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In this work an analytical solution for the pfesstre-driven flow of a discontinuous

shear-thickening (DST) fluid in a planarchan is)presented. In order to model
the fluid rheology, a regularized invers —bCiscoﬁamodel is adopted. This involves a

region of finite thickness to model thesharpy I%Tp in viscosity and it is consistent with
momentum conservation. In the limxo\e,li hing thickness, the truly DST behavior

is obtained. Analytical results a alidated by numerical simulations under steady

and start-up flow using the S&ﬁ?e& article Hydrodynamics method. Flow results
fo

are investigated and discusse different values of the model parameters.
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Publishihg INTRODUCTION

Shear-thickening (ST) is a typical phenomenon encountered in many particle dispersions
which refers to a significant increase of suspension viscosity when large shear-rates or stresses
are applied'. It happens typically at very large shear rates and h profound implications.

lets transport of

nd pumping operations

ST represents a challenging problem for several processing conditio

paints, inks and other concentrated dispersions in spraying, coa
but, when properly controlled, can be also used to engi er vel “materials as selective

dampers and shock absorbers”’. The physics behind t sei;\of shear-thickening, have

been traditionally proposed based on several mech msms rahging from dilatancy’, flow-

induced expansion of the suspension or irrevertlbi'e S
i 10;13‘ )7
-
Reversible shear-thickening has been aw ed in colloidal systems which differs
from early study of dilatancy, where hg{n\eas viscosity is associated to the appear-
d

sinduced aggregation related to

stable flocculated states’, to order-disordered 4ra.

ance of so-called hydroclusters™”, and inance of short-range interparticle lubrication

forces™". The idea is that up{;: cdsing shear rate, convective forces dominate over

entropic repulsive Brownian fi rces ble to bring particles close together forming tran-

sient hydrodynamic aggregates e thin gaps between particles inside hydroclusters,

diverging lubrication f ce?niactive which in turn induce large stresses in the system.
s

The existence of hydifoclu as confirmed by experiments'” " flow-small angle neutron

scattering' " (?ﬁc /et}yds including flow dichroism'*'®, fast confocal microscopy'” and

numerical simul tﬁf\“).
The preyio Qr

drodynamic thickening scenario corresponds to a significant -still continuous-

increase 6f thé suspension viscosity upon increasing shear rate and it is therefore generally
denotfd as “c gnuous shear thickening” (CST) in the literature. Although recent simu-

ions have Suggested that a large increase in suspension viscosity can be obtained con-

ring ‘ynly interparticle lubrication forces in connection with particle deformability -i.e.
?hﬁto\ ydrodynamic lubrication'” - or with external confinement'® - it is now generally
acknowledged that the sudden jump (as opposite to continuous mild rise) in the viscos-
ity observed in some systems, i.e. the so called “discontinuous shear thickening” (DST),
might be of non-hydrodynamic nature. The microscopic origin of DST has been explained in

terms of, for example, flow-induced dynamic-jamming theories'’, as well as impact-activated
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Publishisgidification™. In particular, the addition of surface frictional forces” *’, rather than purely
hydrodynamic interactions acting between particles, has been proposed to capture the ob-
served liquid/solid-like transition observed in the DST of very concentrated suspensions.
In fact, the presence of surface roughness, friction, and finite particle inertia can all lead
to a shear-rate dependent microstructure and rheology” . Shear(dvickening has been also
reported in particle suspensions interacting with viscoelastic ricess, but the nature

ns - rather than direct

behind that ST behavior seems to be related to the non—NewKroperties of the matrix,
regio

i.e. strain hardening of the polymers in highly extensi

njiﬁ'gﬁﬁnedia or frictional contact

interparticle forces, such as lubrication in Newtonian susp
-

in granular systems. 3
Although much work has been done towards«he utd‘)rstanding of the microscopic origin
ning

of the continuous and discontinuous shear-thicke

of the macroscopic behavior of a DST ic%been limited. In particular, some theoretical

analysis at the continuum level - i.e. O%& ial scales much larger than the colloidal particle

size - have been made using g N’N‘ewtonian power-law models, Carreau Yasuda
e

e
models or quadratic models @v choice of the power exponents’”” . It should

transition, modelling and simulation

be pointed out, however, that i all*these studies the flow of a mild “continuous” shear

thickening fluid has be ca\siered. To the best of our knowledge no simulation has been

