolated states. [29]

Despite many interesting works on SALR systems, there are very few studies on the

short-time diffusion coefficients and viscosity behavior. In fact, studies on SALR systems of

model colloidal particles have used micrometer sized particles and have mostly focused on the

solution structures and the gelation/glass transitions.[25, 26] In contrast, the experimental-

theoretical study of protein solutions with a SALR interaction has mostly focused on short-

time diffusion coefficients and solution viscosities [4–7, 12, 14, 16], with the salient hydrody-

namic interactions (HIs) between the proteins being disregarded or strongly approximated

in the theoretical treatments.

Only very recently, some of the authors of this paper have theoretically investigated

the short-time dynamics of SALR systems with two-Yukawa potential interactions and HIs

included.[30] This theoretical work for the first time demonstrated that an intermediate

range order (IRO) peak can appear in the hydrodynamic function. Moreover, an unexpected

non-monotonic temperature dependence of the mean particle sedimentation velocity was

predicted theoretically for homogeneous systems.

In this paper, we test the previously developed theory to study the short-time dynamics

and viscosity of lysozyme solutions, where the interaction has to be described by a short-

range attraction and long-range repulsion. Using the experimentally obtained interaction

potential parameters, we have first identified that the studied lysozyme samples are mostly

in a dispersed fluid phase state while some of the samples at low temperature and high
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concentrations are in the randomly percolated state. Using the corresponding structure fac-

tors, the hydrodynamic function, H(q), short-time diffusion coefficient D(q), and viscosity,

η, are calculated and compared against experimental values for lysozyme solutions in the

dispersed fluid state. We critically examine the accuracy and limitations of the current

theoretical model applied to lysozyme samples. This work also provides theoretical insights

into the peculiar experimental features typically observed in SALR systems.

II. THEORY AND EXPERIMENTAL METHODS

The theoretical methods [30] and experiments [11, 31] employed in this work have been

reported in publications separately by some of us. Brief overviews are provided here for

clarity and completeness, since in this paper the theory is compared against the experimental

results for the first time.

A. Interaction potential

Model interaction potentials such as the two-Yukawa [3, 5, 28–30, 32–34] and the gener-

alized Lennard-Jones Yukawa (LJY) [6, 29, 35, 36] potentials, respectively, have been widely

used to describe the inter-particle potential in different phase states of SALR systems in-

cluding the dispersed fluid [4, 6, 7, 29–31, 36], clustered-fluid [4, 6, 7, 29, 31, 32, 36, 37],

random percolated [6, 29, 31, 32], and glassy states [6, 11, 25, 26, 31]. In the present work,

we use the hard-core plus two-Yukawa (HCDY) pair potential to represent the interaction

for a SALR model system. The HCDY potential can be expressed as

βV (x) =

∞ , x < 1

−K1
e−z1(x−1)

x
+K2

e−z2(x−1)

x
, x ≥ 1 ,

(1)

where x = r/σ is the inter-particle center-to-center distance, r, in units of the particle

diameter σ, and β = 1/kBT . Moreover, z1 and z2 determine the range of the attractive and

repulsive Yukawa potential parts in units of σ, respectively, and K1 and K2 are the respective

short-range attractive and long-range repulsive potential strengths in units of kBT . The

depth of the attractive well (or the net attraction) is given by βV (x = 1+) = K2 −K1.
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B. Monte Carlo simulations

Microstructural properties of lysozyme samples are reproduced using Monte Carlo com-

puter simulations [38, 39] consisting of 1728 particles in the NVT ensemble within the one-

phase region, and by employing periodic boundary conditions. Proteins are represented as

spherical particles interacting isotropically via the hard-core plus two-Yukawa (HCDY) po-

tential. Starting from a simple cubic lattice, each system is thermally equilibrated for 2x107

steps, after which thermodynamic and structural parameters were averaged over 4x104 in-

dependent configurations. The initial displacement distance of 0.1, where all distances are

normalized by the particle diameter σ, is dynamically adjusted to maintain an acceptance

ratio of 30%. The observables were averaged over 10 different seeds to reduce the intrin-

sic uncertainties. In all cases, a system size of N = 1728 particles was sufficient to avoid

artificial size effects and optimize the computational time.

The microstructure is represented by first calculating the radial distribution function,

g(r), and static structure factor, S(q), for each considered system. The radial distribu-

tion function is calculated by averaging all particle configurations using direct summation

according to [38, 39]

g(r) =

〈
V

N2

N∑
i 6=j

δ(rij − r)

〉
eq

, (2)

where δ is the three-dimensional delta function, N is the number of particles in the system

volume V , r is the distance vector of modulus r and rij the vector distance between the

centers of particles i and j. Furthermore, 〈· · · 〉eq denotes an equilibrium average. The

protein solution structure factor is then determined by its relationship with g(r),

S(q) = 1 + ρ

∫ ∞
0

sin(qr)

qr
[g(r)− 1]4πr2dr, (3)

where ρ = N/V is the particle concentration, q = (4π/λ) sin(θ/2) is the modulus of the

scattering wave vector, and λ and θ are the incident wavelength and scattering angle, re-

spectively. Cluster formation is identified when a particle is less than the cut-off distance, rc,

away from a neighboring particle, which is defined as the separation where the interaction

potential produces a zero interaction energy.[29] Connectivity calculations yields an account

of all cluster sizes, which is summarized in a cluster number distribution, n(s). The cluster

number distribution is normalized by the cluster size, s, and system size, Np, resulting in
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the cluster size distribution (CSD):[29, 32]

N(s) =

〈
s n(s)

Np

〉
, (4)

where Np is the total number of particles in the simulation box such that
∑Np

s=1N(s) = 1.

