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ABSTRACT

Turbulent processes in the ocean surface boundary layer (OSBL) play a key role inweather and climate systems.

This study explores a Lagrangian analysis of wave-driven OSBL turbulence, based on a large-eddy simulation

(LES) model coupled to a Lagrangian stochastic model (LSM). Langmuir turbulence (LT) is captured by Craik–

Leibovich wave forcing that generates LT through the Craik–Leibovich type 2 (CL2) mechanism. Breaking wave

(BW) effects are modeled by a surface turbulent kinetic energy flux that is constrained by wind energy input to

surface waves. Unresolved LES subgrid-scale (SGS) motions are simulated with the LSM to be energetically

consistent with the SGSmodel of the LES.With LT, Lagrangian autocorrelations of velocities reveal three distinct

turbulent time scales: an integral, a dispersivemixing, and a coherent structure time. Coherent structures due to LT

result in relatively narrow peaks of Lagrangian frequency velocity spectra. With and without waves, the high-

frequency spectral tail is consistent with expectations for the inertial subrange, but BWs substantially increase

spectral levels at high frequencies. Consistently, over short times, particle-pair dispersion results agree with

the Richardson–Obukhov law, and near-surface dispersion is significantly enhanced because of BWs. Over

longer times, our dispersion results are consistent with Taylor dispersion. In this case, turbulent diffusivities

are substantially larger with LT in the crosswind direction, but reduced in the along-wind direction because of

enhanced turbulent transport by LT that reduces mean Eulerian shear. Our results indicate that the

Lagrangian analysis framework is effective and physically intuitive to characterize OSBL turbulence.

1. Introduction

Turbulent processes in the ocean surface boundary

layer (OSBL) play a key role in weather and climate sys-

tems by coupling the ocean and atmosphere through

air–sea fluxes of heat, momentum, and mass (Jähne and

Haußecker 1998;Melville 1996; Thorpe 2004;Wanninkhof

et al. 2009; Sullivan andMcWilliams 2010; D’Asaro 2014).

Upper-ocean turbulence also distributes nutrients and

plankton (Denman andGargett 1995), pollutants (Brunner

et al. 2015; Yang et al. 2014), bubbles (Thorpe 1982; Liang

et al. 2017), and radiatively important gases, such as

CO2, influencing biogeochemical cycles (Sarmiento and

Gruber 2002) and ocean acidification processes (Doney

et al. 2009). The goals of this study are to introduce a

rational model for turbulent three-dimensional (3D)

fluid particle paths in the OSBL and, based on those

paths, to conduct a systematic Lagrangian analysis to

determine turbulent time scales, dispersion characteristics,

and effects of surface gravity waves on OSBL turbulence.

One challenge in modeling and understanding OSBL

turbulence is the influence of surface gravity waves. The

Stokes drift due to nonbreaking surface gravity waves

interacts with the turbulent currents to drive Langmuir

turbulence (LT). Such wave–current interactions are

described by the Craik–Leibovich equations that

include Craik–Leibovich wave forcing generating LT

through the so-called Craik–Leibovich type 2 (CL2)

mechanism (Craik and Leibovich 1976). Enhancing tur-

bulent transport, LT is recognized as one key OSBL

process (Thorpe 2004; Sullivan and McWilliams 2010;

Belcher et al. 2012; D’Asaro 2014). Breaking waves

(BWs) are a source of enhanced turbulence intensities

and turbulent kinetic energy (TKE; Agrawal et al. 1992;

Craig and Banner 1994; Terray et al. 1996;Melville 1996),

which contribute significantly to mixing processes close

to the surface. Together, LT and the stochastically BW

field lead to complicated nonlocal and intermittent

transport (Noh et al. 2004; Sullivan et al. 2007; Kukulka

and Brunner 2015).

Computational, turbulence-resolving LT models are

commonly based on large-eddy simulation (LES) modelsCorresponding author: Tobias Kukulka, kukulka@udel.edu
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adopting the systematic mathematical theory by Craik

and Leibovich (1976) (Skyllingstad and Denbo 1995;

McWilliams et al. 1997; Li et al. 2005; Grant and Belcher

2009). LES models capture qualitatively and quantita-

tively many of the observed LT characteristics, such as

coherent near-surface convergences zones, strong down-

welling jets, relatively large vertical velocity variances, and

spatial turbulent scales (Skyllingstad et al. 1999; Gargett

et al. 2004; Li et al. 2009; Kukulka et al. 2009, 2011;

Harcourt and D’Asaro 2010; D’Asaro et al. 2014).

BWs have been incorporated in an LES with LT by a

random surface forcing to imitate TKE injection (Noh

et al. 2004; Li et al. 2013) and by stochastic breaking

wave events that simulate the evolution of individual

breakers (Sullivan et al. 2004, 2007). These previous

LES studies are consistent with observed TKE dissipa-

tion rates (Terray et al. 1996) and indicate that BW ef-

fects are mainly confined to a relatively thin surface

layer close to the air–sea interface, approximately one

significant wave height deep. Kukulka and Brunner

(2015) implemented a relatively simple wave-breaking

scheme in an LES based on the Craig and Banner (1994)

model that is energetically constrained, captures enhanced

near-surface mixing, and agrees with more complete LES

approaches.

OSBL turbulence statistics is commonly determined

at fixed locations, in the Eulerian reference framework,

although previous studies employing LES approaches

indicate the effectiveness of tracing particles that follow

the fluidmotion. Lagrangian particles have been tracked

in two-dimensional models (Colbo and Li 1999) and 3D

models at a fixed vertical level (e.g., McWilliams et al.

1997). LT significantly affects the 3D distribution of

buoyant and neutrally buoyant particles (Skyllingstad

2003; Noh et al. 2006; Noh and Nakada 2010; Liang et al.

2017). Harcourt and D’Asaro (2010) showed that LES

particle paths agree with OSBL float observations. These

studies provide valuable guidance for the systematic

Lagrangian analysis conducted in this study.

The close connection of single, pair, and group particle

dispersion with turbulent mixing and transport processes

and the unique physical advantages of the Lagrangian

descriptions have been established in the fluid dynam-

ics turbulence community (e.g., Sawford 2001; Yeung

2002; Salazar and Collins 2009). In the oceanic context,

Lagrangian analyses have been successfully applied to

larger-scale current systems based on float observations

(e.g., Davis 1991; Rossby 2007) and numerical models

with time scales larger than the mixed layer turbulent

time scale (Özgökmen et al. 2001; Poje et al. 2010;

Özgökmen et al. 2011). Lagrangian frequency spectra of

vertical velocity have been determined in the field by

Lien et al. (1998) using autonomous Lagrangian floats

(D’Asaro 2003). In addition, a Lagrangian approach is

practical and physically intuitive when evaluating the

dispersion of nutrients, pollutants, or other neutrally

buoyant fluid characteristics.