)

DSTfuid"*"* and, more specifically, no mathematical analysis of

£

its flow behavior Has been ;ﬁade so far. In particular, the numerically validated analytical

solution for the pﬁ'«ar\ch nnel flow of a DST fluid as proposed in this work, represents

presented for a trul

36

an essential r ui)ement to construct new lubrication models™ for particles interacting in a

m which is receiving increasingly attention in experiments’.

In (this work,” we try to remedy the lack of macroscopic modelling of DST fluids by
apalyzing th)oretically and performing simulations of a DST fluid flowing in a confined
Jex metr§) i.e. a classical pressure-driven planar channel flow. A model for a DST fluid
‘fh}@d\ on an “inverse” bi-viscous scheme is proposed. The standard bi-viscous model de-
scgibes a fluid characterized by two viscous regimes, a low-shear-rate/high-viscous regime
followed by a low-viscous regime at high shear rates. By choosing the critical shear rate
for the viscous transition sufficiently small, it has been applied in the past as a model of

plastic fluids characterized by an apparent yield stress. We explore here the behavior of
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Publishi‘ri‘g inverse bi-viscous model (inverse small-to-high viscous transition) as a simplified de-
scription of a DST transition and study its steady and transient flow behavior in a planar
channel geometry. Simulations of the DST fluid using the so called Smoothed Particle Hy-
drodynamic (SPH) method’ - which has been already successfully applied to different

non-Newtonian/viscoelastic flows'*“- have been also performed. ?ﬁe numerical model has

been validated with the previously obtained analytical solution

viscous models are described in detail. Sec. II is devoted

The scheme of the paper is the following. In Sec. I, the geowietry and the inverse bi-
le ical derivation of the

steady solution for this model fluid. In Sec. III we pres O.t)th‘e~SPH method used for the
numerical simulation which is validated with the analytical rssu s of Sec. II. Finally, in Sec.
IV we report the conclusion and we highlight thé implications as well as the limitations of

the present results. ‘)

II. PLANAR CHANNEL FL V\S\Q T FLUID: ANALYTICAL

SOLUTION
In this section we describe the 1 opted for the DST fluid as well as the geometrical
setup and regime of flow. A mous shear-thickening fluid is modelled here as a so-

called “inverse” bi-viscous u1d withethe viscosity defined as

if 4 <4 — 07
7 My +n, iAo — 0 <4 < o+ 6 (1)
if 4 > 4. + 07
where 7 isgt cal shear rate, 7. is the critical shear rate corresponding to the viscous

transitiofiyand 0+ ‘determines the range of shear rates over which the viscosity changes

from f)y to 7;.“dn contrast to the standard bi-viscous model, 7; > 1y is considered. The
li uidé?ﬁ%—ls(e transition observed in DST fluids at high shear rates is modelled here by a
lingar licblid—liquid transition between two regimes characterized by a large viscosity ratio
}bﬁur\rlng over a small finite range of shear rates with thickness A = §7/4. < 1 (see Fig. 1).