N(s) represents the fraction of particles contained in clusters of size s and is a normalized

function for all cluster sizes. This normalized CSD defines the state of the fluid at each

set of conditions using definitions established previously.[29] Along with the CSD, a nearest

neighbor number distribution (NND) function, f(N), is calculated as the average fraction

of particles having N neighboring particles whose centers are located inside the attractive

well range of the HCDY potential.

C. Equilibrium microstructure

For the calculation of equilibrium pair functions of SALR systems using liquid-state

integral equation theory methods, the importance of using a self-consistent closure relation

was shown recently in [40]. A self-consistent hybrid scheme for systems with attractive

and repulsive pair potential parts is used here based on the method proposed by Zerah

and Hansen (ZH) [41]. The ZH scheme interpolates between the hypernetted chain closure

(HNC) for long, and the soft-core mean spherical approximation (SMSA) for short particle

pair distances r.

The ZH scheme is particularly well suited for systems with soft-core repulsion and an

attractive interaction part [41–43]. To describe such SALR systems theoretically, we split

the total pair potential V (r) into a reference part, V1(r), and a perturbation part, V2(r),

selected here as

V1(r) =


∞ , r < σ

V (rshift) , r ≤ rshift

V (r) , r > rshift .

(5)

and

V2(r) =

V (r)− V (rshift) , σ ≤ r ≤ rshift

0 , r > rshift ,
(6)
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respectively, where rshift = rmax > σ, and where rmax is the pair distance at which V (r) is

at its maximum. Accordingly, V2(r) is purely attractive, while V1(r) is purely repulsive (c.f.

Ref. [44]). The ZH closure reads

g(r) ≈ e−βV1(r)
[
1 +

ef(r)[h(r)−c(r)−βV2(r)] − 1

f(r)

]
, (7)

with the mixing function

f(r) = 1− e−ϑr . (8)

Here, the mixing parameter ϑ is determined self-consistently from enforcing equality of

the isothermal compressibilities derived using the virial pressure and compressibility routes,

respectively. In taking the concentration derivative of the virial pressure, we assume for

simplicity that the mixing parameter is density independent. This approximation is justified,

since ϑ is only a weakly varying function of the volume fraction φ [41]. In the limit of ϑ→∞,

the ZH closure reduces to the hypernetted chain closure (HNC), while in the opposite limit

ϑ→ 0, the soft MSA closure relation given by

g(r) ≈ e−βV1(r) [1 + h(r)− c(r)− βV2(r)] (9)

is recovered.

Since there exist different choices for V1(r) and V2(r), the comparison with simulation data

for the radial distribution function, g(r), is a necessary prerequisite to assess the accuracy

of the ZH scheme [41]. For the dispersed-fluid phase, the ZH approach with this splitting

of V (r) yields results for g(r) in excellent agreement with computer simulation predictions

based on the MC, MD and MPC simulation methods, as it is shown in Refs. [30, 36, 44].

D. Short-time diffusion properties

Short-time diffusion in colloidal suspensions is commonly assessed experimentally by mea-

suring the intermediate scattering function S(q, t), where

S(q, t� τd) = S(q) exp
[
−q2D(q)t

]
, (10)

is an exponentially decaying function for correlation times, t, small compared to the struc-

tural relaxation time τd = a2/d0. Here, d0 is the Stokes-Einstein single-particle translational
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diffusion coefficient for a spherical particle (protein) of radius a = σ/2 in a solvent of vis-

cosity η0, given by d0 = (kBT )/(6πη0a) for stick surface boundary conditions. For t � τd,

the configuration of particles is hardly changed by diffusion such that the particle dynamics

is influenced solely by hydrodynamic interactions (HIs). In Eq. (10), D(q) = d0H(q)/S(q)

denotes the short-time diffusion function, and H(q) is the positive-valued hydrodynamic

function. The latter characterizes the influence of HIs on short-time diffusion, and it can be

calculated in overdamped Brownian dynamics starting from

H(q) = lim
∞

〈
1

Nµ0

N∑
i,j=1

q̂ · µij(X) · q̂ eiq·(ri−rj)
〉

eq

. (11)

The thermodynamic limit, denoted by lim∞, is taken here to describe a macroscopically

large scattering volume. The µij(X) are the protein configuration (i.e., X = {r1, . . . , rN})

dependent mobility matrix tensor elements linearly relating the hydrodynamic force on a

particle j to the velocity change of a particle i owing to the solvent-mediated HIs. Moreover,

kBT µ0 = d0 and q̂ = q/q. The diagonal terms in Eq. (11) for which i = j give the

wavenumber-independent short-time self-diffusion coefficient ds, while the off-diagonal (i 6=

j) terms sum up to the wavenumber-dependent distinct hydrodynamic function part, Hd(q),

of H(q), that characterizes the hydrodynamic force-velocity cross-correlations.

For the calculation of H(q), we use the so-called hybrid BM-PA scheme which com-

bines the well-established Beenakker-Mazur (BM) effective medium method [45, 46], where

many-body HIs are approximately included for the calculation of Hd(q), with the Pairwise

Additivity (PA) approximation of HIs used for the calculation of the self-part, ds, of H(q).

