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Synopsis

In a companion paper [Swan, Furst and Wagner (JOR, 2014)] we derived an exact theo-
retical description of medium amplitude oscillatory shear (MAOS) for a semi-dilute colloidal
dispersion. Through solution of the Smoluchowski equation governing the spatial distribu-
tion of suspended particles in the semi-dilute limit, we calculated the stresses that arise from
an oscillatory linear flow as an expansion in powers of the rate of deformation. Here, this
is extended to calculation of the first departures from linearity in the first and third har-
monics of the suspension stress driven by oscillatory deformation. The role of hydrodynamic
interactions is investigated via the excluded-annulus model in which particles are given an
impenetrable core with a radius larger than their hydrodynamic radius. The ratio of these
length scales controls the strength of hydrodynamic interactions. The third harmonic of
the suspension stress is predicted to be dominated by hydrodynamic stresses at high fre-
quency, a result that is shown to be valid experimentally for the oscillatory shear response of
concentrated near hard-sphere dispersions. The calculations anticipate recent experimental
observations on model near hard-sphere colloidal dispersions and quantitative agreement is
demonstrated when the predictions are scales appropriately to account for volume fraction
effects. The first departures from linearity in harmonics of the suspension stress are separated
into several material functions that are independent of the flow geometry. These functions
are generated from detailed numerical solutions, while asymptotic analysis is shown to pre-
dict the values of these functions at high frequency. These exact calculations provide a basis
for understanding the onset of nonlinear rheological behavior of colloidal suspensions under
dynamic oscillatory flow.

I Introduction

Large amplitude oscillatory shear (LAOS) is an experimental methodology for probing the non-
linear and time dependent rheology of non-Newtonian fluids [Dealy and Wissbrun (1990)]. With
this method, a complex fluid is deformed in an oscillatory fashion having a simple shear geometry.
The rate of strain in the material is commonly written as γ̇0 cos(ωt), where γ̇0 is the maximum
strain rate and ω is the frequency of oscillation. The shear stress is measured in time and then
represented as harmonics of the imposed deformation:

σ(t) =

∞∑
n=−∞

einωtAn(γ̇0, ω). (1)
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Time reversal symmetry requires that An(ω) = 0 for even values of n [Atalik and Keunings
(2004)]. The remaining odd coefficients, sometimes termed harmonics, tend to decay with in-
creasing n.

Small amplitude oscillations produce a shear stress linear in γ̇0 – the linear response of the
non-Newtonian fluid under study [Pipkin (1986)]. With increasing deformation amplitude, a
nonlinear response emerges that activates higher, odd harmonics of the shear stress [Giacomin
and Dealy (1993)]. The behavior of these higher harmonics is not well understood except in
particular limits. For instance, when ω → 0, a LAOS experiment probes the steady shear rheology
of a material [Swan, Zia and Brady (2014)]. The present article focuses on another limiting
case of LAOS termed medium amplitude oscillatory shear (MAOS) in which the maximum rate
of deformation is small [Bird, Armstrong and Hassager (1987)]. MAOS measures the leading
departures from linearity in γ̇0. These departures in the shear stress scale as γ̇30 . This provides a
basic description of the onset of non-linearity in the memory of a complex fluid [Pipkin (1986)].

The utility of LAOS for identifying particular classes of non-Newtonian fluids and generating
data for fitting to constitutive models is well established [Hyun et al. (2002); Ewoldt, Hosoi
and McKinley (2008)]. Many methods for interpreting and comparing the results of LAOS
experiments have been crafted as well [Wilhelm (2002); Rogers, Kohlbrecher and Lettinga (2012)].
Recent theoretical efforts have focused on understanding the interplay of microscopic forces
within a complex fluid and how those give rise to the nonlinear and time dependent stress
signals that emerge from LAOS [Swan, Zia and Brady (2014); Swan, Furst and Wagner (2014);
Bird et al. (2014)]. This detailed view of materials and their time dependent response is at the
forefront of modern rheological investigation and experimental measurements of complex fluid
microstructure under LAOS flow is now possible [Gurnon et al. (2014); Kim et al. (2014)]. The
goal is to bridge length and time scales by describing the macroscopic stress in these materials
in terms of the microscopic forces, structures and relaxation spectra of complex materials under
time dependent deformation.

A particularly useful model of such materials is the colloidal dispersion. The stress in a sus-
pension of hydrodynamically interacting particles has three principle contributions coming from
three separate forces on the suspended particles: hydrodynamic, Brownian and inter-particle
[Batchelor (1977); Brady (1993); Brady and Wagner (2009); Mewis and Wagner (2012)]. For
smooth hard-spheres, the inter-particle forces are assumed to be zero since hydrodynamic lubri-
cation prevents inter-particle contact. In other cases such as charged particles, particles coated
with interacting polymer brushes, or particles suspended with non-absorbing polymer, inter-
particle forces will be significant [Russel et al. (1989)]. A key question is how significant are
these contributions under different flow conditions. As we will demonstrate here, MAOS pro-
vides an interesting means of addressing this question.

A theoretical approach is proposed to predict the nonlinear memory effects associated with
MAOS. In particular, we study the microstructure of semi-dilute suspensions – those having only
pair interactions – as a function of strain-rate amplitude, oscillation frequency and the relative
strength of hydrodynamic forces. Through variation of these parameters we have found that
suspensions can express a wide spectrum of nonlinear viscoelastic responses depending on flow
conditions and the forces between suspended particles.

In our previous paper [Swan, Furst and Wagner (2014)], a theoretical description of the
relationship between harmonics of the suspension stress and harmonics of the suspension mi-
crostructure was developed. In particular, the third harmonic of hydrodynamic contributions
to the stress derives from the second harmonic of the suspension microstructure. However, the
third harmonic of Brownian contributions to the stress derives from the third harmonic of the
microstructure. In the high frequency limit, our asymptotic analysis suggested that the second
and third harmonics of the microstructure decay in intensity as ω−2 and ω−3 respectively. We
concluded that the third harmonic of the stress should be dominated by hydrodynamic contri-
butions.
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We have now performed experiments with suspensions of sub-micron silica spheres in MAOS
at high frequency [Gurnon (2014)]. We find that the third harmonic of the suspension stress scales
with the maximum rate of strain cubed (γ̇30) and inversely with the frequency squared (ω−2).
This scaling matches our earlier predictions. Comparisons of this behavior with some common
rheological models shows a disparity. The Giesekus model, for example, predicts that the third
harmonic of the shear stress scales inversely with the fourth power of frequency ω−4 in MAOS
at high frequency [Gurnon and Wagner (2012)]. Other constitutive equations predict stronger
scaling than observed in experiment as well [Giacomin and Bird (2011); Hyun et al. (2011)].
Our theory shows that the source of this discrepancy is the hydrodynamic interactions between
colloidal particles which produce a stress that depends on the local particle configuration. This
is in contrast to most models for viscoelastic fluids where the hydrodynamic stress is modeled as
the product of a constant high frequency viscosity and the local rate of strain in the material.
In colloidal dispersions, the hydrodynamic stress depends on the suspension structure [Batchelor
and Green (1972),Brady and Bossis (1988)]. This relationship is responsible for phenomena such
as shear thickening [Morris and Brady (1997)] and the observed MAOS response.