In section 2, we introduce a rational 3D particle path

model based on an LES model coupled to a Lagrangian

stochastic model (LSM). The LSM is essential for higher-

frequency particle motion that cannot be resolved by the

LES model. Particle motions at such high frequencies

play a key role in many turbulent processes, such as the

initial dispersion of point sources. The LSMmodel shall

be designed so that the particle energy is consistent with

the energetics of the LES model. The Lagrangian anal-

ysis presented in section 3 reveals that Lagrangian

autocorrelations, velocity frequency spectra, and particle-

pair dispersion statistics are effective for characterizing

OSBL turbulence. Our conclusions (section 4) highlight

that 1) LT is characterized not only by a turbulent re-

laxation time scale, but also a coherent structure time

scale; 2) LT enhances crosswind dispersion, but reduces

along-wind dispersion; and 3) BWs play a critical role in

rapidly dispersing material near the surface over rela-

tively short time scales.

2. Methods

a. Overview of approach

We consider the trajectory X(t, X0) of a particle at

time t that is initially t5 0 located at position X0. The

particle shall move through a 3D turbulent ocean with

Cartesian coordinates x5 x1 along the wind direction,

y5 x2 along the horizontal crosswind direction, and

vertical coordinate z5 x3, which is defined positive up-

ward with z5 0 at the air–sea interface. The position

vector in the Eulerian reference frame is x5 (x1, x2, x3)

and the particle position vector is written as X5
(X1, X2, X3). The Lagrangian particle velocity U(t, X0),

where U5 (U1, U2, U3)5 (U, V, W), is the time de-

rivative of the particle trajectory

dX

dt
5U . (1)

In this study, we follow common approaches to ap-

proximate the turbulent velocity for the wave-driven

ocean surface boundary layer, which is highly chal-

lenging tomodel (Leibovich 1983; Thorpe 2004; Sullivan

and McWilliams 2010). Based on the wave-phase-

averaged framework of Craik and Leibovich (1976),

we introduce the Eulerian wave-phase-averaged veloc-

ity u(t, x), where u5 (u1, u2, u3)5 (u, y, w), and Stokes

drift vector us(z), so that the (now wave-phase-averaged)

particle trajectory is governed by
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dX

dt
5 u(t,X)1 u

s
(X

3
) , (2)

with the initial conditionX5X0 at t5 0. For the wave-

phase-averaged approach, irrotational wave-orbital

motions are averaged out, whereas rotational turbu-

lent motions are contained in u. Despite such aver-

aging, the irrotational wave motion still influences the

flow through the Stokes drift and the Craik–Leibovich

wave forcing.

Employing the LES formulation from Moeng (1984),

McWilliams et al. (1997) decompose the Eulerian velocity

into the subgrid-scale (SGS)-filtered velocity u and its

deviation, the unresolved SGS velocity usgs, so that

u5 u1 usgs . (3)

By design, the LES model only resolves u and does not

resolve usgs. Turbulent SGS fluxes, for example, related

to terms like usgswsgs, are parameterized in the LES,

while SGS TKE 0:5usgs � usgs is modeled by a prognostic

equation (section 2b). We estimate u at X based on

spatial linear interpolation of the LES solution. We

employ a stochasticmodel to determine usgs (section 2d).

b. LES model for Langmuir turbulence

Following the LES approach from McWilliams et al.

(1997) with the modifications for a depth-limited ocean

proposed by Kukulka et al. (2011, 2012), the resolved,

SGS-filtered velocity field for a nonrotating, constant

density ocean is obtained by solving the wave-averaged

and spatially filtered Navier–Stokes equation

›u
i

›t
1 u

j

›u
i

›x
j

52
›p

›x
i

1 «
ikm

u
s,k
v

m
1

›tSGS
ij

›x
j

, (4)

where p is a generalized pressure (divided by density),

«ikm is the Levi–Civita permutation tensor, and vi 5
«ikm›um/›xk is the resolved ith component of the vor-

ticity vector. The cross-product between Stokes drift

and vorticity vector, called Craik–Leibovich vortex

force, tilts vertical vorticity into the direction of wave

propagation and gives rise to LT. Without waves, the

Stokes drift is zero, so that the LES model (4) solves

only for shear-driven turbulence (ST).

Unresolved turbulent SGS fluxes are parameterized

via an SGS eddy viscosity (e.g., KM for momentum)

tSGS
ij 52K

M

 
›u

i

›x
j

1
›u

j

›x
i

!
, (5)

where tSGS
ij is the turbulent SGS momentum flux tensor;

KM depends on the SGSTKE e and an SGS length scale l

determined by the spatial resolution

K
M
5 le1/2 , (6)

where e is the SGS TKE and l5 (DxDyDz)1/3 [seeMoeng

(1984) for details]. The SGS TKE, in turn, is determined

from the prognostic equation

›e

›t
1 u

j
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›x
j
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ij
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j
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�
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›e
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i

�

2 «1 I
b
, (7)

where the TKE dissipation rate « is

«5Ce3/2l21 , (8)

with C 5 0.71. The last term in (7) is a work term be-

cause of breaking waves that will be discussed next.

c. Breaking waves

To simulate enhanced near-surface TKE and TKE

dissipation rates due to BWs, we follow the approach of

Kukulka and Brunner (2015) and impose a BW TKE

surface flux F as surface boundary condition for the SGS

TKE in (7). This approach is an extension of the work by

Craig and Banner (1994), who specified a TKE surface

flux F due to BW in aReynolds-averagedNavier–Stokes

equation model, but simplifies the stochastic BWmodel

from Sullivan et al. (2007), which attempts to resolve

BW events in an LES model.