In recent work by some of the present authors [36], the good accuracy of the BM-PA scheme

for the calculation of short-time diffusion properties of SALR systems has been shown by

the comparison with elaborate multi-particle collision dynamics (MPC) simulation results

where HIs are fully accounted for. For details about the employed BM-PA hybrid method,

we refer to Refs. [30, 36, 44, 47]. We emphasize that for a given set of HCDY pair poten-

tial parameters, the BM-PA theory is predictive and requires no fitting to the data. The

HCDY potential parameters are determined by fitting the SANS data using the ZH integral

equation scheme in conjunction with the decoupling approximation.
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E. Zero-frequency viscosity

In addition to short-time diffusion properties, we have determined theoretically the zero-

frequency low-shear viscosity η = η∞ + ∆η as a long-time transport property. The high-

frequency viscosity part, η∞, is of purely hydrodynamic origin and quite accurate analytic

tools for its calculation are available. In contrast, the calculation of the shear relaxation part,

∆η, is more demanding because one needs to account for the shear-induced deformation of

next-neighbor cages influenced by direct and hydrodynamic interactions alike. To calculate

∆η, we use a simplified mode-coupling theory (MCT) expression where the viscosity is

obtained in a first iteration step of the self-consistent MCT equations, by relating η to the

time evolution of S(q, t). Explicitly, we use the expression [47, 48]

∆η

η0

∣∣∣∣(1)
MCT

≈ 1

40π

∫ ∞
0

dy y2
(S ′(y))2

S(y)

1

H(y)
, (12)

where y = qσ and S ′(y) = dS(y) / dy. In this expression, the contribution of the HIs to the

MCT shear relaxation vertex function is omitted, which can be partially justified by the fact

that the associated hydrodynamic mobility tensors relating shear strain to hydrodynamic

particle force dipoles (stresslets) are rather short-ranged (see, e.g., [21]). HIs enter in Eq.

(12) only through S(q, t), approximated by its short-time form

S(y, t) ≈ S(y) exp

[
−y2H(y)

S(y)

t

4τd

]
, (13)

valid for t� τd. Consequently, the relaxation part ∆η is underestimated by the first-order

MCT as compared to the fully self-consistent MCT. This underestimation is expected to

become more pronounced at larger particles volume fraction φ = (π/6)ρσ3.

For calculating the high-frequency viscosity contribution, η∞, we use the PA method

where two-body HI contributions including lubrication forces are included. See [30, 44, 49]

for details on this method.

F. SANS experiments

SANS experiments were conducted on the D-22 and D-33 beamlines at the Institut Laue-

Langevin (ILL) in Grenoble, France, as well as the NGB30mSANS instrument at the NIST

Center for Neutron Research (NCNR) in Gaithersburg, MD, following previously reported
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protocols and methods [4, 11]. The scattering intensity was obtained for scattering vector

magnitudes q ranging from 0.004 Å−1 to about 0.5 Å−1. All samples were held in standard

quartz Hellma cells at ILL, and custom titanium cells with quartz windows at NCNR. Low

concentration samples were studied using cells with a 2 mm path length to enhance intensity,

while concentrated samples were studied in cells with a 1 mm path length. All Lysozyme

concentrations were studied at three temperatures (5◦C, 25◦C, and 50◦C). All raw data

files were analyzed using software provided through the NCNR [50]. The resulting reduced

data for Lysozyme samples were fitted using an isotropic scattering function.

Lysozyme samples were obtained from MP Biomedicals, and subsequently purified to

remove impurities and excess counter-ions to minimize the solution ionic strength. Purifi-

cation was conducted by dialyzing reconstituted Lysozyme against deionized water at 4◦C,

until the resistance of the water reached approximately 18.0 M ohm. This typically required

seven changes of deionized water over the course of 48 hours. The purified lysoyzme was

then lyophilized by freeze drying. Samples were prepared by dissolving purified lyophilized

Lysozyme in deuterium oxide (D2O) at 25◦C and gently vortexing to enhance dissolution

and homogenization. Samples were subsequently filtered with 0.22µm syringe filters to re-

move additional impurities. Protein content was initially determined by the mass fraction

of purified lyophilized Lysozyme in deuterium oxide, xL. The intrinsic volume fraction of

Lysozyme, φL, is then calculated according to the specific volume, ν0, reported in the liter-

ature (ν0 = 0.717 mL/g in [51]), according to

φL = (xLν0)/(xLν0 + (1− xL)/ρD) , (14)

where ρD is the mass density of D2O.

G. NSE experiments

Neutron spin echo experiments were performed on the IN-15 beamline at the ILL in

Grenoble, France. Samples were prepared by following the procedure described earlier,

then pipetted into 1 mm square quartz cells and stored in a custom temperature controlled

sample chamber. All samples were thermally equilibrated for at least 30 minutes at each

of the temperatures studied. For our experiments, the instrument was configured to obtain

intermediate scattering functions [52] at correlation times up to 50 ns with 30-35 points for

11



q range between 0.03 Å−1 to 0.20 Å−1 at each sample condition studied.

III. RESULTS

As previously shown, SALR systems can be in a dispersed fluid state, random perco-

lated state, clustered fluid state, and cluster percolated state.[29] We therefore first identify

the phase states of the studied seven lysozyme samples. Using the experimental poten-

tial parameters obtained previously,[11, 31] Monte Carlo computer simulations yield the

cluster size distribution, N(s), from which the phase points of the seven samples can be

determined. We then investigate here to what extent state-of-the-art theoretical methods

developed for spherical colloidal particles are capable of predicting the measured transport

properties of Lysozyme protein dispersions. In the calculation of the dynamic properties, we

model the proteins as spherical with isotropic direct and hydrodynamic interactions, which

allows for usage of our semi-analytic calculation methods by which the effects of varied in-

teraction parameters such as the attraction strength can be easily studied. By comparing

our theoretical predictions for an isotropic SALR model with experimental measurements on

Lysozyme solutions, we are in the position, first, to quantify and understand the limitations

of the model and, second, to assess the importance of intra- and inter-protein structure

(anisotropic shape and surface charge distribution and cluster formation, respectively) of

Lysozyme with respect to their dynamics. For a clearcut analysis of the theoretical predic-

tions, we intentionally omit the usage of any fit parameter in the calculation of transport

properties. The presented results can provide guidance for future theoretical and simulation

studies, and for future improvements and extensions of the employed theoretical methods.

