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The momentum and energy exchanges at the ocean surface are central factors determining the
sea state, weather patterns, and climate. To investigate the effects of surface waves on the air-
sea energy exchanges, we analyze high-resolution laboratory measurements of airflow velocity
acquired abovewind-generated surfacewaves using the particle image velocimetry technique. The
velocity fields were further decomposed into the mean, wave-coherent, and turbulent components,
and the corresponding energy budgets were explored in detail. We specifically focused on the
terms of the budget equations that represent turbulence production, wave production, and wave-
turbulence interactions. Over wind waves, the turbulent kinetic energy (TKE) production is
positive at all heights with a sharp peak near the interface, indicating the transfer of energy
from the mean shear to the turbulence. Away from the surface, however, the TKE production
approaches zero. Similarly, the wave kinetic energy (WKE) production is positive in the lower
portion of the wave boundary layer (WBL), representing the transfer of energy from the mean
flow to the wave-coherent field. In the upper part of the WBL, WKE production becomes slightly
negative, wherein the energy is transferred from the wave perturbation to the mean flow. The
viscous and Stokes sublayer heights emerge as natural vertical scales for the TKE and WKE
production terms, respectively. The interactions between the wave and turbulence perturbations
show an energy transfer from the wave to the turbulence in the bulk of the WBL and from the
turbulence to the wave in a thin layer near the interface.
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1. Introduction
The exchanges of energy between the atmosphere and the ocean are strongly contingent on

small-scale dynamics at the air-sea interface. In particular, short gravity and gravity-capillary
waves are thought to support much of the air-sea momentum flux (Komen et al. 1996; Janssen
2004), and as a consequence, the energy dissipation associated with micro-breaking and parasitic
capillary waves has been the topic of intensive theoretical, experimental, and numerical research
in the past few decades (e.g., Zhang 1995, 2002; Fedorov & Melville 1998; Fedorov et al. 1998;
Tsai & Hung 2010; Iafrati 2011; Caulliez 2013; Iafrati et al. 2013; Tsai et al. 2015; Deike et al.
2016). For example, recently, Melville & Fedorov (2015) showed that the dissipative effects of
parasitic capillaries might be sufficient to balance the wind input and thus the growth of short
gravity–capillary waves. Concurrently, the numerical simulations of Deike et al. (2015) showed
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that the dissipation rates from breaking gravity-capillary waves are consistent with the inertial
scaling of larger-scale breaking (Drazen et al. 2008).
The air-side kinematic equivalent to wave breaking (or micro breaking) is the separation of

airflow, which occurs downwind of wave crests. Therefore, on the air-side of the ocean surface,
the energy budgets are expected to be modulated by the presence of short, young waves and the
accompanying airflow separation and generation of turbulence within the wave boundary layer
(WBL) (e.g., Hara & Sullivan 2015; Sullivan et al. 2018; Druzhinin et al. 2019; Husain et al.
2019). The WBL is generally defined as the near-surface region within which the wavy interface
has an effect on the flow. It is typically taken as : ?I < 1, where : ? is the wavenumber of the
peak waves and I is the distance from the interface. Although an extensive body of literature has
examined air-sea momentum fluxes over propagating water waves in the last several decades (e.g.,
Hsu et al. 1981; Hsu & Hsu 1983; Smedman et al. 1994, 1999, 2009; Donelan et al. 1997, 2005,
2006; Grachev & Fairall 2001; Sullivan & McWilliams 2002; Kihara et al. 2007; Yang & Shen
2009, 2010; Grare et al. 2013; Druzhinin et al. 2016a,b; Yousefi et al. 2020a), comparatively
less work has been performed to investigate kinetic energy balances above the air-sea interface
and, in particular, to explore the modulations of turbulent and wave energy budgets by surface
waves (e.g., Rutgersson & Sullivan 2005; Högström et al. 2009; Yang & Shen 2010, 2017; Hara
& Sullivan 2015).
The kinetic energy conservation equations for turbulent shear flows over water waves were first

derived by Reynolds & Hussain (1972), who employed the linear triple decomposition technique
outlined in Hussain & Reynolds (1970) whereby flow variables are decomposed into the mean,
wave, and turbulent components. In the airflow above surface waves, the turbulent kinetic energy
(TKE) varies substantially with wave age (e.g., Shen et al. 2003; Rutgersson & Sullivan 2005;
Sullivan et al. 2008, 2014). The TKE also appears to be wave-phase dependent (e.g., Shen et al.
2003; Hara & Sullivan 2015; Husain et al. 2019), with a peak located downwind of wave crests.
The peak TKE moves upstream and weakens as the wave age increases (see Shen et al. 2003;
Buckley&Veron 2019). Shen et al. (2003) attributed such a laminarization effect to theweakening
or elimination of the airflow separation, which is believed to be a mechanism for TKE production
past progressive and stationary wave crests (see, for example, Hudson et al. 1996; Cherukat et al.
1998; Calhoun & Street 2001).
In the TKE budget, the production and dissipation balance everywhere except close to the