- % — 0 the singular discontinuous model is obtained (red line). The linear transition is
necessary to regularize the model and remove the discontinuity of the viscosity function at
the critical shear rate 4, which would lead to stress discontinuity and non-conservation of

momentum. The specific values of the coefficients m and n ensuring the continuity of the

4
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FIG. 1. Viscosity vs normalized shear rate: \s%,g ening model with a continuous transition

with thickness A = §/4. < 1 for the CELS(%S(%"LO. The limiting behavior for A — 0 (red line)

corresponds to a discontinuous shear thigke ing odel.

viscosity are §'\
"N 255
)25% (10 (3 + 69) = 1 (3o — %)) (2)

Note also that in#xperi ery(s with particle suspensions, jumps in the relative viscosity can

be in the ord
The DS

%M) or even larger at very high concentrations.
dfis confined between two planar walls placed at distance L, apart and
it is driven nstant pressure gradient dp/0r. We denote here z as the direction

a
perpefhdicular /the walls and 7 the direction of the flow. As in the standard Poiseuille

solutio the)iow is assumed periodic in the r direction, whereas spatial dependency of the
city

Vi yroﬁle is present in the z direction only. The flow is unidirectional with the only

K?—Qmshing component of the velocity field being of the type u, = u(z). Before working

ouf the exact solution in the following sections, first we discuss qualitatively the flow regimes
expected for such a configuration.

A trivial situation is obtained in the case when the local shear rates 4 = Ju(z)/0z <

4. — 07 at every position z across the channel, i.e. the maximum actual shear rate is not
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FIG. 2. Scheme of the problem in the regi termediate pressure gradient).

A

high enough to trigger the viscous tran itb\\{uhwﬁuid. In this case (regime I), typically
occurring at small pressure gradient, thmehaves as a simple Newtonian fluid, with

constant viscosity 7y, and the corres hn& steady-state solution is given by the classical

Poiseuille formula. \

If the gradient of pressure is m, a region will eventually appear where the fluid does

ﬂﬁr z such that 4 > 4, — §7 a transition to higher viscosity n;
ra

is greatest at the wall ,,, the previous condition translates

not behave as Newtonia,

to /
/\g /
N |0te) LOp . s 00 2m (3~ 59)

= —>%—57=>ar I , (3)

4

whic rac i/es the onset of regime IT (intermediate pressure gradient).

ict)i in Fig. 2., for the intermediate pressure gradient regime defined by Eq. (3),
t regi@s can be distinguished, one with low viscosity ng at |z — ¢| < z. (close to the middle
e where the shear rate must be zero for symmetry reasons) and another (near-wall layer

~
ere the shear rate is maximum) corresponding to a viscosity 79 < n < 7.

If the gradient pressure is increased further, the liquid-liquid transition layer of viscosity
1o < n < will enlarge towards the middle plane. If the shear rate in the wall exceeds the

value . + 0y another layer of viscosity 7, close to the wall will appear. That happens when

6
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FIG. 3. Scheme of the problem in the regifne Il case

the next condition on the pressure gradient%
@S\%c 7).
T z
X
anal

igh pressure gradient).
| -
: (@)

igh pressure gradient) (see Fig. 3) .

of this problem will be calculatedwand“their limit in the DST case (when 6% — 0) discussed.

A. Velocity pro@ion
If the origin '{Wa the center of the gap, in order to conserve the linear momentum,

the shear ra g)lated with the pressure gradient as follows

which characterizes the onset of
In the next subsections anéi%\; ical solution of the velocity profile and flow rate

()

4 S
- v, n()y :
TQ'GS () z. and 2, (distances from the center to the coordinate where the shear rate
als té, .

e 67 — 0% and . + d7 respectively) can be calculated from Eq. (5) as

\Y mo (e = 0%) , _m (e +89)
T~ Ze= ——my R = e 6
07071 op/r] 0

The different regimes considered previously can be defined in terms of the latter distances.

If z. > L./2 the system is in the regime I. The regime II shows up when z. < L./2 and
2! > L,/2. Finally, the regime III should be considered if z. < L,/2.