In the present paper, we construct detailed numerical solutions for the microstructure and
stresses produced by MAOS and determine the third harmonic of the suspension stress as well
as first departures from linearity in the first harmonic of the suspension stress. We present
MAOS experiments with suspensions and show that our simple, semi-dilute model predicts the
experimental behavior quantitatively. The paper is organized as follows: section II is a brief
review of the proposed model, section III presents the model results as well as the comparison to
experimental measurements, section IV contains concluding remarks on MAOS, LAOS and the
time dependent rheology of suspensions.

II A brief review of the semi-dilute suspension model

Our previous work provides a derivation of the equations for the time dependent suspension
microstructure and stress under MAOS [Swan, Furst and Wagner (2014)]. The microstructure,
represented as harmonics of the pair distribution function for particles in the suspension, is
reviewed in section A. The inter-particle forces directing particle motion in the suspension are
reviewed in section B. The stress, represented as harmonics of the hydrodynamic, Brownian
and inter-particle contributions to the suspension stress, is reviewed in section C. The first and
second harmonics of the microstructure and stress were calculated in our previous work. The
same calculations are extended to the third harmonics of the microstructure and stress and the
first departures from linearity in the first harmonic of these same quantities in the appendix.

A Suspension microstructure

The pair-distribution function, g(r, t), is the probability density for finding a pair of particles
separated by r at time t divided by the particle number density. The Smoluchowski equation
governs the pair distribution function in a semi-dilute suspension of hard-spheres deformed by
the oscillatory flow field U(r) cos(ωt) with relative particle diffusivity D(r) [Batchelor (1977);
Brady and Vicic (1995)]:

ġ + cos(ωt)∇ · (Ug) = ∇ ·D · ∇g, (2)

with boundary conditions g(r, t)→ 1 as r→∞ and

r̂ · (U cos(ωt)g −D · ∇rg) , (3)

at inter-particle contact, r = 2b with r̂ = r/r. A linear flow is assumed here, U(r) = Γ̇ ·r−H(r) :
E where Γ̇ is the shear rate amplitude tensor, E is the symmetric part of Γ̇, Ω is the anti-
symmetric part of Γ̇ and H(r) reflects the hydrodynamic coupling of particles via the shear flow.
This equation describes a balance of advective and diffusive fluxes of particles which lead to
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distortion of the pair-distribution function from its equilibrium state. Equations 2 and 3 are
valid in the limit that the particle number density, n, goes to zero and accurate to O(n2). The
stresses in a suspension are linear in integrals over the pair distribution function and will be
evaluated up to O(n2) as well. This is the definition of semi-dilute. Thus knowledge of g(r, t) as
solutions to these equations is essential to determining the stress.

The following scales are adopted to make the equation dimensionless: r ∼ b, a particle’s
hard-sphere radius; U ∼ Γ̇b, the characteristic flow velocity; D(r) ∼ D, the characteristic
relative diffusivity; and t ∼ b2/D. This gives rise to two dimensionless groups:

Pe =
Γ̇b2

D
, (4)

the Péclet number characterizing the strength of the flow relative to the thermal forces on the
particles; and

α =
ωb2

D
, (5)

the oscillation frequency made dimensionless on the diffusive time scale. From this point forward,
time and separation are made dimensionless as described.

Deviatoric stresses arise from perturbations of the pair distribution function from its equilib-
rium value which is unity in the semi-dilute limit. Therefore, the dimensionless Smoluchowski
equation governing the microstructural response to the oscillatory flow is expressed in terms of
this perturbation: g(r, t) = 1 + Pe f(r, t),

ḟ + cos(αt)∇ · [U(1 + Pe f)] = ∇ ·D · ∇f, (6)

with boundary conditions far from inter-particle contact (r → ∞), f(r, t) → 0 and the no-flux
condition at contact (r = 2),

r · [cos(αt)U (1 + Pe f)−D · ∇f ] = 0, (7)

The deviatoric suspension stress will be written exclusively in terms of this deviation of the pair
distribution function from equilibrium.

We expand the perturbed micro-structure, f(r, t), as a series of harmonics of the driving
frequency α such that

f(r, t) =
∞∑

n=−∞
einαtfn(r), (8)

and use orthogonality of the harmonics form the hierarchy of equations

inαfn +
1

2
∇ · {U [δ1n + δ−1n + Pe (fn−1 + fn+1)]} = ∇ ·D · ∇fn, (9)

with
r̂ ·
{

1

2
U [δ1n + δ−1n + Pe (fn−1 + fn+1)]−D · ∇fn

}
= 0, (10)

at r = 2 and fn(r) = 0 as r → ∞. Here, δ1n and δ−1n are Kronecker delta functions: one if
n = 1 or n = −1, respectively and zero otherwise. We previously demonstrated in the limit that
Pe→ 0,

fn(r) ∼ O(Pe||n|−1|), (11)

such that higher order structural harmonics are vanishingly small. An asymptotic expansion of
the first few harmonics when Pe� 1 can be written as:

f0(r) = Pef
(1)
0 (r) + o(Pe), (12a)

f1(r) = f
(0)
1 (r) + Pe2f

(2)
1 + o(Pe2), (12b)

f2(r) = Pef
(1)
2 (r) + o(Pe), (12c)

f3(r) = Pe2f
(2)
3 (r) + o(Pe2). (12d)
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Figure 1: A pair of particles interact based on the separation between their centers r. Each
particle has a solid core of radius a at which the fluid satisfies the no-slip condition. This is the
hydrodynamic radius. At separation |r| = 2b, the particles are impenetrable to another. This is
the hard-sphere interaction radius. The space between radii a and b is filled with the solvent.

In our previous paper, we solved for the linear response, f (0)1 (r), and the first departures from
linearity in the microstructural perturbation, f (1)0 (r) and f

(1)
2 (r). Here, we will determine the

leading order contribution to the third harmonic, f (2)3 (r), and the first departure from linearity
in the first harmonic, f (2)1 (r). The governing equations for f (2)3 (r) and f

(2)
1 (r) are determined

from the leading order terms with n = 3 and n = 1 in the hierarchy of microstructural equations
(9 and 10):

3iαf
(2)
3 +

1

2
∇ ·
(
Uf

(1)
2

)
= ∇ ·D · ∇f (2)3 , (13)

iαf
(2)
1 +

1

2
∇ ·
[
U
(
f
(1)
0 + f

(1)
2

)]
= ∇ ·D · ∇f (2)1 , (14)

with
r̂ ·
[

1

2
Uf2 −D · ∇f (2)3

]
= 0,

r̂ ·
[

1

2
U (f0 + f2)−D · ∇f (2)1

]
= 0,

at r = 2 and f (2)3 (r) → 0, f (2)1 (r) → 0 as r → ∞. We have already determined the quantities
f
(1)
0 (r) and f (1)2 (r) and will not discuss their computation here. However, note that they take on
the bilinear form:

f
(1)
0,2 (r) = (r̂ ·E · r̂)2 φ

(1)
0,2(r) + (r̂ ·E ·E · r̂)χ

(1)
0,2(r) + (r̂ ·Ω ·E · r̂)ψ

(1)
0,2(r) + (E : E) ξ

(1)
0,2(r). (15)

B Inter-particle forces

In our model colloidal dispersion, the inter-particle interactions are characterized by two length
scales: b, the radius at which repulsive hard sphere interaction occurs to keep the particles
separated, and a, the radius at which the solvent must satisfy the no-slip condition (see figure
1). This is the excluded annulus model in which the space between the hydrodynamic radius,
a, and the thermodynamic radius, b, is filled with the solvent [Morris and Brady (1996, 1997)].
The ratio b̂ = b/a governs the strength of hydrodynamic interactions between the particles.