A. Static properties

The equilibrium microstructure of the Lysozyme samples addressed in the present pa-

per has been investigated in earlier works, using small angle neutron scattering (SANS), by

part of the present authors [11, 31]. The resulting HCDY potential parameters, and the

volume fractions φ, intrinsic volume fractions φL, and temperature T of the seven consid-

ered Lysozyme solutions are taken from the previous results, and listed in Table I for the

convenience of discussions in this paper.
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We restrict here our discussion of the S(q) data to features required for the experimental-

theoretical comparison of transport properties presented in the following section. Note that

S(q) and g(r) constitute the only input to our semi-analytic methods for calculating H(q),

D(q), and η.

The experimental structure factors S(q) (symbols) for the Lysozyme systems under con-

sideration are plotted in Figs. 1a and 1b based on the data given by [11, 31]. Both figures

demonstrate the dependence of S(q) on temperature. The experimental S(q)’s of samples

1, 2, and 5 have a distinct IRO peak at qcσ ≈ 3. An IRO peak is indicative of intermedi-

ate range structural correlations of clusters and monomers coexisting in solution, which are

hypothesized to influence the short-time dynamics. In contrast, samples 3, 4, and 6 show

only a weak IRO peak or shoulder while no clear indication of an IRO peak is observed for

sample 7. Although intermediate range order is weak or not present under these conditions,

cluster formation is still expected to play a role in the corresponding short-time dynamics.

SANS data of lyozyme samples have been fitted using a two Yukawa model with the

modified rHMSA closure to solve the Ornstein-Zernike equation with the implemented ther-

modynamic self-consistency.[11, 31, 40] Our structure factor calculations based on the ZH

closure are in perfect agreement with those calculated with the modified rHMSA closure.

Therefore, we directly take the values of the interaction potential obtained previously as

the inputs to calculate the ZH closure structure factors which in turn are the inputs for our

dynamical theoretical schemes. Shown in Figs. 1a and 1b are the theoretical calculations of

S(q) (lines) using the parameters in Table I with the ZH scheme combined with the decou-

pling approximation by assuming spherical particles of hard-core diameter σ ≈ 30.74Å.[53]

For all samples except 2 and 5 (at 5◦C), the agreement between the theoretical curves of

S(q) and the experimental data is good at q-values near and below the first peak in S(q),

where the calculations are most sensitive to changes in the interaction parameters. However,

the calculations shown for samples 2 and 5 still nearly quantitatively capture the observed

q-dependence of the experimental data. Larger deviations are visible for all samples only

at larger q-values, in the region around the second maximum of S(q) where the statistical

error bars in the SANS data are quite large. Additionally, deviations between SANS data

and theoretical structure factor curves at intermediate q-values can arise from the structural

anisotropy of individual lysozyme proteins at high concentrations for which the decoupling

approximation may not be valid any more.
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TABLE I: Solution conditions (temperature T , concentration, in wt [%], and intrinsic

volume fraction, φL [c.f. Eq. (14)]) of the considered Lysozyme samples are listed with the

employed parameter values of the HCDY potential, V (r) in Eq. (1), the volume fraction,

φ, and the fraction (in %) of the MC generated representative configurations with a

percolated cluster (rightmost column). Note that samples 5 and 6 marked in bold font are

in a random percolated state.[54]

Sample T [◦C] wt [%] φL φ K1 K2 z1 z2 %

1 25 5 0.0399 0.0398 6.0291 4.2743 10 1.2473 0

2 5 20 0.1646 0.1432 6.4666 3.2868 10 2.7839 0.6

3 25 20 0.1646 0.1472 5.8511 3.5588 10 2.9338 0

4 50 20 0.1646 0.1551 6.1753 4.3252 10 3.3055 0

5 5 25 0.2070 0.2017 6.3 3.0811 10 3.6117 100

6 25 25 0.2070 0.2099 5.743 3.3574 10 3.8785 97

7 50 25 0.2070 0.2091 5.2251 3.7215 10 4.0331 0

0 2 4 6 8 10
qσ

0

0.5

1

1.5

S(
q)

Sample 1
Sample 2
Sample 3
Sample 4

(a)

0 2 4 6 8 10
qσ

0

0.5

1

1.5

S(
q)

Sample 5
Sample 6
Sample 7

(b)

FIG. 1: (a) Comparison of the experimental S(q) of the low concentration dispersed-fluid

phase Lysozyme solution samples 1 (black symbols, shifted by +0.5 for better visibility), 2

(cyan symbols), 3 (red symbols), and 4 (magenta symbols) in D2O with the ZH-S(q)

(lines) obtained using the potential parameters in Table I. (b) Same as (a), but now

samples 5, 6, and 7 at larger concentration (25 wt%) are considered, where samples 5 and

6 are in a randomly percolated state as marked by filled symbols. Theoretical results are

the same as reported in [44].
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FIG. 2: (a) Cluster size distribution, N(s), and (b) nearest neighbor number distribution

function, f(N), of samples 1-7, obtained from NVT-MC simulations using Np = 1728

particles interacting by the HCDY potential in Eq. (1). According to the state diagram for

HCDY systems in [54] (see also [25]), samples 5 and 6 labelled by filled circles are in a

random percolated state while the remaining fives samples belong to the dispersed fluid

phase [11].