7
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Publishing'When Eq. (5) is applied to the different viscosity zones, the shear rate of those regions

can be calculated, obtaining

Fo(z) = 770 gpz ,if |z] <z
Yi(z) = —o (1+\/1+—|28p/8r] if z, 2/{<\z
: B Op
(z) = o arz , if |z (7)

where the sub-indices 0, ¢ and 1 have been used to re %antities in the regions
indicated in the equation. These sub-indices will be aised cousistently in this work. In the

above equation the next function has also been deﬁn . % n/(2m). The chosen solution
for 4, is the only one holding that 4; > 0. It has also be considered that n < 0, assumption

which is valid as long as

c } 8
'7 i g 77 ( )
From the shear rate, the derivati Z)

2z can be obtained. It reads

e %\

Oui( z =%5¢ <1 + \/1 + —¢28p/8r)

uy ( ) 1 op
9
m or ar” ©)
where s = 81gn Veloaty profile can be obtained by integration of du(z)/0z and

considering at e next conditions should be held

Q up(£L,/2) =0, for regime I
wi(+L./2) =0, i

uo(2ze) = ui(z.), for regime II

iL 2/2) =0, wui(2) =wui(2), wo(ze) =wi(z.), for regime III. (10)

ﬁfhe analytlcal velocity profiles read as follows.

For regime I

. 1 op 2 Li

8
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o(z =T:m%(z?_zc)—f-f(zc)—f(Lz/Q)_ (12)
For regime III /
wi(z) = £(z) — £(z)) ;? ( n Lz) \

9p
or

where the function f is defined as =
B ap\ ap| 1 2 3/2
10 =-0(2) (W %@ 212N (14

B. Flow rate \
In order to understand the fl &h\m\of a DST fluid, it is instructive to analyze its
flow rate as a function of the é\}\{a ure gradient. The flow rate can be calculated as

loci % from the previous section, the obtained flow rate is
£ y Q

S u(2)dz. (15)

I for regime 1

Introducing the ve
/\ Q=14 Q, for regime II (16)

Qrr1, for regime 111

— &f(Lz/2) +9(L2/2) - g(zc)) (17)

[\

L ang + 2of (2e) — 2 f (2) + g(2) — g(zc)> :

B 37’]05
B 1, 1 ( np \° 2 i
g(z) = —so (52’2 + B <8p/87’) (1 + s ) : (18)

dp

EZ
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The perfect DST case is obtained in the limit 64 — 0. In this limit the shear rate in the

region 2z, < z < 2, reduces to

The velocity profiles in the different regimes in such a li )as follows.
For regime I ;\

——
=). (20)
"

— ze (L. — 2)) - (21)

For regime II

For regime III

Finally, in such"a @1, Qrr and Qpr functions for the calculation of the flow rate

in the diffe Qimes are given by

-~ 4 1200 arL
5 Qi = __L o, (3L2 — 427)
= = opgar e\ e
10 ,
5 Qrr = —Tmﬁ—f <4z (22 = 22) + @Li) : (23)

S_\ Ui

It should be pointed out that, mathematically speaking, this singular limit is not con-
sistent with linearity of the stress profile and momentum conservation. Nevertheless, the
velocity profiles and flow rate are approximated very well by the “smooth” DST fluid (Eq.1)

for 0 — 0. In Sec. III B we will explore this aspect in detail with simulations.

10
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. 4. 5) Velocity profiles for different pressure gradients, with A = 0.025. The positions of z.

e been drawn with open and filled circles respectively. B) Velocity profiles for a pressure
gradient Op/0r = 20 x 2no%./L, and different A values. In both figures A) and B) the curves are

in order of the legend.
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Publishibg Effect of physical parameters on flow behavior

In the Fig. 4 A) the velocity profiles for different pressure gradients have been drawn for a
relative thickness transition corresponding to A = 0.025, which is in the quasi-discontinuous
shear-thickening limit. The walls are at z/L, = —0.5,0.5, but givén the symmetry of the
profiles, only half a channel has been depicted. The parameters<have been taken in such a
2mo (Ye +6%) /L. = 1,
is given at dp/0r =

way that the transition between regimes I and II is given at Jp

whereas the transition pressure gradient between regime II I

2m (9. — 09) /L, = 10. The viscosity ratio in the inverg bHLiscous model was chosen

n1/mo = 10. For sake of clarity, the locations of iz@~S

and filled circles respectively.