In equilibrium wind-wave conditions considered in

this study, the energy loss by BWs F is balanced by the

total wind energy input and can be expressed as (Komen

et al. 1996)

F5 g

ðvmax

0

bf(v) dv , (9)

where v is the radian wave frequency, g is the acceler-

ation of gravity, and f is the one-dimensional wave-

height frequency spectrum, which is estimated based on

the empirical spectrum from Donelan et al. (1985). The

high v cutoff vmax is specified as 4 times the frequency at

the peak of f(v). The wave growth rate b is adopted

from Plant (1982):

b5 c
b
u2

*c
22v (10)

for c/u*a , 35, and b5 0 otherwise. The wave phase

speed c is c5 g/v; the wind stress is rwu
2

*; u* and

u*a 5 u*

ffiffiffiffiffiffiffiffiffiffiffi
rw/ra

p
denote the water-side and air-side fric-

tion velocity, respectively, and rw and ra are the density of

water and air, respectively. The coefficient cb 5 (326 16)

denotes a nondimensional growth rate coefficient with

large uncertainties; here we set cb 5 32. To implement the
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energy input due to F numerically, we impose a con-

stant, horizontally uniform BW work term IB(z) in (7)

that inputs TKE into the SGS motion, so that F5Ð 0
2h
IB dz. Kukulka and Brunner (2015) show that this

TKE input is consistent with previous estimates and that

their approach yields simulated near-surface TKE dis-

sipation rates that are consistent with observations from

Terray et al. (1996) for a wide range of wind and wave

conditions.

d. Stochastic model for subgrid-scale motions

The high-frequency SGS velocity u
sgs
i is not resolved

by the LES but needs to be modeled separately. Our

design goals of this SGS model for particle motions are

1) the model shall be simple, rational, and computa-

tionally efficient; 2) particle SGS motions shall be con-

sistent with the SGS TKE and TKE dissipation rates

that are explicitly modeled by the LES through (7) and

(8), respectively; and 3) we shall employ an existing

model ‘‘as is’’ without tuning, but critically evaluate the

model performance based on the analysis of particle

motions. In agreement with common LES assump-

tions and our design goals, we assume that the tur-

bulent motion below SGS is approximately isotropic

and homogeneous.

Clearly, these model design choices bring about lim-

itations. For example, by design, SGS particle motions

are generally not consistent with the local, instantaneous

SGS momentum fluxes parameterized by (5). However,

in well-resolved LES approaches, these SGS stresses

are small (Pope 2008). Or, SGS motion close to the

boundaries is not isotropic, which is a common challenge

in LES models and an active field of research (e.g.,

Sullivan et al. 1994; Pope 2008) beyond the scope of

this study. In spite of these limitations, our approach

provides a valuable starting point for modeling particle

SGS motions.

LSMs of particle trajectories in turbulent flows can be

applied to meet our design criteria. LSMs are not based

on first principles, but satisfy certain flow criteria with

known limitations (Thomson 1987). In this study, we

employ the LSM by Weil et al. (2004), which follows

closely Thomson (1987) and was applied in an LES to

model SGS motions in convective, atmospheric bound-

ary layers (e.g., Weil et al. 2004; Kim et al. 2005). In this

model, du
sgs
i is governed by

du
sgs
i 52

C
0
«

2s2
u
sgs
i dt1

1

2

�
1

s2

ds2

dt
u
sgs
i 1

›s2

›x
i

�
dt

1 (C
0
«dt)1/2dj

i
, (11)

where dji is a normalized Gaussian random variable and

s2 5 (2/3)e is the variance of each SGS velocity component.

The model constant C0 is closely related to the Kolmo-

gorov constant; however, C0 is often determined

experimentally from relatively low Reynolds number

data and should therefore be distinguished from the

Kolmogorov constant (Pope 2008). Estimates range

between C0 5 46 2 (Thomson 1987) and C0 . 4 (Pope

2008); we set C0 5 6. The model by Weil et al. (2004)

furthermore introduces an empirical factor fs # 1 in the

first and last right-hand-side terms, which we do not

include, as explained next.

By design, the model (11) has the following desired

properties (Thomson 1987; Sawford 2001; Pope 2008):

1) The last right-hand-side (rhs) term of (11) is a

stochastic forcing term that results in particle motions

consistent with the expected behavior, such as particle

dispersion, in the inertial subrange for small time and

spatial scales. In this term, Weil et al. (2004) replace

« with fs«, which erroneously decreases TKE in the

inertial subrange for fs , 1. 2) The first rhs term of (11)

is a relaxation term that imposes, for stationary and

homogeneous turbulence, a Lagrangian SGS time

scale 2s2/C0«. This ensures that the TKE of the sto-

chastic particle motion is consistent with the SGS

TKE of the LES model. In this term, Weil et al. (2004)

also replaces « with fs«, thereby moving SGS TKE to

lower frequencies, which is inconsistent with the ex-

pected turbulent time scale of the SGS scheme ob-

tained from TKE dissipation rates and SGS TKE.

3) The second rhs term of (11) imposes a well-mixed

condition, so that already-mixed tracers remain mixed.

For strongly nonstationary or inhomogeneous tur-

bulence, this term may modify the Lagrangian SGS

time scale imposed by the first term, resulting in

TKE due to stochastic particle motion that differs

from the SGS TKE of the LES model. This will be

assessed below.

e. Experimental design

Our default model setup follows closely our previous

approach to simulate a depth-limited ocean that has

been analyzed and assessed in detail (Kukulka et al.

2011, 2012). This approach yields also results consis-

tent with the shallow ocean LES from Tejada-Martinez

and Grosch (2007). Note that this idealized depth-

limited ocean setup greatly facilitates the conceptual

understanding and interpretation of results, but more

general applications should include the Coriolis force

and stratification. The computational domain is h 5
16-m deep and extends Lx 5 Ly 5 64m in each hori-

zontal direction. The number of horizontal grid points,

nx 5 ny 5 128, and vertical grid points, nz 5 100, is suf-

ficient to resolve well energy-containing and flux-

carrying turbulent eddies (Pope 2008).
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The specific size of streamwise coherent structures

(Langmuir cells or ‘‘Couette cells’’ for shear-driven

turbulence; e.g., Papavassiliou and Hanratty 1997) de-

pends on the finite horizontal domain size. However, the

specific size of such structures is not critical for the con-

clusions and major findings presented in this paper. This is

because the principal differences between Langmuir tur-

bulence and shear-driven turbulence are independent of

the specific domain size (see appendix). Note also that our

LES flow field is based on previous work with similar

domain sizes (e.g., Tejada-Martinez and Grosch 2007;

Kukulka et al. 2011, 2012). These previous studies clearly

demonstrate that approaches with limited domain size

provide a valuable starting point for investigating depth-

limited Langmuir turbulence.

The wind and wave forcing is specified based on typ-

ical observed conditions described in Kukulka et al.

(2012). The wind speed at 10-m height is U10 5 7m s21,

corresponding to u*5 0:0083m s21. The Stokes drift

profile is estimated for a monochromatic depth-limited

surface gravity wave with wavelength l5 40m and

significant wave height Hs 5 0:75m (or amplitude

a5Hs/
ffiffiffi
8

p
), resulting in a turbulent Langmuir number of

Lat 5 0:8. This Langmuir number is relatively large for

open ocean Langmuir turbulence but is consistent with

previous coastal LES studies that provide a valuable

reference point for investigating Langmuir turbulence

in a depth-limited ocean (Tejada-Martinez and Grosch

2007; Kukulka et al. 2011, 2012). The BW TKE flux F is

determined from (9) for a fully developed sea with

c/u*a 5 35 and the prescribed U10.