The cluster size distribution (CSD) of the seven samples from our MC simulations are

shown in Fig. 2a. We follow previously developed guidelines to analyze the phase state of

a system according to the CSD obtained from MC simulations.[29] Samples 1-4 and sample

7 have a monotonically decreasing N(s) that is characteristic of the monomer-dominated

dispersed-fluid phase state where highly transient clusters are present in the system. Sam-

ples 5 and 6 are in the random percolated phase state, and their CSD functions show a

characteristic peak near the total number of particles, Np = 1728. Small clusters (10 parti-

cles or less) have a fractal dimension of about 1.5, while all larger clusters have a consistent

fractal dimension of about 2 (not shown here). Similar fractal dimensions of clusters in

SALR systems have been reported.[55]

With regards to the dynamics, it is important to note that the CSD calculated by connec-

tivity does not necessarily represent dynamic clusters that can be measured with neutron

spin echo.[5] For example, simple hard-sphere fluids show a similar monotonically decay-

ing CSD to that found in the dispersed fluid state.[29] However, the “clusters” found in

hard-sphere systems are merely statistical density fluctuations that dissipate over very short

timescales.

The CSD is useful when combined with the nearest neighbor number distribution (NND)
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function, f(N), which is also included in Fig. 2b, to identify structural order internal to

clusters. Here, f(N) is the average fraction of particles having N neighboring particles

whose centers are located inside the attractive well range of the SALR potential. Except for

the same at low concentration (1), peaks in f(N) are observed at N > 0 for all samples. In

general, as T is lowered and φ increased, the NND functions in Fig. 2b are shifted to larger

values, and under similar conditions, N(s) is shifted to larger cluster sizes. As clusters grow,

a larger fraction of particles will be located on the inside of the cluster where neighboring

particles are more prevalent. While any non-zero number of neighbors will affect the mobility

of individual proteins, the influence will be minimal if the lifetime of those “bonds” is shorter

than the diffusive timescale, τd.

Both the local and intermediate lengthscale structures, represented by the NND function

and IRO peak formation, respectively, will influence the short-time dynamics by affecting the

timescale of structural rearrangement. Structural heterogeneity of systems in phase states

with strong IRO peaks provides a unique structural feature that can affect the dynamics of

a system. One example from prior work is the observation of locally glassy behavior in very

concentrated lysozyme samples at low temperature exhibiting IRO, where particle motion

is sub-diffusive on the timescale of τd but becomes diffusive over long timescales. These

dynamic features are rationalized by the structural heterogeneity due to IRO, where locally

dense regions are separated by low density voids that allow for largescale rearrangement over

long timescales.[11]

B. Short-time diffusion properties

Having determined the state diagram locations of the studied samples, the short-time

dynamics in the form of H(q) of lysozyme samples are calculated using the S(q)’s discussed

in the previous section, with focus on the samples in the dispersed fluid state. NSE measures

the intermediate scattering function, S(q, t), from which the collective short-time diffusion

function, D(q), can be determined from the initial slope of S(q, t). [5, 52, 56]. Then, H(q)

can be evaluated using the calculated S(q) by the relationship H(q) = D(q)S(q)/d0 and

compared with theoretical predictions.

The comparison of the NSE-determined H(q) of the Lyszoyme solutions with our BM-

PA theory predictions based on the ZH-calculated g(r) and S(q) as input is presented in
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Fig. 3. The experimental q-range is constrained here to the IRO peak region. Note that

one significant advantage of the NSE method in comparison to dynamic light scattering

(DLS) is a larger range of accessible wavenumbers and the ability to probe wavenumbers

corresponding to the nearest neighbor and IRO distances.
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FIG. 3: NSE results (circles) for the hydrodynamic function, H(q), of the Lysozyme

samples in D2O listed in Table I. The H(q)’s are deduced from the experimental D(q)’s

and S(q)’s using H(q) = S(q)×D(q)/d0. For comparison, our BM-PA results for H(q) are

shown based on the ZH input for g(r) and S(q) (solid lines). The parameters of the HCDY

potential are given in Table I. Filled circles refer to the randomly percolated samples 5 and

6. Same color and symbol codes are used as in Fig. 2.

Our theoretical results for H(q) in Fig. 3 are in semi-quantitative agreement with the

experimental data. For sample 1 having the lowest considered volume concentration of

φ = 0.0398, the agreement is nearly quantitative. Notice in particular the distinct IRO peak

in the experimental H(q) at qcσ ≈ 3 that nicely confirms our earlier theoretical prediction
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of such a low-q peak of the hydrodynamic function in [30]. Note further that there is no

adjustable fitting parameter used in the calculation of H(q). The quantitative agreement

indicates that the theoretical BM-PA scheme used here can describe the dynamics of the

SALR samples very well at relatively low concentrations.

With increasing φ, the theoretical predictions become qualitative, and the deduced H(q)

is increasingly overestimated as compared with the experimental results. Yet, the calculated

H(q) using BM-PA still reflects the most important trends observed in the experimental

data, such as the q-values of the crossing points of the different curves. This holds even

for the randomly percolated samples 5 and 6 and the high-concentration sample 7. In

recent work by part of the authors [36] on a SALR dispersion different from the HCDY

system considered here, the good accuracy of the hybrid BM-PA scheme has been shown

in comparison with elaborate multi-particle collision dynamics simulations to persist for φ

values extending at least up to φ ≈ 0.1.