ave been drawn with open

From the figure, it can be seen that the veloeity roﬁ‘) is parabolic at all z, with viscosity
1o for small pressure gradients (Op/dr = 0 arger pressure gradients, the parabolic

—~

regions shrink towards a vanishing layer cen the middle plane (see blue open circles
defining the linear-parabolic transiti OHN profile). For even larger pressure gradients

(Op/Or > 10) a new transition Q};e (gfeen filled circles), where the near wall-profile
y

returns to parabolic with viscosit 1\{8 in the previous case, the intermediate region with

MShing middle layer for very large pressure gradients,
recovering a complete p ArbqiSpro le in the limit dp/0r — oc.

To study the effectfof 1 the calculated profiles, in the Fig. 4 B) the velocity profiles for

viscosity ng < n < m; shrinks t

\{e b/een drawn for the case dp/0r = 20 x 2n%./L,. There is a very

different values ofdA
little difference, witlisghe true DST limit (red line) being well approximated from continuous
models alrea br A = 0.1. This is more visible from the zoom inset, where the DST
solution re,‘Sent he limiting curve towards which the profiles tend by reducing 6. Note

that ue solution is singular and involves a discontinuity on the stress between the

stress comtinuity and is consistent with momentum conservation.

\K glons however, every solution with vanishing (but finite) A enforces strictly

\ The dependence of the flow rate on the pressure gradient is depicted in Fig. 5. At low
and high pressure gradients the fluid behaves as a Newtonian with viscosities, respectively,
No and 7;. In the intermediate regime, a transition between the two viscous behaviors is

observed. Note that within the central regime (II), the flow rate is nearly constant for

12
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FIG. 5. Flow rate vs pressure gradiént. ed'lines correspond to Newtonian fluids of viscosities
7 and 7. Solid lines correspond to different DST models and are in order of the legend. A) effect
of the thickness A. B) Zoom of A): ect of 4.. D) Effect of 71 /np.

increasing applied préssur ‘bs, producing an enhancement of flow resistance much larger
£

that the high-visgéus im;’ III. This observation suggests that the physical consequences

of using the inverse“hi-viscous model are not the result of just joining the effects of two

viscous regi , d.e it exhibits a highly non-linear resistance behavior consistent with a

discontinfioussshear thickening scenario. Finally, we note that at larger pressure gradients

the méaterial éns to flow with a large viscous resistance. This is consistent with recent
e __1;1 nts }dth dense, non-Brownian suspensions'’ where the stress (up to concentrations
5000) sh%ws two liquid-like power-law regimes at small/high shear-rates matched by a very

Eisap nsition in the middle gap (see their Fig. 1).
~

The effect of the transition thickness A is shown in Fig. 5 A) and B) (zoom). Viscosities
and critical shear rate have been fixed to ng = 1, n; = 10 4. = 2, and A changed between
0 and 0.01. Note that in the transition region, the singular DST solution corresponds to

an exact horizontal line where no flow increase takes place by increasing pressure drop.

13
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Publishi(ﬁ(g' itions at finite thickness approximate that limiting behavior for A — 0. In Fig. 5 C)
and D), the effect in the model of the parameters 4. (o = 1, 7 = 10 A = 0.05 fixed)
and the ratio n1/ny (no = 1, 4. = 2 and A = 0.05 fixed) is also shown. For increasing
Y. the transitions in regimes I-IT and regimes II-IIT are moved to higher pressure gradients.