When b̂ →∞, the suspension is freely draining, so that the particles do not interact hydro-
dynamically. When b̂→ 1, the hydrodynamic radii of the particles may approach asymptotically
close to contact between the no-slip surfaces. Implicit in such a model is a definition for the
characteristic diffusive scale D given by twice the Stokes-Einstein diffusivity, kT/(3πηa) which
is inversely proportional to the hydrodynamic radius [Einstein (1905)]. The Peclet number can
be written as Pe = 3πηΓ̇ab2/kT and the dimensionless frequency as α = 3πηωab2/kT . The
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suspension stress will be calculated in the limit small particle number density, n. Thus we will
account for just “pair” interactions. Results will be written in terms of the volume fraction based
on the hydrodynamic radius: φ = 4πa3n/3.

Hydrodynamic functions, D(r) and H(r), are written in terms of orthogonal scalar contribu-
tions:

D = G(b̂r)r̂r̂ +H(b̂r) (I− r̂r̂) (16)

and
H = r

[
A(b̂r)r̂r̂ +B(b̂r) (I− r̂r̂)

]
·E · r̂. (17)

The scalar functions G(b̂r), H(b̂r), A(b̂r) and B(b̂r) are well known [Batchelor and Green (1972);
Batchelor (1977)] and asymptotic expressions are given in our previous work. The advective
velocity field for the particles has a finite divergence:

∇ ·H =

[
r
∂A(b̂r)

∂r
+ 3

(
A(b̂r)−B(b̂r)

)]
(r̂ ·E · r̂) = W (b̂r) (r̂ ·E · r̂) . (18)

A combination of analytical solutions for all of the scalar hydrodynamic functions and asymptotic
expressions for nearly touching particles are used in the calculations [Jeffrey and Onishi (1984)].

C Suspension stress

The deviatoric stress in a colloidal dispersion subject to oscillatory deformation, may be written
as

Σ(t) = 2ηΓ̇ cosαtE + n
(
SH + SB + SP

)
, (19)

where 2ηΓ̇ cos(αt)E is the solvent phase stress, and the remaining three components are the
deviatoric particle phase stress, called: the hydrodynamic stresslet, SH , the Brownian stresslet,
SB and the inter-particle, hard-sphere stresslet, SP [Batchelor (1977)]. In the semi-dilute limit,
the hydrodynamic, Brownian and hard-sphere contributions to the particle phase stress may be
written in terms of f(r, t) as [Bergenholtz, Brady and Vicic (2002)]:

SH =
20

3
πηa3Γ̇ cos(αt)

{[
1 + φ

(
1 + 3b̂3

∫ (
K(b̂r) +

2

3
L(b̂r) +

2

15
M(b̂r)

)
r2dr

)]
E (20a)

+
3φb̂3Pe

4π

∫ [
K(b̂r)E + L(b̂r)

(
r̂ ·Er̂ + r̂E · r̂− 2

3
(r̂ ·E · r̂) I

)
+M(b̂r) (r̂ ·E · r̂)

(
r̂r̂− 1

3
I

)]
f(r, t)dr

}
,

SB =
3kTφb̂3Pe

8π

∫
W (b̂r)

(
r̂r̂− 1

3
I

)
f(r, t)dr, (20b)

SP = −3kTφb̂3Pe

π

(
1−A(2b̂)

)∫ (
r̂r̂− 1

3
I

)
f(r = 2, t)dΩ, (20c)

where K(b̂r), L(b̂r),M(b̂r) are more known hydrodynamic scalar functions for describing the
hydrodynamic stresslet [Jeffrey and Onishi (1984)]. Because f(r, t) can be written as a series of
harmonics, it makes sense to expand the stresslets in the same fashion where, for ∗ = (H,B, P ):

S∗ = S∗,∞ +

∞∑
n=−∞

einαtS∗n, (21)

with SP,∞ = SB,∞ = 0 and

SH,∞ =
20

3
πηa3Γ̇ cos(αt)

[
1 + φ

(
1 + 3b̂3

∫ (
K(b̂r) +

2

3
L(b̂r) +

2

15
M(b̂r)

)
r2dr

)]
E. (22)
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In this form, the Fourier series coefficients, S∗n, are all linearly proportional to harmonics of
the microstructural deformation. Full expressions for the S∗n are given in the previous article.
The leading order contributions to the third harmonic of the suspension stress are

SH3
20
3 πηa

3Γ̇φ
=

3b̂3Pe2

8π

∫ [
K(b̂r)E + L(b̂r)

(
r̂ ·Er̂ + r̂E · r̂− 2

3
(r̂ ·E · r̂) I

)
(23a)

+M(b̂r) (r̂ ·E · r̂)

(
r̂r̂− 1

3
I

)]
f
(1)
2 (r)dr,

SB3
20
3 πηa

3Γ̇φ
=

27b̂5Pe2

160π

∫
W (b̂r)

(
r̂r̂− 1

3
I

)
f
(2)
3 (r)dr, (23b)

SP3
20
3 πηa

3Γ̇φ
= −27b̂5Pe2

20π

∫ (
1−A(2b̂)

)(
r̂r̂− 1

3
I

)
f
(2)
3 (r = 2)dΩ. (23c)

Likewise, contributions to the first departure from linearity in the first harmonic of the stress are

SH1
20
3 πηa

3Γ̇φ
=

3b̂3Pe2

8π

∫ [
K(b̂r)E + L(b̂r)

(
r̂ ·Er̂ + r̂E · r̂− 2

3
(r̂ ·E · r̂) I

)
(24a)

+M(b̂r) (r̂ ·E · r̂)

(
r̂r̂− 1

3
I

)] [
f
(1)
0 (r) + f

(1)
2 (r)

]
dr,

SB1
20
3 πηa

3Γ̇φ
=

27b̂5Pe2

160π

∫
W (b̂r)

(
r̂r̂− 1

3
I

)
f
(2)
1 (r)dr, (24b)

SP1
20
3 πηa

3Γ̇φ
= −27b̂5Pe2

20π

∫ (
1−A(2b̂)

)(
r̂r̂− 1

3
I

)
f
(2)
1 (r = 2)dΩ. (24c)

Notably, higher harmonics of stresses arising from non-hydrodynamic and hydrodynamic forces
have prefectures with the same scaling with respect to the Péclet number. However, these
two types of stresses derive from different microstructural harmonics and thus have a different
microstructural origin and character.

III Results and discussion

The results and discussion are divided into three parts: calculations of the first and third harmon-
ics of the suspension stress as a function of α and b̂, comparison of the theory with experimental
results, and discussion of material functions capable of describing the stress state of a suspension
independent of the flow geometry.

A First departures from linearity in the shear stress

We continue to consider the limit Pe � 1. The O(Pe2) contribution to the first and third
harmonics of the suspension stress, denoted ∆̂Σ, may be written as,

∆̂Σ = 10ηΓ̇φ2
[
Re A1(b̂, α) cosαt− Im A1(b̂, α) sinαt (25)

+Re A3(b̂, α) cos 3αt− Im A3(b̂, α) sin 3αt
]
,
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where the tensors A1(b̂, α) and A3(b̂, α) are O(Pe2) for all α > 0. These tensors depend on
trilinear factors of E or Ω, as

A1,3 =
SH1,3 + SB1,3 + SP1,3

20
3 πηa

3Γ̇φ
= I11,3(b̂, α)E(E : E) + I21,3(b̂, α)

(
E ·E ·E− 1

3
tr(E ·E ·E)I

)
+ I31,3(b̂, α) (Ω ·E ·E−E ·E ·Ω)

+ I41,3(b̂, α)

(
Ω ·Ω ·E + E ·Ω ·Ω− 2

3
tr (Ω ·E ·Ω) I

)
+ I51,3(b̂, α)

(
Ω ·E ·Ω− 1

3
tr (Ω ·E ·Ω) I

)
.