In Fig. 4, we compare the NSE results for the experimentally directly obtained short-time

diffusion function, D(q), with our theoretical predictions. The agreement between theory

and experiment is of similar quality as that for H(q) in Fig. 3. In view of Figs. 1a, 1b, and

4, and owing to the small values of S(q) for low q-values (low osmotic compressibilities), the

deviations in the H(q)’s between theory and experiment are amplified after the division by

S(q).

Note that a source of inaccuracy in inferring ds from NSE measurements is the limited

q-range probed experimentally. However, the oscillations both in the experimental and

theoretical D(q)’s are small for q & qc, with the statistical errors in the NSE-D(q) for

larger q being comparable in magnitude to the amplitude of the theoretical D(q) at these

wavenumbers. Here, qc is the wavenumber location of the IRO peak in S(q). In fact,

earlier NSE measurements on Lysozyme solutions covering larger q-values revealed basically

a plateau in D(q) at large wavenumbers [4, 7]. Hence, we expect the inaccuracy in inferring

ds from the large-q extrapolation of low-q experimental data using ds/d0 = D(q →∞), to be

quite small. This leveling off of D(q) may be facilitated by the averaging over the distribution

of the orientations of non-spherical particles (i.e., the orientational polydispersity), which

can affect the measured (effective) S(q) and D(q) akin to size polydispersity, causing the

damping of large-q oscillations [8, 57].

The differences between the theoretical predictions and the experimental results for H(q),
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FIG. 4: NSE results for the experimentally directly accessible diffusion function, D(q)

(circles), in comparison with theoretical predictions (solid lines). The theoretical D(q) is

obtained from dividing the BM-PA calculated H(q) in Fig. 3 by the respective ZH-S(q) in

Fig. 1a. Same color and symbol codes as in Fig. 2a.

visible in Fig. 3, can be attributed to the inherent simplifications in our theoretical model,

in which the non-spherical shape and patchiness of the Lysozyme proteins have been disre-

garded. Note that the S(q)’s are overall well-described by the spherical HCDY model even

for the larger φ values, and even for the two systems considered in the random percolated

state, as it is visible in Fig. 1a and likewise in [5, 6, 31, 35]. This is due to the orientational

averaging invoked in S(q). In contrast, the protein asphericities have a significantly stronger

dynamic influence, which grows with increasing φ and decreasing temperature, owing to a

stronger coupling of translational and rotational protein motion even for short times. This

dynamic translation-rotation coupling slows the collective diffusion on lengthscales 2π/q

characterized by H(q), and it significantly contributes to the overestimation of the experi-
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mental H(q) by the theoretical predictions, which are based on the isotropic pair potential

in Eq. (1), and isotropic hydrodynamic no-slip boundary conditions. In this context, using

computer simulations Bucciarelli et al. [58] recently revealed a strong slowing effect of di-

rectional attractive interactions on the cage-diffusion coefficient, D(qm) = d0H(qm)/S(qm),

with qm > qc denoting the principal structure factor peak position in these systems, as com-

pared to purely isotropic attractive interactions of comparable strength. Moreover, Roos

et al. in [59] find experimentally for Lysozyme solutions that the reduced rotational self-

diffusion coefficient, d0r/dr, with d0r denoting the rotational diffusion coefficient, dr, at infinite

dilution, is approximately equal to the inverse of the reduced zero-frequency viscosity, η/η0,

and to the reduced long-time translational self-diffusion coefficient dL/d0. This approximate

equality is suggestive of strong correlations in the dynamics of neighboring particles due

to rotational self-diffusion [59]. Such a peculiar behavior is not observed in suspensions of

charged colloidal particles, where 1/dr has a weaker φ-dependence than η and 1/dL [60].

The formation of large percolated or non-percolated clusters in the Lysozyme solutions

studied here at larger φ and lower T has an additional (slowing) influence on short-time

diffusion properties that is not adequately captured by our simple spherical model where

the pair distribution function, g(r), is the only microstructural input. While some additional

microstructural information is included in N(s) and f(N) as discussed before, these global

equilibrium distribution functions can only provide hints on how diffusion is dynamically

influenced by the presence of clusters. An enhanced hindrance of collective diffusion (i.e.,

an overall smaller H(q)) can be expected to occur with increasing mean cluster size and

number of next neighbors. Additionally and quite importantly, however, the shape of H(q)

is distinctly influenced by the distribution of cluster shapes and their densities, their intra-

and inter-cluster dynamics and here in particular the distribution of cluster lifetimes. Mul-

tiparticle collision dynamics (MPC) simulations in [36] performed for a SALR dispersion

model of spherical Brownian particles interacting by a generalized Lenard-Jones-Yukawa

potential show that the smaller clusters change their shape significantly on a timescale com-

parable to τd, indicating that the dynamics of cluster phases cannot generally be described

by a polydisperse mixture of rigid clusters. For compact clusters having many next neigh-

bor contacts, genuinely non-pairwise additive many-particle HIs also come into play, which

are not adequately described by the BM-PA scheme with the ds part treated as pairwise

additive. A quantitative exploration of the aforementioned dynamic influence of the cluster
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shapes and dynamics on collective diffusion is a demanding task that should be addressed

in a future dynamic simulation study for which the present work can provide guidance.