Increasing 7, makes the viscosity ratio bigger, leading to an extensigé of intermediate regime

II. In the limit of 7, /ny — oo (blue line), the regime III can e reaghed for any value

of the pressure gradient. In the opposite limit, 7, /n9 — 1, t e II disappears and the

flow rate of a Newtonian fluid of viscosity 7 is recovered )

IIT. NUMERICAL RESULTS k&

A. Smoothed Particle Hydrodynamic o‘f)an inverse bi-viscous fluid
L -

The simulation method used in this wi iscretize the inverse bi-viscous model is the

Smoothed-Particle Hydrodynamics (S is a mesh-free method where the fluid is

represented by a set of Lagrangian u‘edyar icles which act as interpolation points for the
hydrodynamic fields. To model txi— co.;i‘ty, a modification of the SPH version proposed
by Espaiiol et al.”” to simula :\S&er—StOkes equations is used. The new evolutions of
the position r; and velocity muid particle ¢ are given now by

P, P i 1 /
(5 h) ey X 2o, o1

plpjr’l,]

where summ m)%\done over all the particles j in the neighborhood of particle ¢ (i.e.

within a ret). M is the fluid particle mass, P, is the pressure, v;; = v; — v; is the
difference Velo;/ities, r;j = r; — r; the relative position and e;; = 7;;/r;; the unit vector
e

alongthe digection between particles ¢ and j. W;; = W (r = 15, 7cut) is a compact kernel
function (quintic spline) with cutoff radius 7., and its differentiation appearing in Eq. (24)
is ﬁneé as Wi, = OW (r,rcur) /87“]1,:%. The mass density of the particle ¢ is p; = md;

\Hbmthe number density is defined as™
di=3 Wi (25)
J

An equation of state for the pressure is chosen P; = ¢?(p; — po) + b, where py is the reference

mass density and the speed of sound ¢, is chosen sufficiently larger than the maximum flow

14
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Publishingdccity to ensure that the liquid Mach number Ma = V4, /cs < 1 and avoid compressible
effects. Finally, n; = n(%;) where 4; = [|4s]| = (1/2)(%, : 4,)*/? and the local particle shear

rate tensor 4 is estimated as'’

Yi = Z ew Vij. / (26)

The inverse bi-viscous model Eq. (1) is used to calculate the 1 a@% viscosity.

B. Steady and transient planar channel flow of ]‘)bhﬁﬂid: SPH results

The two-dimensional planar geometry is simulated g@:Slg two walls at distance L, = 4
etion

apart. Size of the simulation box in the streamin dire L, = 2.5. To model solid walls,

the Morris boundary conditions™ "’ are adoptéd,to epforce no-slip velocity at the surfaces,
whereas classical periodic boundary conditio %sed in the streaming direction (r). A
constant pressure gradient is applied d\e tive body acceleration at time ¢ = 0 and
the evolution of the velocity profile m 1tored until a steady state is reached. Speed
of sound is chosen c¢; = 100. t i“viscous model the low viscosity is ny = 24.5833,
high viscosity is n; = 10n, x ased on these parameters, the maximum Mach
number (Ma = V,4./¢5) and R number (Re = pL,Vya/m) are both significantly
smaller than unity for %Onﬁguratlons studied, such that laminar flow is anticipated.
Numerical resolution§ up . = 80 fluid particles spanning the channel gap have been
considered. Cuto radi 4 5 uséd in the simulation correspond to 7e,s = 3Az, with Az = L. /N,
the mean partic ewg Initially a regular lattice configurations is used.
In the Eig: J)

(Op/0r =300) is shewn and compared with the analytical solution for several values of the

the converged steady velocity profile at one applied pressure gradient

transition thickuess A. As mentioned in the section II D, the velocity profile is only slightly
affe &Q@in the range considered. One can better appreciate the differences in the Fig. 6
B Wheré)a zoom in the area of biggest deviations is depicted. The SPH results (black lines)
Tl'b>ve{y well the analytical solution (blue lines) at the corresponding A. In particular for

— 0.05,0.025 no deviation is visible even in the zoomed area. Profiles tend towards the
truly DST solution (red line).