To clearly identify and contrast simulation results for

different wave effects, we only present results for three

different cases: Case S denotes simulations without any

wave effects (shear-driven turbulence), case L includes

only Langmuir turbulence, and case LB includes both

Langmuir turbulence and breakingwave effects. Case S is

characterized by relatively small-scale and less coherent

motions (Fig. 1, top panels), whereas the L simulations

reveal coherent roll vortices in the OSBL characterized

by strong surface convergence regions with organized

downwelling jets underneath (Fig. 1, bottom panels).

By default we release 5000 particles on an evenly

spaced grid in the domain and track them over a period

of 105 s (about 28h), which is much larger than the tradi-

tional estimate of a turbulent time scale of h/u*5 1930 s.

Particles are perfectly reflected by the surface and bottom

boundaries.

3. Results

In section 3a, we will first illustrate that, by design,

particle energetics are consistent with the energetics of

the LES model. Section 3b provides an intuitive over-

view of 3D particle paths and velocities, before analyz-

ing in-depth Lagrangian velocity autocorrelations in

section 3c and spectra in section 3d. Fundamental dif-

ferences due to wave effects in turbulent transport are

further highlighted by the investigation of particle cloud

dispersion, discussed in section 3e.

a. Energetic consistency of particles and Eulerian
fields

To test whether the Lagrangian particle model is en-

ergetically consistent with the Eulerian flow field, we

compare vertical profiles of horizontally averaged mean

velocity and velocity variances (Fig. 2). Profiles from

particle trajectories are computed from depth-dependent

probability density functions P(Uijz), which are estimated

for depth bins consistent with the vertical resolution of the

LES model. For example, the mean along-wind veloc-

ity at z is
Ð
U1P(U1jz) dU1 and the along-wind veloc-

ity variance is
Ð �
U1 2

�Ð
U 0

1P(U
0
1jz) dU 0

1

��2
P(U1jz) dU1.

The along-wind velocity profile obtained from the

particles and Eulerian fields hui (angle brackets denote
horizontal averages) agree well (profiles are on top of

each other, Fig. 2a).

Since the particle motion includes SGS contributions,

the Eulerian velocity variance profiles are estimated

based on the resolved flow field and the SGS TKE, as-

suming isotropic turbulence, so that hu02
i i5 hu02

i i1 2/3e

(prime denotes the deviation from the horizontal aver-

age). Velocity variances hu02
i i are only consistent if the

LES SGS contribution is included in the Eulerian field,

indicating that the model (11) reasonably constrains

SGS TKE (Fig. 2c). The profiles of hu02
i i for the S and L

cases are in close agreement to those previously simu-

lated for similar shallow-water conditions (Tejada-Martinez

and Grosch 2007). For the LB case, BWs enhance near-

surface velocity variances by over an order of magnitude

(bottom panels in Fig. 2). In spite of strongly in-

homogeneous TKE profiles, the simple model (11)

captures reasonably well near-surface TKE and its ver-

tical decay. This comparison indicates that particle en-

ergetics agree with the energetics of the Eulerian

LES fields, consistent with our particle SGS motion

design goals.

b. Example particle trajectories

Example particle trajectories and their corresponding

velocities provide an intuitive overview of the La-

grangian fluid motion (Fig. 3). Without LT, the vertical

motion is more local with particles moving gradually

throughout the OSBL, indicating relatively small en-

ergetic OSBL eddies (gray line in Fig. 3a). With LT,

energy-carrying eddies are larger and particles move
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more regularly between the OSBL bottom and surface

(black lines in Fig. 3a), which is a signature of large-scale

coherent vortices extending throughout the whole

OSBL. In both cases, higher-frequency motion is found

close to the boundaries because of relatively small

eddies near the surface. Although differences between L

and LB simulations appear to be small at greater depths

(cf. thin and thick black lines), BWs drive energetic

high-frequency motions near the surface with periods of

about a few seconds due to the BW TKE flux at the

surface (Fig. 4).

Consistently, particle velocities (Figs. 3d–f) in the LB

case are much larger, often exceeding 10u*, and rapidly

oscillate once particles are sufficiently close to the sur-

face (cf. with vertical trajectories, Fig. 3a). In the S case,

variations of U are partially due to particles changing Z

because of the vertically sheared along-wind current.

This is different with LT, because shear is reduced

(Fig. 2). With LT, enhanced U is related to Y as en-

hanced along-wind jets are found in downwelling re-

gions whose locations depend on Y. The L and LB

crosswind trajectories also show that the particles are

initially circulating in a roll vortex, moving first in the

crosswind direction and then back (Fig. 3b). At about

tu*/h5 3:8,Y trajectories for the L and LB cases diverge

because the LB particle moves to a neighboring vortex

to continue its motion in the crosswind direction.

This brief overview of Lagrangian time series illus-

trates that particle trajectories compactly and effectively

describe the 3D turbulent flow structure.

c. Lagrangian velocity autocorrelations

Let us next explore more systematically the turbu-

lence structure of energy-containing eddies through

Lagrangian velocity autocorrelations

R
i
(t)5 fU 0

i(t)U
0
i(t1 t)g , (12)

where the curly brackets indicate the combined en-

semble and time average, and the prime denotes the

deviation from the mean, so that U 0
i 5Ui 2 fUig. The

normalized autocorrelation is defined by

r
i
(t)5R

i
(t)/R

i
(0). (13)

1) EDDY TURNOVER AND COHERENT

STRUCTURES

A common characteristic of ri is a relatively rapid

decorrelation for smaller t, the presence of at least one

zero crossing, and a relatively slow decorrelation for

FIG. 1. Normalized velocity fields (top) without and (bottom) with LT. Horizontal cross section of (a) near-surface y, (b) middepth w,

and (c) near-bottom y, and (d) depth–crosswind cross section of w. Particle release locations for point source dispersion experiments are

indicated by crosses (section 3e).
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FIG. 2. Comparison of horizontally averaged along-wind velocity and velocity variances obtained from Lagrangian particle trajectories

(thick line) and Eulerian fields (thin lines) with SGS (gray) and without SGS (black) contributions for the (a) S, (b) L, and (c) LB cases.