C. Low-frequency viscosity

The zero-frequency (low-shear rate) viscosity is calculated as the sum η = η∞ + ∆η. In

contrast to H(q), D(q) and the high-frequency viscosity part η∞, η is a long-time dynamic

property influenced additionally by relaxation (memory) effects embodied here in the shear

stress relaxation viscosity contribution ∆η. We compare our theoretical predictions for η,

obtained using the PA scheme for η∞ and the simplified mode-coupling theory expression in

Eq. (12) for ∆η, with earlier measurements of the Lysozyme solution viscosity taken from

[11, 31].

Interestingly, as shown in Fig. 5, our hybrid MCT-PA method results for η are in reason-

able agreement with the experimental viscosity measurements, in particular at smaller φ.

From our PA method theoretical results for η∞ depicted in the inset of Fig. 5, and in view

of ∆η = η − η∞, we see that the increase of η with increasing φ is mainly due to the shear

relaxation viscosity part ∆η. We further note that η∞ is quite insensitive to changes in the

pair potential caused by temperature variations. This is in line with the general observation

that ∆η is more sensitive to the interaction parameters than η∞ [49]. As one expects, the

viscosity is largest for the lowest considered temperature, and it grows strongly with increas-

ing φ in particular for the random percolated cluster systems. This viscosity enhancement

is not adequately described by our simple model. Notwithstanding these limitations, the

first-order MCT expression in Eq. (12) combined with the PA expression for η∞ is seen to be

a valuable and easy-to-implement tool for the calculation of η, giving results in reasonably

good agreement with experimental viscosity data for solutions in the dispersed-fluid phase

state at small to intermediately large concentrations.

D. Influence of varying attraction strength

To explore in more detail the interplay of short-range attraction and long-range repulsion

on the structure and dynamics of the considered systems, we focus here on the effect of

adding attraction to an initially purely repulsive pair potential. This is accomplished by
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enlarging the attraction strength, K1, in the HCDY potential stepwise from zero to its

full value given in Table I while all other parameters including the ranges of repulsion and

attraction are kept constant. For samples 1 and 6, the respective theoretical predictions

for g(r), S(q) and H(q) are shown in Fig. 6, and the theoretical predictions for η and its

high-frequency and shear relaxation parts are included in Fig. 7. As argued earlier, while

the theoretical results for the dispersed-fluid sample 1 can be expected to be quantitative,

the results for the random percolated system 6 are only qualitative but remain useful for

identifying general trends.

Consider first, as shown in the figure parts (a) and (b) of Fig. 6, the changes in the

ZH-calculated g(r) induced by increasing stepwise the attraction strength. In the limiting

case of zero attraction, in (b) there is a well-developed first-neighbor shell peak visible at

r/σ ≈ 0.8 induced by the long-range Yukawa repulsion. Owing to the low concentration, the

next-neighbor peak in (a) is quite shallow and situated at a larger pair distance than that

in (b). In both cases, there is non-zero relative probability (i.e., a non-zero contact value

g(σ+) > 0) of finding particle pairs in contact. The contact value of g(r) raises sharply with

increasing attraction strength, to the value 14.0 in (a) and 15.0 in (b) when the full strength

1.0×K1 is attained. While φ ≈ 0.04 in (a) is quite small, the g(r) attained for full attraction

strength is distinctly different from the zero-concentration form g0(r) = exp{−V (r)} (dotted

line), which has a contact value of 5.8 in (a) and 10.9 in (b). In the g(r) of the concentrated

sample 6 in (b), the first next-neighbor shell maximum at r/σ ≈ 1.3 gradually changes

into a minimum with increasing attraction strength, reflecting the buildup of a particle

depletion zone next to the attraction-enhanced next-neighbor contact layer. Additionally,

a characteristic small peak at r/σ = 2 develops with increasing attraction quantifying the

attraction-induced tendency of finding an in-line configuration of three touching particles.

The corresponding changes in S(q) induced by adding short-range attraction are depicted

in figure parts (c) and (d), respectively. As shown, an IRO peak of S(q) develops with

increasing attraction strength (i.e., a low-q shoulder at qσ ≈ 3 in the case of (b)) that

replaces the diminishing principal peak of the purely repulsive reference system with 0×K1

that is located at a larger wavenumber. Notice here the attraction-independent isosbestic

points of S(q) where the structure factor curves for different attraction values intersect.

While in general the undulations in S(q) are reflected in those of H(q) with the latter

having smaller amplitudes, owing to the significant decrease of the short-time self-diffusion
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FIG. 5: Experimental data for the normalized zero-frequency viscosity, η/η0 (circles), as

function of the Lysozyme intrinsic volume fraction φL (c.f. Eq. (14) and Table I), and

compared with first-iteration MCT-PA theoretical predictions (crosses). In addition, the

PA-calculated normalized high-frequency viscosity, η∞/η0 (squares), is shown in the inset.

Note that ∆η = η − η∞ is the shear relaxation viscosity part. In the present figure, a few

systems in addition to the ones discussed regarding S(q) and H(q) are included.

Experimental data for η are taken from [11, 31]. The samples in the random percolated

phase state for which φL & 0.2 and T . 50◦C are labeled by filled symbols and connected

by solid lines, while for the samples in the dispersed-fluid phase open symbols connected

by dashed lines are used.

coefficient ds with increasing attraction strength (c.f. the large-q values of H(q) in figure

parts (e) and (f)), there are no corresponding isosbestic points in the depicted hydrodynamic

functions. Moreover, the low-q shoulder of H(q) in (f) at qσ ≈ 3 is less pronounced than the

corresponding low-q structure factor shoulder in (d). The formation of (transient) dimers and
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clusters of several particles with increasing attractions causes the sedimentation coefficient

K = H(q → 0) to increase since the hydrodynamic friction by backflowing fluid is reduced.