In order to check the accuracy of the computed solutions, in Fig. 6 C) the SPH local
velocity gradients (black) are compared against theory (blue) and limiting DST solution

15
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FIG. 6. A): velocity profile at dp/0r 00 for A = 0.025,0.05,0.1. Differences are better visible in

the zoom plot B), where good a e ween theory and SPH is achieved at the corresponding
A. C): velocity gradient. D)istress. d lines correspond to the limiting truly DST solution.
(red line). For a S ;luld a constant 7 = 7, is observed in the transitional regime

which is the sm u hm1 of the SPH solutions at finite A. Accuracy between theory and

simulation i }llent Finally, in Fig. 6 D) we show the off diagonal component of the

stress acposs the channel. The typical linear symmetric continuous stress profile is obtained

in simdilatio Wﬁich is consistent with momentum conservation.

Afte oolbng at the effect of A on the flow quantities, in Fig. 7 the transient start up
flow of tbe fluid (quasi-DST limit: A = 0.025) is shown for four prototypical flow regimes,
}5 Kggime I (A): low pressure gradient), regime II (B): intermediate pressure gradient) and

ime III (C and D): high pressure gradient). To check the accuracy of the simulations,
results corresponding to two numerical resolutions have been depicted, namely N, = 40, 80
fluid particles across the channel gap, indicating that the results are insensitive to change

in resolution.
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FIG. 7. Start-up flow of an inver e@?s‘ fluid for different applied pressure gradi-

ents. Profiles correspond to frames taba&dimensionless time intervals AT* = AT/7, =

0.77,0.077,0.0192,0.0096 respective \\ /or = 10,100, 500,1000). Here, 7, = H?p/ny is

a viscous reference time. \\

Flow regime I (Fi ,mhows the typical development of a parabolic profile corre-

C nstjzn viscosity np. Remaining plots are less trivial and show the

sponding to a ﬂ?d
effect of the viscous'tzansition on the transient and finally developed velocity profiles. In the

flow regime Q 7, B)) condition (3) is met and the velocity profile develops a transition

during'start bp, the local shear rate exceeds 7. — .. As the flow develops, the quasi-linear
ﬁ

velocity Sroﬁle region stretches towards the middle of the plane according to the correspond-
S y-state solution. Note that two flow regions are present under this condition, i.e.

ar-wall quasi-linear velocity profile and central parabolic velocity profile.

In Fig. 7 C) and D) the high-pressure gradient case is shown (regime IIT). When condition
(4) is met, the flow resistance caused by a limiting quasi-linear velocity profile becomes too

large, the fluid cannot sustain the stress and an additional high-viscous parabolic region near

17
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FIG. 8. Comparison of the theory (lines) With%@n simulations (points) for different pressure
shown.

gradients. Only steady-state velocity profiles ar
<

the wall appears. This is clear \bhe Fig. 7 C) figure where three regimes are present, i.e.

parabolic-quasi-linear-p 9&@% As'in the previous case, the high-viscous parabolic profile

is initially located o - the wall, eventually extending towards the middle plane as the

e entire space, leaving only a small central layer behaving as in

flow develops. i?e i tin; case of very large pressure gradients, the high viscous parabolic
profile will per d&%si

regime II Fi 73)
£
In #he Fig: 8/the comparison of the analytical steady-state velocity profiles obtained
in S_@\c. with the numerical SPH results has been depicted for different applied pressure

g dientﬁ i.e mapping the three flow regimes discussed above. The agreement is excellent

Finally, in Fig. 9 we compare the flow rate ) obtained from SPH simulations with that
predicted by the theory. These results serve, both as SPH inverse bi-viscous model validation

and as ’a posteriori’ confirmation of the analytical results calculated in Sec.II.
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IV. CONCLUSIONS \\

In this work we h@ an analytical derivation of the planar channel flow solution
o A
éd b

for a DST fluid desc )ﬂ an inverse bi-viscous model and a numerical validation using

the Smoothed Particle Hydrodynamic method. The inverse bi-viscous model is characterized
by a discontihuous transition in the fluid viscosity at a given critical shear rate 4. and offers
a possibl€ route towanalyze discontinuous shear thickening in suspensions. The model has

been yegulari ’gy introducing a linear continuous transition characterized by a small finite
extension 6&) In the limit of vanishing 6+ the DST behavior is recovered.