These tensors, A1 and A3 cannot be intrinsic properties of the fluid, because they depend on
the flow geometry through E and Ω. Instead, the coefficients, I∗1,3(b̂, α), are material functions.
If the flow is simple shear, then

A1,3 =
1

4

(
2I11,3(b̂, α) + I21,3(b̂, α)− 2I41,3(b̂, α) + I51,3(b̂, α)

)
E. (26)

If it is planar extension,
A1,3 =

(
2I11,3(b̂, α) + I21,3(b̂, α)

)
E, (27)

or if it is biaxial extension,

A1,3 = 3
(

2I11,3(b̂, α) + I21,3(b̂, α)
)

E. (28)

Thus, knowledge of all the factors I∗1,3(b̂, α) is necessary to describe the linear oscillatory flow of
a non-Newtonian material in this limit. Note that in incompressible flow it can be shown that

1

2
(E : E) = E ·E ·E− 1

3
tr(E ·EE)I, (29)

so that I11,3(b̂, α) and I21,3(b̂, α) always contribute to the stress in a proportion of 2:1. We describe
these functions separately since they have distinct microstructural origins.

Figure 4 shows viscous Lissajous curves of ∆̂Σ : E versus the oscillatory rate of strain for
oscillatory flow. These curves represent the first departure from linearity in the shear stress.
Because colloidal dispersions are shear thinning in the small Pe limit at steady state, the full
shear stress is expected to be smaller than the shear stress from linear response as α→ 0. Thus,
when the rate of strain is positive, the O(Pe2) contribution to the shear stress is negative. The
Lissajous curves have an orientation that reflects this shear thinning property.

The first and third harmonics of the O(Pe2) contributions to the shear stress give rise to
distinct parts of the Lissajous curves. The first harmonic can produce curves which are ellip-
soidal, while the third harmonic can produce shapes having a local curvature which changes sign.
Consequently, examination of both the sign of the shear stress along a Lissajous curve and the
sign of the local curvature of that curve can be instructive.

As depicted in figure 3, at low frequency the sign of the Lissajous curve is predominantly
opposite the sign of the rate of strain. This suggests that the real part of the first harmonic
coefficient is negative. Additionally, the sign of the local curvature is opposite the sign of the
rate of strain. Because the sign of the local curvature is dictated by the third harmonic, this
suggests that the real part of the third harmonic coefficient is negative as well. Consequently,
the first and third harmonics are shear thinning. The thinning response is characteristic of the
low frequency behavior for all b̂. However, at high frequency and for values of b̂ near unity, the
sign of the shear stress is opposite that of the rate of strain while the sign of the curvature is the
same. This indicates that the first harmonic is shear thinning while the third harmonic is shear
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Figure 2: The O(Pe2) contributions to the suspension stress in oscillatory shear flow plotted
parametrically against the oscillatory rate of strain for differing values of α and b̂. The viscous
Lissajous curves are all scaled to fill each box which is centered on zero shear stress/rate of strain.

thickening. In fact the hydrodynamic forces between particles dominate the third harmonic in
this limit.

The reason for this transition in behavior is the same that was discussed for linear response.
The lubrication forces between particles slow their relative motion to such a degree that un-
der high frequency oscillation, stresses in the boundary layer are suppressed. In the absence of
hydrodynamic interactions, this boundary layer would lead to large stresses due to the conser-
vative forces between particles. For particles widely separated, the microstructural perturbation
vanishes. However, with strong hydrodynamic interactions the microstructural perturbation is
most significant far from contact, and long-ranged hydrodynamic forces comprise the largest
contribution to the suspension stress as a result.

Because hydrodynamic stresses are always at least proportional to the rate of strain in the
fluid – owing to the linearity of Stokes flows – there is a fundamental difference in their scaling
relative to the conservative stresses. As shown in equations 23a-23c and 24a-24c, the O(Pe2)

contributions to the first and third harmonics of the hydrodynamic stresslet scale with f (1)2 (r)

and f (1)0 (r), which we have shown previously to possess and O(α−2) character when α� 1 and
b̂− 1� 1. The O(Pe2) contributions to the first and third harmonics of the Brownian and hard
sphere stresses are proportional to f (2)1 (r) and f (1)3 (r) which can be shown to scale as α−3 in this
same limit. Thus the hydrodynamic stresses are dominant.

In figure 4 we depict the O(Pe2) contribution to Fourier coefficients of the suspension stress.
These are normalized by the difference between the zero shear and high frequency viscosities of
the suspension which has values: 0.913ηφ2 and 2.4ηb̂5φ2 for b̂ = 1 and b̂ = ∞, respectively. At
low frequency, the real parts of the first and third harmonic are negative and responsible for the
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Figure 3: The O(Pe2) contributions to the suspension stress in oscillatory shear flow plotted
parametrically against the oscillatory rate of strain for two values of α and b̂. The shear stress
and rate of strain have been scaled by their maximum values to enable comparison of the shapes
of the curves.

shear thinning response under steady shear. When α� 1, however, the first and third harmonic
are qualitatively dissimilar.

For the first harmonic of the shear stress, the real parts become negative at high frequency,
while the imaginary parts remain positive. For b̂ = ∞, the real and imaginary parts both scale
as α−3/2, while for b̂−1 = 10−5, the real part scales as α−2 and the imaginary part scales as α−3.
The consequence of this disparity is that the Lissajous curves in the absence of hydrodynamic
interactions are exhibit a large hysteresis at high frequency because the real and imaginary parts
of the first harmonic are the same order of magnitude. With hydrodynamic interactions, the
Lissajous curves at high frequency exhibit negligible hysteresis because the real parts of the first
and third harmonic are dominant. Closed Lissajous curves are indicative of a purely dissipative
response which has been shown to be the only response possible for suspensions with purely
hydrodynamic stresses [Swan, Zia and Brady (2014)].

For the third harmonic of the shear stress at high frequency, the real part of the Fourier
coefficient is positive and scales as α−2 when b̂ ≈ 1 while the imaginary part becomes negative
and scales as α−3. In the absence of hydrodynamic interactions both the real part and the
imaginary part become negative and scale as α−3/2. Thus, without hydrodynamic interactions
there is still a shear thinning character to the MAOS response. With hydrodynamic interactions,
however, the third harmonic exhibits a shear thickening response instead. The α−2 scaling of
this harmonic is characteristic of hydrodynamic stresses in the suspension. The hydrodynamic
stresses driving the third harmonic is verified through comparison with measurements of the
shear stress in MAOS experiments.