The normalized Stokes drift profile is shown in the top panels of (b) and (c) as a thick dashed line.
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larger t, so that ri converges to zero with greater t

(Fig. 5). (Taylor 1922, p. 210) commented on the possi-

bility of zero crossings ‘‘due to some sort of regularity in

the eddies of which the turbulent motion consists.’’ For

w, the first zero crossing at t5Te defines an eddy

turnover time scale as half of the particles reverse their

vertical direction of motion. Without LT, eddies break

up more quickly after Te, resulting in a more random

field of motion and in a more rapid convergence of r3 to

zero (Fig. 5a, thick black line). With LT, ri is more

negative and multiple zero crossings can be observed be-

cause of the presence of larger-scale coherent structures

(Fig. 5, gray line). The TKE input due to BWs appears to

disrupt such coherent structures because velocities are

less correlated (Fig. 5a, thin black line), but the effect is

relatively small for the larger-scale turbulent motion

that is highlighted by ri.

2) U 0 AND V 0 DECORRELATE MORE SLOWLY

The autocorrelation r2 converges more slowly to zero

than r3 (cf. Fig. 5b with Fig. 5a), and r1 even more slowly

than either r3 and r2 (cf. Fig. 5c with Figs. 5a and 5b).

This is because particles that move in the crosswind di-

rection may move to a neighboring eddy, thereby not

FIG. 3. Examples of (a)–(c) turbulent trajectories and (d)–(f) velocities for the S (thick black

line), L (gray line), and LB (thin black line) cases. Normalized velocities are offset by210 and 10

for the S and L cases, respectively. The box in the top-left corner of (a) is enlarged in Fig. 4.
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turning over but maintaining the previous direction of

motion. In addition, the along-wind velocity is vertically

sheared, introducing a depth-dependent component

of U 0, so that the velocity variance is related to hui and
us by

R
1
(0)5 hu02i1 hui1 u

s
2 hui1 u

s

	 
2
, (14)

where the double overbar indicate depth averages. This

equation shows how particle velocity variance partitions

into turbulent and mean shear parts. The last term on

the rhs is not a turbulent term in the Eulerian framework

based on horizontal averages, but describes a turbulent

deviation from the Lagrangian mean due to particles

moving in a sheared flow. This term is enhanced without

LT because of the enhanced vertical shear (Fig. 2). With

LT, we find R1(0)5 7:8u2

* and determine the sheared

component (last term on the rhs) as 2:4u2

* based on

the results shown in Fig. 2. Without LT, we find

R1(0)5 14:5u2

* and the sheared component (last term on

the rhs) is 8:2u2

*, so that the sheared component is

dominant for shear-driven turbulence. At the same time,

the U 0 component due to shear can only decorrelate

because of relatively weak vertical motion, leading to

the slow velocity decorrelation shown by r1 (Fig. 5c).

3) LAGRANGIAN INTEGRAL TIME SCALES

We estimate the Lagrangian velocity integral time

scale (Yeung 2002)

T
i
5

ð‘
0

r
i
(t) dt (15)

for different velocity components U 0
i and different wave

cases (Table 1).

As expected from the foregoing discussion of ri(t), we

find thatT3 ,T2 ,T1.With andwithout wave effects,T3

takes similarly small values. Note that it is challenging to

FIG. 4. Closeup of theZ trajectory for the LB case shown in Fig. 3a.

FIG. 5. Normalized velocity autocorrelation ri for the S (thick black line), L (gray line), and LB (thin black line) cases. Dashed lines show ri
only for LES-resolved scales without SGS model (11) for the S (black) and L (gray) cases.
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estimate T3 with high confidence, and its physical in-

terpretation is not obvious because the magnitude of

positive and negative contributions to the integral (15)

are much larger than T3 and approximately cancel. For

the crosswind direction, T2 is greater with LT because of

coherent roll vortices. Conversely, T1 is greater without

LT because of enhanced shear. BWs do not significantly

affect Ti values, indicating that they do not strongly in-

fluence the larger-scale turbulent eddies. For exponen-

tially decaying ri, Ti is the exponential decay time,

providing a physically intuitive interpretation for T2

without LT. For turbulence characterized by coherent

structures, this interpretation is obscured because posi-

tive and negative ri cancel to reduceTi. For example, it is

not clear how T3 with LT is related to Te or the decay or

oscillations of ri(t). The will be addressed in the fol-

lowing subsection.

Without SGS contributions, the autocorrelation ri(t)

decreases more slowly and Ti typically increases by

10%–20% (dashed lines in Fig. 5). These Ti values are

greater than expected for the real flow field because of

the missing SGS contributions. To estimate by how

much Ti may increase without SGS contributions, we

consider that the energy-containing low-frequency con-

tributions to TKE are only weakly influenced by SGS

motions, so that Ri(0)Ti approximately equals Ri(0)Ti,

where Ri(t) and Ti denote the dimensional autocorre-

lation and integral time, respectively, obtained from

the LES-resolved flow without SGS contributions.

Thus, Ti is expected to increase by a factor Ri(0)/Ri(0)

relative to Ti. Our simulated increase in Ti is consistent

with our LES that resolves between 10% and 20%

of TKE.

4) BEYOND LAGRANGIAN INTEGRAL TIME

SCALES

Let us next explore two physically intuitive time

scales that take into account a relaxation time Tr due

to eddy breakup and a time scale Tc of coherent

structures that characterizes their periodicity. The

normalized autocorrelation for an idealized model of

the breakup process is r(t)5 exp(2t/Tr) (e.g., Pope

2008) and for an idealized coherent structure model is

r(t)5 cos(2pt/Tc). With both processes combined,

one may expect

r(t)5 exp(2t/T
r
) cos(2pt/T

c
) , (16)

that is, r is a sinusoidally oscillating function with an

exponentially decaying envelope. For Tr 5Tc, the in-

tegral time scale of (16) is T5Tr/[11 (2p)2]’ 0:025Tr,

which is much smaller than Tr or Tc and, therefore,

challenging to interpret physically.

With LT, r3 is relatively narrow-banded with an ap-

parent envelop, conceptually similar to (16). To estimate

the envelop and phase of r3(t), we apply the Hilbert

transform (Bendat and Piersol 2000)

~r(t)5

ð‘
2‘

[2j sign(f )]F [r] exp(j2pf t) df , (17)

where F [r]5
Ð ‘
2‘r(t) exp(2j2pf t) dt denotes the Four-

ier transform of r and j5
ffiffiffiffiffiffiffi
21

p
. After defining the an-

alytic signal

r̂(t)5 r(t)1 j~r(t)5 jr̂j exp[ ju(t)] , (18)

the envelop is retrieved by jr̂j5 (r2 1 ~r2)1/2 and the phase

u by u5 tan21(r/~r) (Fig. 6). This procedure allows us to

objectively estimate Tr by fitting jr̂j} exp(2t/Tr) for

t/Te . 0:25 (Fig. 6, thin black line). We find Tru*/h 5
0.63 and 1.31 without and with LT, respectively, in-

dicating that for shear-driven turbulence, larger-scale

eddies break up significantly faster. This was not clear

from the T3 estimates alone. Furthermore, with LT, the

Hilbert transform reveals the oscillating sinusoidal part

of r(t) through the real part of r̂/jr̂j, which is cos(u), with

an approximate period of Tcu*/h5 2:78 [determined

from the slope of u(t)]. For the S case, Tc cannot be

determined with high confidence; and for the LB case,

results of Tr and Tc are similar to the L case.