-

Upon&udden application of a constant pressure gradient, the analytical solution for the
Wd\y-s ate velocity profile exhibits non-trivial behavior, i.e. a transition between three
regimes. (i) At low applied pressure gradients, the classical parabolic profile with low
viscosity plateau 7 is obtained. (ii) At intermediate pressure gradient a two-regions velocity
profile is calculated: near-wall layers are characterized by quasi-linear profiles consistent with

an almost constant shear rate 3. — 0y < 4 < 4. + 07, whereas the middle-plane region is
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Publishipgabolic with viscosity 7. (iii) Finally, at large pressure gradients a three-regions velocity
profile is derived. Beside the two-regions located in the middle of the channel, a new near-
wall layer with parabolic profiles of viscosity 7; develops. In the limit of very large pressure
gradient, the thickness of this near-wall layer extends towards the center of the channel,
eventually pervading the entire space. This corresponds to the li?ﬁting parabolic solution
of a Newtonian fluid flowing with viscosity 7;. 3

ate pressure gradients a

Despite its apparent simplicity, the inverse bi-viscous madel ®sghtains more physical in-
formation than two simple viscous regimes. In fact, for B@K

»)

is mathematically required to

non-linear behavior of the flow rate with enhanced resig&a
exactly match the two viscous regime. This feature allows fo capture the essential charac-

teristics of some DST fluids, where return to hi@ viscous-like behavior is observed after

a temporary solid-like response’’. D
In terms of practical output, the present work proposes, on one hand, a new analytical

solution for simple planar channel HOW% uid, which could be used in the future to
develop novel lubrication interaction{mnodelsshetween solid particles suspended in a complex
DST matrix”, and it could be p rf.(}\falowing the route proposed previously in Ref.”
for shear-thinning fluids. Onghe hand, the present work validates for the first time
a SPH model of DST fluid Whim be applied in the future to non-homogeneous flow
> ﬂ%jmulation of dense DST suspensions within the framework

uni

problems, e.g. to enah

developed in***". T w rate vs. pressure drop profile provides also valuable guide

for engineering detvicesy suchfas dampers and self-limiting mechanical elements.
In terms o Lijws, the present inverse bi-viscosity formulation captures the essen-

tial physics o den increase in flow resistance of DST fluids, but modelling is limited

tonian framework. In other words, it neglects the presence of normal
stress{differenceg, memory effects as well as complex viscoelasticity of the liquid/solid-like

transition which might be relevant in certain applications. Moreover, an homogeneous as-

1ptio§ is made in such a way that DST is uniquely determined by flow-features (i.e.
WI\S ear rate) and no effect of the microstructure (e.g. inhomogeneous concentration
and /or migration in particle systems) is considered. For a complete historical references
on pressure driven flows in suspensions and related migration effects the reader is referred
16

to the seminal work of Nott and Brady”. This could be introduced in the model sim-

ilarly to'’, where an additional scalar field determining the underlying state of the fluid
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Publishihg] wxed /jammed) is considered and coupled to the viscosity. Finally, the current model
being characterized by single-value stress/shear-rate relation is unable to predict unsteady
solutions and “rheochaos” observed in extremely dense (above 50% solid volume fraction)
DST particle suspensions’’. To remedy this problem a non-linear stress relation could be
developed which delivers multiple values of viscosity in a prescribgftransitional regime and

will be the subject of future research. 3
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