B Comparison with experiments

Medium amplitude oscillatory shear experiments with silica spheres (Seahoster Company, L.L.C.,
Japan, a = 260 nm at 40% particles by volume in polyethylene glycol Mw=200, η = 0.049 Pa
s) were performed. Details of the sample preparation and a full rheological and microstructural
characterization are published [Gurnon and Wagner (2015)]. Strain amplitude sweeps were con-
ducted at four frequencies. The limiting behavior of the third harmonic of the shear stress at
different frequencies was determined from a polynomial fit to data collected at low strain am-
plitude. The resulting amplitude for the third harmonic is shown in figure 5. A characteristic
relaxation time of 2.8 s was measured by fitting the linear response of the dispersion to a Maxwell
model. The difference between the zero shear and high frequency viscosities was found to be:
η′0 − η′∞ = 0.73 Pa s. The factor |Σxy

3 | represents 10ηΓ̇φ2|A3(b̂, α) : E| or the magnitude of the
third Fourier coefficient of the shear stress The suspension exhibits a shear thickening response
under steady shear, so it is assumed that b̂ ≈ 1 is a suitable parameter value for comparison with
the model [Bergenholtz, Brady and Vicic (2002); Maranzano and Wagner (2002)].
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Figure 4: TheO(Pe2) contributions to the Fourier coefficients of the first (top) and third (bottom)
harmonic of the suspension stress in oscillatory shear flow. The inset depicts the same data at
high α on logarithmic scales.

In the appendix, it is shown that the microstructural harmonic f (2)3 (r) scales as α−3 at high
frequency when b̂ ≈ 1t. Additionally, prior work shows that f (1)0,2 (r) scales as α−2. Therefore, the
contributions to the third harmonic of the shear stress are predicted to scale as:

SH3
20
3 πηa

3Γ̇φ
∼
(

Pe

α

)2

,

and
SB3

20
3 πηa

3Γ̇φ
∼ Pe2

α3
.

These divergent scaling expressions allow us to detect which of the different contributions to the
suspension stress are expressed in MAOS at high frequency.

The O(α−2) scaling observed in the experiment is suggestive of hydrodynamic stresses. In
studies of MAOS with other materials, a much stronger dependence on frequency has been
observed Gurnon and Wagner (2012). For instance, at high frequency the third harmonic of the
stress in MAOS experiments with micellar solutions and MAOS calculated from the Giesekus
constitutive model both show scaling proportional to the cube of the maximum rate of strain
and inversely proportional to the fourth power of frequency.

In contrast, hydrodynamically interacting suspensions produce the weaker scaling α−2 which
results from the interaction of the microstructural deformation and the hydrodynamic stress.
Because hydrodynamic stresses are always at least linear in the rate of deformation, the third
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Figure 5: A comparison between experimental measurements of the third harmonic of the shear
stress in a suspension of hard spheres (points) and the model calculations (solid lines).

harmonic of the hydrodynamic contribution of the stress depends on the second harmonic of the
microstructural perturbation. In contrast, the conservative contributions to the third harmonic
of the stress depend on the third harmonic of the microstructural perturbation.

Rescaling the frequency on the experimentally measured relaxation time and rescaling the
suspension stress on η′0−η′∞, indicates that the model has reasonable quantitative power as well.
The semi-dilute model under predicts the experimental value of the third harmonic of the stress
by a factor of roughly 2.5. This small difference could be attributed to the choice of relaxation
time for normalization of the frequency, for instance. Alternative choices based on the short or
long-time self-diffusivities of the suspended particles could be formulated. Though, we have not
measured those quantities and refrain from such a comparison at present.

C Material functions for the first and third harmonic

Figures 6 and 7 present the material functions I∗1,3(b̂, α) for two limiting values of b̂ corresponding
to the limits of full and no hydrodynamic interactions. As equations 26-28 show, the stress due
to uniaxial and biaxial extensional flows depends only on the material functions with I1,21,3 (b̂, α).
The stress in simple shear flow depends on these same functions as well as I4,51,3 (b̂, α). For all
values of b̂, I4,51,3 (b̂, α)� I1,21,3 (b̂, α) when α� 1. That is, the stress response in simple shear flow
approaches that of uniaxial and biaxial extension at high frequency. The rapid oscillation of the
imposed flow leads to a reduced microstructural deformation related to rotational components
of the simple shear flow. This same coincidence of stress responses occurs in steady shear flow
at high Peclet numbers Morris and Brady (1997).

In the absence of hydrodynamic interactions, asymptotic scaling of the material functions
at high frequency is directly related to which trilinear tensors they multiply. For instance, the
functions: I1,21,3 (b̂, α) ∼ α−3/2, and multiply trilinear terms containing three factors of E. The
function: I31,3(b̂, α) ∼ α−2, multiplies a trilinear term containing two factors of E and one of
Ω. Finally, I4,51,3 (b̂, α) ∼ α−5/2, multiply terms containing two factors of Ω and one factor of
E. For each factor of Ω, the decay of the stress is stronger by α−1/2. The reason for this is
that rotational flow alone cannot produce a microstructural perturbation. At high frequency,
an O(α−1/2) thin boundary layer forms in the perturbed microstructure. The microstructural
perturbations of lower harmonics are coupled to the higher harmonics by both straining and
rotational components of the flow. However, the rotational component of the flow produces a
weaker coupling and proportionally weaker stresses.

With hydrodynamic interactions, the picture at high frequency is different. I1,2,31,3 (b̂, α) are all
driven by hydrodynamic stresses and proportional to the second harmonic of the microstructural
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Figure 6: The material functions of the first harmonic. At small α, the real parts are all negative
and the imaginary parts are all positive. With increasing α sign changes may occur which are
reflected by asymptotes in a log-log plot of the absolute values of the material functions.

perturbation. We have shown that this perturbation scales as α−2, and thus so do these material
functions. The material functions I4,51,3 (b̂, α) are driven by the departures from linearity in the
first and third harmonics of the microstructural perturbation instead. These material functions
are entropic in origin and proportional to α−3 as predicted by our scaling analysis of Brownian
stresses.

At low frequency with and without hydrodynamic interactions, the real parts of these ma-
terial functions plateau to negative values while the imaginary parts approach zero from the
positive side. The imaginary parts are proportional to α1/2 in the small α limit. This sub-linear
growth rate reflects the fact that the microstructural perturbation decays to zero on a length
scale proportional to α−1/2 which leads to a strong coupling of different structural harmonics
in the far-field. Values for α = 0 cannot be evaluated exactly because this coupling breaks the
proposed regular perturbation scheme (eqs. 9 and 10) Brady and Vicic (1995). The limit can be
extrapolated from the low frequency plateaus of the material functions instead.

For example, in steady shear flow, figure 4 suggests that the leading order contributions to
the shear stress are

∆̂Σ

2ηΓ̇
≈ η′0

η
−
(
η′0 − η′∞

η

)
Pe2

{
1.90, b̂→ 1

1.05, b̂→∞
(30)

The extrapolated values with and without hydrodynamic interactions agree quantitatively with
Bergenholtz, Brady and Vicic (2002) where this shear thinning contribution is calculated explic-
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Figure 7: The material functions of the third harmonic. At small α, the real parts are all negative
and the imaginary parts are all positive. With increasing α sign changes may occur which are
reflected by asymptotes in a log-log plot of the absolute values of the material functions.

itly for steady shear flow. The extrapolation of I1,2,3,4,51,3 (b̂, α) to α = 0 could be used to quantify
the initial shear thinning of a dispersion in any flow geometry, however.