5) TURBULENT DIFFUSIVITIES

For long time lags, with Ri(t) approaching zero, Ri(t)

is a useful mathematical construct to understand single-

particle dispersion over time scales much longer than

some integral time (see next subsection), that is, when

particle motion is equivalent to a random walk (Taylor

1922). In this case, the turbulent diffusion coefficient

along i is

A
i
5

ð‘
0

R
i
(t) dt5R

i
(0)T

i
, (19)

which is determined here only for the horizontal directions

because particles are already well mixed in the vertical over

long times. With LT, crosswind dispersion is substantially

enhanced because of coherent roll vortices (e.g., Majda and

Kramer 1999),whereas along-winddispersion is significantly

TABLE 1. Normalized Ti and normalized Ai for the horizontal

directions.

T3u*/h T2u*/h T1u*/h A2/(hu*) A1/(hu*)

S 0.0037 0.076 0.44 0.15 6.47

L 0.0037 0.157 0.30 0.43 2.33

LB 0.0031 0.148 0.30 0.47 2.68
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reduced relative to the S case because LT reduces the

vertical shear in the along-wind flow (Table 1). In both

cases, horizontal dispersion is strongly anisotropic with

greater dispersion in the along-wind than crosswind di-

rection. This anisotropy is much enhanced for the S case,

so that a point source disperses much more along a line

in the wind direction without LT, whereas dispersion is

more radially symmetric with LT.

A simple conceptual model of A1 for the S case is

derived by assuming that differential advection in the

along-wind direction and small-scale vertical mixing

predominantly govern A1 (Taylor 1953; Saffman 1962;

Fischer 1973), so that A1 can be estimated by an ‘‘ef-

fective’’ eddy diffusivity (e.g., Esler and Ramli 2017)

A
eff

5

�
Q2

A
y

�
, (20)

where Ay(z) is the depth-dependent vertical turbulent

diffusivity and Q(z) is defined by Q(z)5
Ð z
2h
ðhui2

huiÞdz. The mean profile hui is approximated by a

log-profile hui5 u*k
21 log(z/z0) from the bottom to

middepth and by a corresponding log-profile that is

symmetric with respect to point z52h/2 in the upper

half of the water column (Kukulka et al. 2011, 2012).

Here, k5 0:4 denotes the von Kármán constant and

z0 5 0:001m is a roughness length consistent with the

LES model (Kukulka et al. 2011). Assuming fur-

thermore that Ay(z) is equal to the eddy viscosity

u2

*/(dhui/dz), we find Aeff 5 10:1u*h. If the dominant

contribution toR1(0) is due to shear, the idealizedmodel

also yields Aeff/R1(0)5T1 5 0:77h/u*. Both estimates

agree within an order of magnitude with our solutions

and illustrate the importance of shear dispersion dynamics.

With LT, (20) suggests that A1 is reduced because of

weaker shear and enhanced Ay ; however, application of

(20) to the L case is too oversimplified because of the

substantial nonshear contribution to R1(0) and nonlocal

vertical transport due to LT (Kukulka et al. 2012).

d. Lagrangian velocity frequency spectra

To examine the TKE content of all time scales much

larger than the dissipation range, we introduce the one-

sided velocity frequency spectrum for U 0
i

S
i
( f )5 2Ŝ

i
( f ) for f . 0 and S

i
(0)5 Ŝ

i
(0), (21)

where Ŝ( f ) is the two-sided spectrum defined by

Ŝ
i
( f )5F [R

i
(t)]5

ð‘
2‘

R
i
(t) exp(2j2pf t) dt . (22)

1) LOW-F SPECTRAL PEAK

With LT, S2 and S3 peak at about fh/u*5 0:35’
h/(u*Tc), corresponding to a period of about 5000 s,

which is consistent with the Tc for the coherent part of

r3(t) determined in section 3c(4) (Fig. 7). As expected

for coherent LT roll vortices that are aligned with the

wind, the peak of the crosswind S2 and vertical S3 ex-

ceeds the spectra without LT. Without LT, a peak is still

FIG. 6. Normalized autocorrelation r3 (thick black line) for the (a) L and (b) S cases with its envelope jr̂j (thin black

line) and 0:2 cos(u) (gray line); see (16).
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evident for S3, which is, however, relatively broad and

due to eddy turnover in the vertical direction, discussed

in section 3c(1). This is qualitatively consistent with the

fact that Tc could not be determined with high confi-

dence for the S case. Note that peaks in S3 are chal-

lenging to observe in the ocean because of uncertainties

in low-frequency spectral estimates (Lien et al. 1998).

Without LT, S1 and S2 level off at low frequencies

without a pronounced peak. The energy-containing

part of S1 at lower frequencies significantly exceeds

the one with LT because of along-wind shear contri-

butions [see section 3c(2)]. Our results indicate that

BWs do not significantly affect the energy-containing

range of motion. Similarly, without SGS contribution

(dotted lines in Fig. 7), the energy-containing range is,

as expected, not significantly affected by the SGS

model (11).

2) HIGH-F SPECTRAL TAIL

Without SGS contribution, the frequency spectrum

rapidly decreases at higher frequencies because high-

frequency content is not resolved by the LES (dotted

lines in Fig. 7). Thus, SGS contributionsmodeled by (11)

are critical at higher frequencies.

BWs enhance the high-frequency spectral tail by over an

order of magnitude for fh/u*. 50. Recall that BW mo-

tions are simulated with the stochastic model (11) and the

TKE surface flux (9). A transition from the energy-

containing turbulent scales due to BW to the inertial sub-

range is expected near fh/u*5 h/u*fC0«/(2s
2)g’ 50,

which agrees with our simulations. In interpreting these

BW results, it is important to keep in mind that the

length scale of BW motion is determined from the SGS

model. More realistic modeling approaches should es-

timate this length scale directly from wave dynamics,

which is beyond the scope of this study.