And indeed, a small to moderately pronounced increase of H(0) is observed in (f) and (e),

respectively.

According to Figs. 7(a) and (b) including our theoretical viscosity predictions for samples

1 and 6, respectively, the PA calculated high-frequency viscosity η∞ increases only weakly,

and monotonically, with increasing attraction strength K1. In contrast, the MCT-calculated

shear-relaxation viscosity part, ∆η, decreases mildly at smaller K1 values, but when K1 is

further enlarged, it becomes significantly enhanced (see insets). The slightly non-monotonic

attraction-strength dependence of ∆η is reflected in a correspondingly non-monotonic K1

dependence of the zero-frequency viscosity η (filled circles).

IV. SUMMARY AND CONCLUSIONS

We have assessed the applicability of our semi-analytic methods for calculating dynamic

properties and viscosity of globular particle dispersions by comparison to experiments on

Lysozyme solutions. These methods directly relate bulk diffusion and viscosity to the struc-

ture factor without additional inputs. We find a favorable comparison between our theo-

retical predictions of H(q), D(q), and zero-frequency experimental viscosity data for η with

the experimental results.

There is a clear quantitative agreement between the BM-PA H(q) and the experimental

data observed at lower concentrations. At larger φ, qualitative agreement is still maintained

even though the quantitative agreement is lost. The experimental-theoretical deviations in

D(q) and H(q) can be attributed to the neglect of asphericities in the shape and associated

electrostatic interactions of proteins and (transient) protein clusters in the theory, as well

as to the disregarded patchiness of the short-range attraction contribution, which for larger

concentrations lead to a strong coupling of the rotational and translational particle and

cluster dynamics. Our findings are in line with earlier experimental work [59] on Lysozyme

solutions, where a dr ∝ 1/η scaling is observed for the Lysozyme solutions, but not for

spherical colloidal particles with isotropic interactions. The strong influence of particle

surface patchiness on short-time diffusion was highlighted recently in a joint experimental-

simulation study of the cage-diffusion coefficient D(qm) of γB-crystallin [58]. The authors
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FIG. 6: Influence of varying the attraction strength from zero to its full value 1.0×K1

given in Table I, for the dispersed-fluid phase sample 1 (left column) and the randomly

percolated sample 6 (right column). Displayed are the ZH-g(r): (a) & (b), ZH-S(q): (c) &

(d), and associated BM-PA H(q): (e) & (f) for samples 1 and 6, respectively. The legend

includes the respective fraction of the full attraction strength K1 = 6.03 of sample 1, and

K1 = 5.74 of sample 6. Potential parameters of both samples as in Table I except for the

attraction strength varied as indicated in the legends.
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FIG. 7: Attraction strength dependence of MCT-PA zero-frequency viscosity, η (black

filled circles), PA calculated high-frequency viscosity part η∞ (red open squares), and

MCT shear-relaxation viscosity part ∆η (blue open diamonds in inset) of (a) sample 1 and

(b) sample 6. System parameters as in Table I except for K1 which is varied.

of this study show that patchy attractive interactions give rise to smaller values of D(qm)

than those observed for isotropic attractive interactions of comparable strength, which is

consistent with our theoretical prediction for the diffusion being faster than experimentally

observed.

Quite unexpectedly, our theoretical predictions for the zero-frequency viscosity η are in

reasonably good agreement with rheological data for Lysozyme solutions, showing that the

employed simplified MCT-PA method is an efficient and easy-to-implement tool for viscosity

calculations of globular protein solutions even with pronounced intermediate range order.

Lysozyme-specific anisotropic interactions, disregarded in our spherical model, are seen to

be more influential on short-time diffusion properties than on the shear viscosity, with the

latter including also long-time (shear stress relaxation) contributions.

While being approximate, a virtue of the theoretical model presented here is its analytic

simplicity that allows for a straightforward identification of trends in the structure, short-

time diffusion and rheology of globular protein solutions in their dependence on the different

interaction and system parameters. We have demonstrated this by considering the effects of

a gradual increase of the strength K1 of the short-range attraction contribution, in particular

regarding H(q) and the solution viscosity η where for the latter a slightly non-monotonic

K1 dependence is predicted.
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A clear distinction and quantification of particle non-sphericity and patchiness effects,

and of (transient) cluster dynamics effects on protein diffusion and rheology has to await

future (hydro)-dynamic simulations and theoretical works, where these effects will be in-

dividually included and explored. Our plan is to perform such simulations in the future,

and to generate benchmark simulation results for theoretical studies using more detailed

non-spherical models.
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[22] P. Segrè, O. Behrend, and P. Pusey, Physical Review E 52, 5070 (1995).

28
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[48] A. J. Banchio, J. Bergenholtz, and G. Nägele, Physical Review Letters 82, 1792 (1999).

[49] M. Heinen, A. J. Banchio, and G. Nägele, The Journal of Chemical Physics 135, 154504

(2011).

[50] S. Kline, J. Appl. Cryst. 39, 895 (2006).

[51] K. Gekko and H. Noguchi, The Journal of Physical Chemistry 83, 2706 (1979).

[52] Y. Liu, Physical Review E 95, 020501 (2017).

[53] M. Kotlarchyk and S.-H. Chen, The Journal of Chemical Physics 79, 2461 (1983).

[54] P. D. Godfrin, P. Falus, L. Porcar, K. Hong, S. D. Hudson, N. J. Wagner, and Y. Liu, Journal

of Physical Chemistry Letters (under revision) (2017).

[55] N. E. Valadez-Pérez, R. Castañeda-Priego, and Y. Liu, RSC Advances 3, 25110 (2013).
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