Ewoldt and Bharadwaj proposed intrinsic, nonlinear material functions that match the
present MAOS description but only for shear flow [Ewoldt and Bharadwaj (2013)]. In their
notation, the intrinsic functions [e1](ω) and [v1](ω) reflect the first elastic and viscous depar-
tures from linearity in the first harmonic, while [e3](ω) and [v3](ω) give the same for the third
harmonic. These are related to the material functions presented here by the following relations:

[e1,3](ω) = −5ηφ2ω

2Γ2
Im
(

2I11,3(b̂, α) + I21,3(b̂, α)− 2I41,3(b̂, α) + I51,3(b̂, α)
)
, (31)

[v1,3](ω) =
5ηφ2

2Γ2
Re
(

2I11,3(b̂, α) + I21,3(b̂, α)− 2I41,3(b̂, α) + I51,3(b̂, α)
)
. (32)

Recall that the functions I∗1,3(b̂, α) scale as Pe2, so the above expressions are independent of the
strain and strain-rate. They depend only on the frequency. The scaling of these functions at high
frequency derived in the appendix predicts that [e1,3](ω) ∼ ω−2, [v1,3](ω) ∼ ω−2 when b̂→ 1.

Finally, we note that the material function I31,3(b̂, α) is associated with the traceless tensor:
(Ω · E · E − E · E ·Ω). This tensor is zero for all flows with a symmetric rate of strain as well
as all incompressible, two dimensional flows. It is only linear flows having a three dimensional,
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asymmetric rate of strain tensor that exhibit this stress response. How to measure this material
function experimentally is a bit of a mystery.

D Non-linear memory functions

MAOS is important because it actively probes the nonlinear time-dependent behavior of non-
Newtonian fluids. Consider just the shear stress in simple shear flow in the limit of small shear
rates, which may be written as:

σ(t) =

∫ ∞
−∞

A1(t− t′)γ̇(t′)dt′ +

∫∫∫ ∞
−∞

A3(t− t′, t− t′′, t− t′′′)γ̇(t′)γ̇(t′′)γ̇(t′′′)dt′dt′′dt′′′ + . . .

(33)

By this view the shear stress is a functional of the deformation history, and this memory kernel
expansion can be seen as a power series representation of that functional about arbitrary, but
small rates of deformation. On substituting for an oscillatory shear flow, γ̇(t) = γ̇0 cos(ωt), the
linear term of the memory integral expansion is proportional to:∫ ∞

−∞
A1(t− t′)γ̇(t′)dt′ = 2γ̇0

(
ReÂ1(ω) cos(ωt)− ImÂ1(ω) sin(ωt)

)
, (34)

where Â1(ω) is the Fourier transformation of A1(t). This is the classical linear response expression
which describes how an oscillatory shear experiment can be used to extract the linear part of
the memory kernel A1(t). Likewise, the cubic term becomes∫∫∫ ∞

−∞
A3(t− t′, t− t′′, t− t′′′)γ̇(t′)γ̇(t′′)γ̇(t′′′)dt′dt′′dt′′′ (35)

=
γ̇30
4

[3ReA(ω, ω,−ω) cos(ωt)− 3ImA(ω, ω,−ω) sin(ωt)

+ReA(ω, ω,−ω) cos(3ωt)− ImA(ω, ω,−ω) sin(ωt) sin(3ωt)] ,

where Â3(ω1, ω2, ω3) is the triple Fourier transformation of A(t, t′, t′′). This shows how MAOS
is capable of quantifying an additional part of the memory kernel expansion. Importantly,
Â3(ω, ω, ω) and Â3(ω, ω, ω) are specific to the flow geometry. For simple shear deformations,
these depend on a known combination of the functions I1,2,4,51,3 (b̂, α) that we have computed to
within a constant scalar factor in figure 4.

As we have shown, the character of these material functions changes depending on the fre-
quency from shear thinning to shear thickening. This suggests that even in the mildly nonlinear
limit, the time dependent flow of hydrodynamically interacting particles can be far more complex
that past retarded motion expansions would suggest Brady and Vicic (1995). Further theory and
experiments exploring flows of particulate materials in complex geometries and with time varying
conditions are warranted.

A modified version of MAOS can be used to access the full frequency dependence of Â3(ω1, ω2, ω3).
If the oscillatory rate of deformation is tritone: γ̇(t) = γ̇0(α1 cosω1t+α2 cosω2t+α3 cosω3t), then
the shear stress would feature permutations of Â3(±ωi,±ωj ,±ωk)ei(±ωi±ωj±ωk)t. For different
combinations of ω1, ω2 and ω3, a complete map of Â3(ω1, ω2, ω3) may be constructed. Addi-
tionally, knowledge of the limiting high frequency behavior would be essential to converting this
expression from the frequency domain back to the time domain. This high frequency behavior
is easily assessed through analysis of microstructural relaxation much as we have demonstrated
with monotone MAOS. Such an investigation is reserved for future work.

IV Conclusions

In this article, we develop a theory for predicting the first departures from linearity in the
first and third harmonics of the stress from MAOS on suspensions of Brownian particles by
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extending an asymptotic analysis of the suspension microstructure and stress. Varying the
relative strength of the hydrodynamic interactions between suspended particles demonstrates
that differing asymptotic behaviors can be expected at high frequency for freely draining and
hydrodynamically interacting particles. These predictions were tested through comparison with
MAOS experiments on suspensions of silica spheres which are known to shear thicken and thus
interact hydrodynamically. The comparison shows the same scaling of the third harmonic of the
shear stress with respect to frequency, and a scaled version of the theory predicts the magnitude
of this stress signal to within a factor of 2.5. Material functions capable of describing MAOS in
any flow geometry were presented as well.

We have shown that the microstructure and stress response of a non-Newtonian fluid under
high frequency oscillation is highly sensitive to the physical interactions among its suspended
constituents. The same must be true of all non-Newtonian fluids. The predictions made in this
MAOS analysis allow for nonlinear, time-dependent rheology experiments to differentiate between
stresses generated by hydrodynamic and non-hydrodynamic forces in terms of the nonlinear re-
laxation spectrum. A similar analysis may be paired with experiments for any microstructured
material as a tool to discriminate between different physical forces driving nonlinear viscoelas-
ticity.
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A Evaluation of the third harmonic of the stress

In this appendix, we extend a previous analysis of the microstructure and stress in a suspension
under MAOS to the third harmonic. A slight modification of the procedure yields results for
the first departures from linearity in the first harmonic as well. The appendix is organized as
follows. In section 1, we describe a method for solving for the third harmonic of the suspension
microstructure. In section 2 we perform an asymptotic analysis of the microstructural equations
at high frequency and predict the scaling of the third harmonic of the microstructure with respect
to frequency. In section 3, we provide equations for the material functions of the third harmonic
of the stress in terms of harmonics of the microstructural perturbation.