With and without wave effects, Si is proportional to

f22 for high f (Fig. 7). In the inertial subrange, di-

mensional analysis suggests that Si 5B«f22 (Corrsin

1963; Tennekes and Lumley 1972), where B is a uni-

versal constant coefficient here taken as B5C0/(2p
2),

which is mathematically consistent with the stochastic

model (11) for f /‘. In this study, turbulence is

inhomogeneous so that « needs to be replaced by the

average f«g and Si 5Bf«gf22.We find f«gu23

* h5 24, 17,

and 220 for the S, L, and LB cases, respectively, which is

consistent with the simulated spectra at high frequencies

in the inertial subrange (Fig. 7). Note that simulated

spectra for vertical velocities S3 are slightly larger than

what is expected for the inertial subrange because the

bounce condition at the surface and bottom boundaries

introduces high-frequency energy.

e. Point-source dispersion

To examine in detail particle dispersion dynamics, we

analyze particle-pair statistics of evolving clouds of

particles due to point sources. We release point sources

at t5 0 with 1000 particles at 12 different locations, in-

cluding three depth levels (at the surface, at middepth,

and near the bottom) and four horizontal locations near

downwelling, upwelling, and roll vortex center regions

(Fig. 1).

FIG. 7. Normalized Lagrangian velocity spectra Si.
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Figure 8 shows the evolution of particle clouds for the

LB case after tu*/h5 0:05 (t 5 100 s) and tu*/h5 0:11

(t 5 400 s). Initially, breaking waves near the surface

rapidly disperse the cloud. The dispersion is smallest at

middepth, where the mean Lagrangian shear is smallest

(Fig. 2, top panels). At the surface, particle clouds are

transported into convergence zones, where they are

rapidly advected downward. Particle clouds in the cen-

ter of Langmuir cells (cf. with Fig. 1) disperse much

more slowly. These results suggest that the initial par-

ticle dispersion strongly depends on release location.

The mean squared particle-pair distance is effective in

describing the evolution of such clouds (Sawford 2001;

Salazar and Collins 2009), which is defined here for each

direction

d2
i 5 f(X

i
2X 0

i )
2g , (23)

where (Xi 2X 0
i )

2 is the squared distance along i of two

particles, one located atXi(t) and the other atX 0
i (t). Our

results reveal three distinct dispersion regimes: for small

times (say, t � Tr, see discussion below), d2
i rapidly in-

creases; for intermediate times (t ; Tr), d
2
i increases ir-

regularly at different, sometimes negative, rates; finally,

for long times (t� Tr) d
2
i is a linear function of t (Figs. 9

and 10).

1) DISPERSION FOR SHORT TIMES

In our study, we do not resolve the TKE dissipation

range, so that the inertial subrange extends to arbitrarily

large f, which can be interpreted as an infinite Reynolds

FIG. 8. Particle locations after the release of point sources at 12 locations after (a),(c) tu*/h5 0:05 (t 5 100 s) and

(b),(d) tu*/h5 0:11 (t 5 400 s) (a),(b) in 3D and (c),(d) projected into a plane orthogonal to the x direction.
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number limit. Therefore, the initial dispersion is isotropic

and independent of the initial separation distance of par-

ticles (Richardson 1926; Batchelor 1950), and is expected

to follow the Richardson–Obukhov law in the inertial

subrange (Sawford 2001; Salazar and Collins 2009)

d2
i 5

G

3
«t3, (24)

where G is the nondimensional Richardson constant,

which is twice the Lagrangian velocity structure function

FIG. 9. Evolution of normalized mean squared particle-pair distance d2
i initially located at y/h5 1:6, coinciding with downwelling

locations (cf. Fig. 1): S (thick black line), L (gray line), and LB (thin solid black line) cases. For d3, the dashed line shows the expected value

for vertically well-mixed particles. Solutions of d2 and d1 converge to the theoretical asymptotic limits for long times (dashed line) and

short times (dotted line).
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constant, often referred to as the Kolmogorov constant

(Pope 2008). Consistent with the stochastic model (11),

we take G5 2C0 [see above for assumptions and dis-

cussions in Pope (2008)].

The dispersion law, (24), is overall consistent with our

simulations (Figs. 9 and 10). Deviations from (24) are

partially due to inhomogeneous turbulence, as in par-

ticular « increases toward the boundaries (Fig. 11).

Consistent with (24), the initial dispersion strongly depends

on the initial value of «(x, y, z) at the particle release

locations, which is not only enhanced at the boundaries

but also greater in up- and downwelling regions because

« is advected from the boundaries into the interior by

Langmuir cells. Relatively small « are thus found in

Langmuir cell vortex centers (cf. with Fig. 11). TKE

input by BWs enhance « by more than one order of

magnitude (Fig. 11) and, consequently, controls initial

dispersion rates close to the surface, which also increase

FIG. 10. Evolution of normalized mean squared particle-pair distance d2
i initially located at four different crosswind locations and at

middepth z/h520:5 (cf. Fig. 1): S (thick black line), L (gray line), and LB (thin solid black line) cases. For d3, the dashed line shows the

expected value for vertically well-mixed particles. Solutions of d2 and d1 converge to the theoretical asymptotic limits for long times

(dashed line) and short times (dotted line).
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by an order of magnitude in the presence of BWs. Fur-

thermore, our results suggests that short-term dispersion

rates are locally substantially enhanced under surface

convergence regions because downwelling BW TKE is

advected to greater depth.

2) DISPERSION FOR INTERMEDIATE TIMES

The inertial subrange regime transitions around tu*/h5
0.01–0.1 to the energy-containing regime for intermediate

times before d2
i converges to the long time regime at

about tu*/h 5 1–10. One striking feature of the dis-

persion at intermediate scales is that d2
i increases at

varying rates andmay even decrease. In particular with

LT, this regime is characterized by rapid turbulent

transport by larger-scale turbulent structures without

necessarily mixing and dispersing particle clouds. For

nonisotropic eddies with larger extent in the hori-

zontal than the vertical direction, particle clouds are

stretched in the horizontal, so that d2
3 is relatively small

and d2
1 and d2

2 are relatively large, whereas clouds are

squeezed in up- and downwelling regions, so that d2
3 is

relatively large and d2
1 and d2

2 are relatively small.

The time for particles to move from a squeezing to a

stretching region is characterized by the coherent

structure time scale Tc from section 3c(4). For example,

for coherent transport, a peak in d2
3 (particles are located

mainly in down- or upwelling regions) is expected to

follow a local minimum when particles are transported

closer to the boundaries after 0:25Tcu*/h’ 0:7, which

is consistent with our results (gray lines in Figs. 9

and 10).