1 Method of solution for the microstructural deformation

Equation 14 shows that the third harmonic of the microstructure depends linearly on the product
Uf

(1)
2 (r). Because U is linear in the rate of strain tensor and f (1)2 (r) is bilinear in the same, the

microstructural perturbation f (2)3 (r) must be trilinear in the rate of strain tensor. We write this
in terms of the non-trivial trilinear products of E and Ω:

f
(2)
3 (r) = (r̂ ·E · r̂)3 φ

(2)
3 (r) + (r̂ ·E ·E · r) (r̂ ·E · r̂)χ

(2)
3 (r) + (r̂ ·Ω ·E · r) (r̂ ·E · r̂)ψ

(2)
3 (r)

+ (r̂ ·E · r̂) (E : E) ξ
(2)
3 (r) + (r̂ ·E ·E ·E · r̂) η

(2)
3 (r) + (r̂ ·Ω ·E ·E · r̂) θ

(2)
3 (36)

+ (r̂ ·Ω ·E ·Ω · r̂) ζ
(2)
3 (r) + (r̂ ·Ω ·Ω ·E · r̂) ι

(2)
3 + tr (E ·E ·E)µ

(2)
3 (r) + tr (Ω ·E ·Ω) ν

(2)
3 (r)
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The governing equations for the perturbation functions are determined by substituting the above
into equation 14 and collecting like trilinear terms:

1

r2
d

dr

(
r2G(b̂r)

d

dr
φ
(2)
3

)
− 42

r2
H(b̂r)φ

(2)
3 − 3iαφ

(2)
3 (37a)

=
1

2

[(
1−A(b̂r

)
r
d

dr
φ
(1)
2 −

(
4− 4B(b̂r) +W (b̂r)

)
φ
(1)
2

]
1

r2
d

dr

(
r2G(b̂r)

d

dr
χ
(2)
3

)
− 20

r2
H(b̂r)χ

(2)
3 +

24

r2
H(b̂r)φ

(2)
3 − 3iαχ

(2)
3 (37b)

=
1

2

[(
1−A(b̂r)

)
r
d

dr
χ
(1)
2 + 4

(
1−B(b̂r)

)
φ
(1)
2 −

(
2− 2B(b̂r) +W (b̂r)

)
χ
(1)
2

]
1

r2
d

dr

(
r2G(b̂r)

d

dr
ψ
(2)
3

)
− 20

r2
H(b̂r)ψ

(2)
3 − 3iαψ

(2)
3 (37c)

=
1

2

[(
1−A(b̂r)

)
r
d

dr
ψ
(1)
2 − 4φ

(1)
2 −

(
2− 2B(b̂r) +W (b̂r)

)
ψ
(1)
2

]
1

r2
d

dr

(
r2G(b̂r)

d

dr
ξ
(2)
3

)
− 6

r2
H(b̂r)ξ

(2)
3 +

2

r2
H(b̂r)χ

(2)
3 − 3iαξ

(2)
3 (37d)

=
1

2

[(
1−A(b̂r)

)
r
d

dr
ξ
(1)
2 −W (b̂r)ξ

(1)
2

]
1

r2
d

dr

(
r2G(b̂r)

d

dr
η
(2)
3

)
− 6

r2
H(b̂r)η

(2)
3 +

8

r2
H(b̂r)χ

(2)
3 − 3iαη

(2)
3 =

(
1−B(b̂r)

)
χ
(1)
2 (37e)

1

r2
d

dr

(
r2G(b̂r)

d

dr
θ
(2)
3

)
− 6

r2
H(b̂r)θ

(2)
3 +

4

r2
ψ
(2)
3 − 3iαθ

(2)
3 = −χ(1)

2 +
1

2

(
1−B(b̂r)

)
ψ
(1)
2 (37f)

1

r2
d

dr

(
r2G(b̂r)

d

dr
ζ
(2)
3

)
− 6

r2
H(b̂r)ζ

(2)
3 − 3iαζ

(2)
3 =

1

2
ψ
(1)
2 (37g)

1

r2
d

dr

(
r2G(b̂r)

d

dr
ι
(2)
3

)
− 6

r2
H(b̂r)ι

(2)
3 − 3iαι

(2)
3 = −1

2
ψ
(1)
2 (37h)

1

r2
d

dr

(
r2G(b̂r)

d

dr
µ
(2)
3

)
+

2

r2
H(b̂r)η

(2)
3 − 3iαµ

(2)
3 = 0 (37i)

1

r2
d

dr

(
r2G(b̂r)

d

dr
ν
(2)
3

)
+

2

r2
H(b̂r)

(
ζ
(2)
3 + ι

(2)
3

)
− 3iαν

(2)
3 = 0 (37j)

with φ(2)3 , χ
(2)
3 , ψ

(2)
3 , ξ

(2)
3 , η

(2)
3 , θ

(2)
3 , ζ

(2)
3 , ι

(2)
3 , µ

(2)
3 , ν

(2)
3 → 0 as r →∞ and

G(2b̂)
d

dr
φ
(2)
3 =

(
1−A(2b̂)

)
φ
(1)
2 , G(2b̂)

d

dr
χ
(2)
3 =

(
1−A(2b̂)

)
χ
(1)
2 , (38)

G(2b̂)
d

dr
ψ
(2)
3 =

(
1−A(2b̂)

)
ψ
(1)
2 , G(2b̂)

d

dr
ξ
(2)
3 =

(
1−A(2b̂)

)
ξ
(1)
2 , G(2b̂)

d

dr
η
(2)
3 = 0,

G(2b̂)
d

dr
θ
(2)
3 = 0, G(2b̂)

d

dr
ζ
(2)
3 = 0, G(2b̂)

d

dr
ι
(2)
3 = 0, G(2b̂)

d

dr
µ
(2)
3 = 0, G(2b̂)

d

dr
ν
(2)
3 = 0,

at r = 2.
It can be shown that some analytical solutions and all numerical solutions for f (1)2 decay

exponentially fast with respect to the radial coordinate r, where the scale for the exponential
decay is set by α−1/2 – that is as exp(−α−1/2r). The exponential decay slows as α becomes
smaller so that in the limit of zero α – that is, steady flow – the exponential decay disappears
and the microstructural functions decay algebraically instead.

The steady flow limit requires the use of singular perturbation techniques at this level of
the approximation because the slow decay of the driving structure functions admits a convective
boundary layer far from inter-particle contact Brady and Vicic (1995). However, for any finite
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value of α, the exponential decay of the structure functions obviates the need for such a convective
boundary layer. Because the flow oscillates, there is no time averaged advection. Therefore, f (2)3

may be determined through numerical solution of the preceding equations on a radial domain
which is large relative to the α−1/2 length scale for the exponential decay. We utilize the boundary
collocation method bvp4c in MATLAB to solve this system of boundary value problems.

2 High frequency asymptotic analysis of the microstructure

In the limit of high frequency, diffusion may be considered irrelevant to leading order. Time
variation of the microstructural perturbation balances the oscillatory advection over most of the
domain. Therefore, eliminating diffusive terms from equations 37a-37j

φ
(2)
3 (r) =

i

6α

[(
1−A(b̂r

)
r
d

dr
φ
(1)
2 (r)−

(
4− 4B(b̂r) +W (b̂r)

)
φ
(1)
2 (r)

]
(39a)

χ
(2)
3 (r) =

i

6α

[(
1−A(b̂r)

)
r
d

dr
χ
(1)
2 (r) + 4

(
1−B(b̂r)

)
φ
(1)
2 (r)−

(
2− 2B(b̂r) +W (b̂r)

)
χ
(1)
2 (r)

]
(39b)

ψ
(2)
3 (r) =

i

6α

[(
1−A(b̂r)

)
r
d

dr
ψ
(1)
2 (r)− 4φ

(1)
2 (r)−

(
2− 2B(b̂r) +W (b̂r)

)
ψ
(1)
2 (r)

]
(39c)

ξ
(2)
3 (r) =

i

6α

[(
1−A(b̂r)

)
r
d

dr
ξ
(1)
2 (r)−W (b̂r)ξ

(1)
2 (r)

]
(39d)

η
(2)
3 (r) =

i

3α

(
1−B(b̂r)

)
χ
(1)
2 (r) (39e)

θ
(2)
3 (r) =

i

3α

[
−χ(1)

2 (r) +
1

2

(
1−B(b̂r)

)
ψ
(1)
2 (r)

]
(39f)

ζ
(2)
3 (r) =

i

6α
ψ
(1)
2 (r) (39g)

ι
(2)
3 (r) = − i

6α
ψ
(1)
2 (r) (39h)

µ
(2)
3 (r) = 0 (39i)

ν
(2)
3 (r) = 0 (39j)

These equations fail to satisfy the no flux boundary condition at contact, however. Near contact,
there is a boundary layer where diffusion balances the time variation of the structure. The
character of the boundary layer depends on the strength of the hydrodynamic interactions.