Consistent with the previous discussions of Ti and Tr,

the details of the transition timing between different

regimes depend on the particular wave case and the

direction i. For example, particles homogenize vertically

faster (d2
3 approaches a constant) without LT, which is

anticipated based on our Tr estimates (recall Tru*/h 5
0.63 and 1.31 without and with LT, respectively). Simi-

larly, the convergence of d2
2 to the long time regime

occurs faster for the S case but d2
1 converges more slowly

FIG. 11. Instantaneous snapshots of normalized « cross sections where particles have been

released initially; see Fig. 1.
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than the cases with LT, which is qualitatively consistent

with T1 and T2 discussed in section 3c(3).

3) DISPERSION FOR LONG TIMES

After long times, the dispersion behavior is governed

statistically by the long time limit of single-particle dis-

persion originally described by Taylor (1922). In the

vertical direction, particle distributions simply homogenize

and (d3/h)
2 5 1/6 (Figs. 9 and 10), while in the horizontal

directions with i 5 1, 2, one expects Ai 5 (1/4)d(d2
i )/dt

(note there is a factor-of-2 difference between single-

particle and particle-pair diffusion), so that d2
i 5 4Ait.

These predictions agree well with our simulation results

(Figs. 9 and 10) and interpretations of these results have

been discussed in detail in section 3c(5).

4. Conclusions

Based on a large-eddy simulation (LES) model coupled

to aLagrangian stochasticmodel (LSM),wehave conducted

a Lagrangian investigation of wave-driven turbulence in

the ocean surface boundary layer (OSBL). Coherent roll

vortices due towave–current interactions, calledLangmuir

turbulence (LT), are captured by the Craik–Leibovich

wave forcing that generates LT through the CL2 mecha-

nism. Breaking surface gravity waves (BWs) are a source

of near-surface turbulent kinetic energy (TKE) and are

modeled by a surface TKE flux, which is constrained by

wind energy input to surface waves. We model particle

motions that are not resolved by the LES, that is, subgrid-

scale (SGS) motions, through the LSM, which is by design

energetically consistent with the LES SGS model.

Lagrangian autocorrelations of velocities reveal unique

differences between shear-driven and Langmuir turbu-

lence. For a case with LT, a turbulent relaxation time

scale estimated for vertical velocities is about twice as

large as for the case without LT, revealing that La-

grangian time scales cannot be simply scaled by only the

traditional parameters of water friction velocity u* and

depth h. In addition, with LT, autocorrelations reveal

oscillations because of persistent coherent features,

whose period was determined objectively and identi-

fied as a coherent structure time scale. The integral of

autocorrelations over all time lags determines turbu-

lent diffusion coefficients for times much larger than

the relaxation times. We find that LT substantially en-

hances the crosswind dispersion because of coherent roll

vortices. However, LT significantly reduces the along-

wind dispersion because LT decreases the vertical shear in

the along-wind mean flow. In both cases, horizontal dis-

persion is strongly anisotropic with greater dispersion in

the along-wind than crosswind direction. This anisotropy

is enhanced without LT, so that without LT, material

disperses qualitatively along a line in the wind direction

(i.e., elliptical dispersion with much greater major than

minor axis), whereas dispersion is more radially sym-

metric with LT (i.e., minor and major axes of the dis-

persion ellipse are much closer).

The analysis of Lagrangian frequency velocity spectra

reveals pronounced spectral peaks in the presence of LT

that are associated with energetic coherent motion and

occur at frequencies consistent with the Lagrangian

coherent structure time scale. In comparison, spectra are

relatively flat at low frequencies without LT. With and

without waves, the high-frequency spectral tail is con-

sistent with expectations for the inertial subrange. Fur-

thermore, our results indicate that BWs substantially

increase spectral levels at high frequencies.

Consistently, over short times, particle-pair dispersion

results agree with the Richardson–Obukhov law for the

inertial subrange, and dispersion is significantly en-

hanced because of BWs near the surface. Dispersion

over short time periods is also enhanced close to the

surface and bottom boundaries where local TKE dissi-

pation rates are relatively large. With LT, energetic

turbulence at the boundaries is advected into the in-

terior by relatively strong down- and upwelling flows

due to LT. This increases the dispersion in down- and

upwelling regions. On the other hand, in vortex centers

TKE dissipation rates are relatively low and the initial

dispersion is weakest there. Our results also suggest that

short-term dispersion rates with BWs can be locally

substantially enhanced under surface convergence re-

gions because high TKE from BW is advected to greater

depth. Over longer times, particle-pair dispersion results

are consistent with the horizontal turbulent diffusion

coefficients obtained from the autocorrelations (Taylor

FIG. A1. Horizontal cross section of normalized vertical velocity

at middepth (a) without and (b) with LT for the extended hori-

zontal domain. Compare to smaller-domain-size results shown in

Fig. 1b.
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dispersion), confirming the strongly anisotropic disper-

sion without LT and enhanced dispersion rates in the

crosswind direction with LT. Our results suggest that the

Lagrangian analysis framework is effective and physi-

cally intuitive to characterize OSBL turbulence.
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APPENDIX

Horizontal Domain-Size Sensitivity Experiments

To show that our major findings and conclusions are

not sensitive to the particular domain size, we extend the

horizontal domain size to Lx 5Ly 5 6h5 96m, which is

identical to the domain size from Kukulka et al. (2011,

2012). The number of grid points is 128 3 128 3 100 in

the x, y, and z directions, respectively. Our flow results

(Figs. A1 and A2) are very similar to the higher-

resolution grid with 256 3 256 3 100 grid points from

Kukulka et al. (2012). This change in domain size

forces a change in Langmuir cell width, so that the ex-

tended domain includes two pairs of counterrotating

vortices (Fig. A1), rather than the single pair found for

the smaller domain (Fig. 1).

In spite of the substantial change in the number of

Langmuir cells and cell width, the mean flow and ve-

locity variance profiles still agree very well qualitatively

and reasonably well quantitatively (Fig. A2). These re-

sults imply that the time scale associated with Langmuir

turbulence must be smaller for the extended domain

FIG. A2. Normalized (a),(e) along-wind velocity and (b)–(d),(f)–(h) velocity variance profiles (top) without and (bottom) with Langmuir

turbulence. Default study domain size (black) and enlarged domain (gray).
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because velocity variances are similar but the Langmuir

cell size is smaller. Consistently, normalized autocorre-

lation functions oscillate faster for the extended-domain

case (Fig. A3). Qualitatively, however, ri for the extended

domain captures all physics features discussed in the main

text for the smaller domain. This sensitivity study indicates

that the details of numeric simulation values depend on the

domain size, but that the conclusions and major findings

with regard to the principal differences between Langmuir

turbulence and shear-driven turbulence are independent

of the specific domain size.
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