In our previous article we showed that φ(1)2 (r), χ(1)
2 (r), ψ(1)

2 (r) and ξ
(1)
2 (r) are all real and

proportional to α−2 outside the boundary layer. Therefore, the functions making up the third
harmonic contribution to the microstructural perturbation are to leading order imaginary and
at most O(α−3) in this same outer region. Note, in the absence of hydrodynamic interactions,
these functions are identically zero in the outer region since the strictly affine motion of particles
far from contact will produce no microstructural perturbation at all.

In the absence of hydrodynamic interactions, the width of the boundary layer is proportional
to α−1/2. Defining a new boundary layer coordinate y = α−1/2(r − 2) allows us to focus on
the small region in which the oscillating flow is balanced by diffusive fluxes. Recalling that
φ
(1)
2 ∼ α−1, ξ(1)2 , ψ

(1)
2 ∼ α−3/2, and ξ

(1)
2 ∼ α−5/2 in the boundary layer, and by retaining only
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the leading order terms, the microstructural perturbation equations become:

d2

dy2
φ
(2)
3 − 3iφ

(2)
3 = α−1/2

d

dy
φ
(1)
2 (40a)

d2

dy2
χ
(2)
3 − 3iχ

(2)
3 = α−1/2

d

dy
χ
(1)
2 (40b)

d2

dy2
ψ
(2)
3 − 3iψ

(2)
3 = α−1/2

d

dy
ψ
(1)
2 (40c)

d2

dy2
ξ
(2)
3 − 3iξ

(2)
3 = α−1/2

d

dy
ξ
(1)
2 (40d)

d2

dy2
η
(2)
3 − 3iη

(2)
3 = α−1χ

(1)
2 (40e)

d2

dy2
θ
(2)
3 − 3iθ

(2)
3 = −α−1χ(1)

2 +
1

2
α−1ψ

(1)
2 (40f)

d2

dy2
ζ
(2)
3 − 3iζ

(2)
3 =

1

2
α−1ψ

(1)
2 (40g)

d2

dy2
ι
(2)
3 − 3iι

(2)
3 = −1

2
α−1ψ

(1)
2 (40h)

d2

dy2
µ
(2)
3 +

1

2
α−1η

(2)
3 − 3iµ

(2)
3 = 0 (40i)

d2

dy2
ν
(2)
3 +

1

2
α−1

(
ζ
(2)
3 + ι

(2)
3

)
− 3iν

(2)
3 = 0. (40j)

These boundary layer equations are sufficient to show that φ(2)3 ∼ α−3/2, ξ(2)3 , ψ
(2)
3 ∼ α−2,

ζ
(2)
3 ∼ α−3, η(2)3 , θ

(2)
3 , ι

(2)
3 ∼ α−5/2, and µ

(2)
3 , ν

(2)
3 ∼ α−7/2. Substituting these scalings into the

integrals for the material functions (41-45) validates the scaling observed in figure 7 at high
frequency.

When b̂ ≈ 1, the boundary layer thickness scales at α−1 instead. The thinner boundary layer
arises because relative motion between nearly touching particles is suppressed by lubrication
interactions. Consequently, within the O(α−1) boundary layer, f (0)1 ∼ α−1, f (1)0,2 ∼ α−2 and

f
(2)
1,3 ∼ α−3. The stresses arising from the microstructural perturbations in the boundary layer
are smaller than those arising from the outer, slow diffusion region. Thus boundary layer stresses
are negligible when hydrodynamic interactions are strong.
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3 Calculation of the material functions for the third harmonic of the stress

The material functions for the third harmonic of the stress (25) can be written in terms of the
bilinear and trilinear microstructural perturbations as:

I13 (b̂, α) = Pe2
{

1

210
b̂3
∫ ∞
2

[
3K(b̂r)

(
14φ

(1)
2 (r) + 35χ

(1)
2 (r) + 105ξ

(1)
2 (r)

)
(41)

+6L(b̂r)
(

2φ
(1)
2 (r) + 7χ

(1)
2 (r) + 35ξ

(1)
2 (r)

)
+ 2M(b̂r)

(
2φ

(1)
2 (r) + 3χ

(1)
2 (r) + 21ξ

(1)
2 (r)

)]
r2dr

+
3

700
b̂5
∫ ∞
2

W (b̂r)
[
2φ

(2)
3 (r) + 3χ

(2)
3 (r) + 21ξ

(2)
3 (r)

]
r2dr

− 6

175
b̂5(1−A(2b̂))

[
2φ

(2)
3 (2) + 3χ

(2)
3 (2) + 21ξ

(2)
3 (2)

]}
,

I23 (b̂, α) = Pe2
{

1

105
b̂3
∫ ∞
2

[
6L(b̂r)

(
4φ

(1)
2 (r) + 7χ

(1)
2 (r)

)
+M(b̂r)

(
8φ

(1)
2 (r) + 12χ

(1)
2 (r)

)]
r2dr

+
3

700
b̂5
∫ ∞
2

W (b̂r)
[
8φ

(2)
3 (r) + 12χ

(2)
3 (r) + 21η

(2)
3 (r)

]
r2dr

− 6

175
b̂5(1−A(2b̂))

[
8φ

(2)
3 (2) + 12χ

(2)
3 (2) + 21η

(2)
3 (2)

]}
, (42)

I33 (b̂, α) = Pe2
{

1

70
b̂3
∫ ∞
2

[
7L(b̂r) + 2M(b̂r)

]
ψ
(1)
2 (b̂r)r2dr (43)

+
9

1400
b̂5
∫ ∞
2

W (b̂r)
[
2ψ

(2)
3 (r) + 7θ

(2)
3 (r)

]
r2dr − 9

175
b̂5(1−A(2b̂))

[
2ψ

(2)
3 (2) + 7θ

(2)
3 (2)

]}
,

I43 (b̂, α) = Pe2
{

9

200
b̂5
∫ ∞
2

W (b̂r)ι
(2)
3 (r)r2dr − 9

25
b̂5(1−A(2b̂))ι

(2)
3 (2)

}
, (44)

I53 (b̂, α) = Pe2
{

9

100
b̂5
∫ ∞
2

W (b̂r)ζ
(2)
3 (r)r2dr − 18

25
b̂5(1−A(2b̂))ζ

(2)
3 (2)

}
. (45)

These terms are evaluated numerically with a trapezoidal method applied to the integrals.
The leading departure from linearity of the first harmonic exhibits identical scaling to the

third harmonic and may be determined through a similar analysis of the microstructural equa-
tions. For brevity, we describe a simple reconstruction procedure. First, substitute φ(1)0 + φ

(1)
2

for φ(1)2 and φ(2)1 for φ(2)3 in equations 37a-37j for the microstructural perturbation. Do the same
for all the other structural modes (χ, ψ, ξ,, etc.). Then, replace all occurrences of 3α by α to
build the equations for the first departures from linearity of the perturbed microstructure. The
same series of substitutions can be applied to equations 41-45 along with replacing I∗3 with I∗1 to
produce equations for the first harmonic material functions of the stress.
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