surface where the production approaches zero, and thus, the dissipation is balanced primarily by
the viscous diffusion (or transport) term (Rutgersson & Sullivan 2005; Yang & Shen 2010; Hara
& Sullivan 2015). This is reasonably consistent with the field measurements of Högström et al.
(2009), although field measurements do not have sufficient resolution to resolve the viscous layer.
Close to the air-water interface, the turbulent and pressure transport terms also become significant.
Among different terms in the TKE budget, the effects of surface waves on TKE production have
received considerable attention (e.g., Hsu et al. 1981; Rutgersson & Sullivan 2005; Högström
et al. 2009; Shaikh & Siddiqui 2010, 2011; Hara & Sullivan 2015). The mean TKE production
over moving water waves is maximum in the vicinity of the surface and exponentially decreases
farther above the surface (e.g., Rutgersson & Sullivan 2005; Liu et al. 2009; Yang & Shen 2010).
This is in general agreement with the TKE production in classical turbulent shear flows over flat
surfaces (see, for example, Antonia et al. 1992). The same trend has also been observed in the
open ocean for both slow- and fast-moving wave regimes (e.g., Smedman et al. 1999; Högström
et al. 2009). Furthermore, perhaps not surprisingly, the TKE production over surface waves is
wave-phase dependent with high-intensity production on the leeward side of waves (e.g., Yang
& Shen 2010; Buckley & Veron 2019); this was also observed over stationary wave-like surfaces
(e.g., Hudson et al. 1996; Calhoun & Street 2001). The intense region of TKE production begins
approximately at wave crests and extends further downstream to the leeward side of waves. Yang
& Shen (2010) indicated that this extension of the intense TKE production region is mainly due to
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a layer of strong vertical shear of the horizontal velocity. Equivalently, Buckley & Veron (2019)
attributed it to the detached vorticity layer away from the surface.
In order to obtain further insight into the transport and dissipation of the kinetic energy over the

ocean surfacewaves, the wave kinetic energy (WKE) needs to be investigated separately. This kind
of study, however, remains extremely restricted due to, in part, the necessity of high-resolution
data close to the water interface. In theWKE budget, production, dissipation, andwave-turbulence
interaction terms are generally smaller than their counterparts in the TKE budget (e.g., Rutgersson
& Sullivan 2005; Hara & Sullivan 2015) but non-negligible. The WKE production is confined
to the boundary layer near the interface (Hsu et al. 1981; Rutgersson & Sullivan 2005; Hara &
Sullivan 2015). The wave-turbulence interaction, i.e., the exchanges of energy between the wave-
induced perturbation and the background turbulence, is challenging to measure directly and thus
often ignored, at least in experimental works (e.g., Cheung & Street 1988). The computational
study of Rutgersson & Sullivan (2005) suggests that the energy shifts from the turbulent field to
the wave perturbation, i.e., from smaller to larger scales. This inverse cascade is in contrast with
the measurements of Hsu et al. (1981) and the analysis of Liu & Merkine (1976) and Makin &
Kudryavtsev (1999), who found that energy is directed from the wave perturbation to the turbulent
field. On the other hand, Hara & Sullivan (2015) explained that some of the WKE are transferred
to the TKE close to the surface, while a fraction of the TKE is converted back to the WKE farther
above the surface. Overall, evidence suggests that wave-turbulence interactions are sensitive to the
wave age (Rutgersson & Sullivan 2005), but detailed measurements and additional computational
studies are still needed.
Compared to the relatively limited literature investigating kinetic energy budgets over progres-

sive surface waves, there exist a number of experimental and numerical studies over wavy walls
(e.g., Hudson et al. 1996; De Angelis et al. 1997; Cherukat et al. 1998; Henn & Sykes 1999;
Günther & Von Rohr 2003; Kruse et al. 2003, 2006; Hamed et al. 2015). There are, however,
substantial disparities between kinetic energy budgets over moving and stationary wavy surfaces
(see Belcher & Hunt 1998; Sullivan & McWilliams 2010). While the analysis of the momentum
budgets for surface waves has shown that there exists a strong coupling among the mean, wave-
coherent, and turbulent fields, the complex interaction among these three fields, i.e., the energy
exchanges between mean, wave, and turbulent kinetic energies, is better understood through the
corresponding energy budgets. However, investigating the exchanges of energy across the air-sea
interface has been impeded partly due to difficulties in making reliable measurements over the
ocean and complexities in the flow structure over travelling surface waves. Thus, further works
are required to fully understand the complex mechanisms of energy exchanges over propagating
surface water waves.
In the current study,we utilize the data set ofBuckley&Veron (2017) to investigate, in detail, the

mean, wave-induced, and turbulent kinetic energy budgets over wind-generated surface waves.
This paper builds upon a recent analysis of the same data set in which we explicitly focused
on the air-water momentum flux (Yousefi et al. 2020a). The rest of the paper is organized as
follows. A brief description of the experimental procedure is summarized in § 2. The structure of
turbulent and wave-coherent flow energetics is presented in § 3. In § 4, the experimental results
are offered with a focus on both wave-phase coherent and ensemble-averaged fields of turbulence
production, wave production, and wave-turbulence interaction terms. The balance of the kinetic
energy budgets for the turbulent and wave-induced flows are detailed in § 5. Finally, a brief
conclusion is presented in § 6.

2. Experimental procedure
A complete description of the experimental setup is available in Buckley & Veron (2017) and

Yousefi (2020). In this section, to maintain brevity, we only briefly present the data set. The
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*10 D∗ 5? �?/*10 �?/D∗ Xa: ? XB: ? 0?: ? 0+? Z+0 '4F(m s−1) (m s−1) (Hz)

No Waves 0.89 0.029 − − − − − − − 0.07 −

2.25 0.075 3.3 0.21 6.27 0.088 0.054 0.07 8 0.31 349
5.08 0.168 2.5 0.12 3.69 0.023 0.035 0.13 56 0.63 822

Wind Waves 9.57 0.318 2.0 0.08 2.46 0.008 0.025 0.19 254 0.87 1,614
14.82 0.567 1.8 0.06 1.53 0.003 0.021 0.26 741 10.95 2,215
16.59 0.663 1.7 0.06 1.39 0.003 0.019 0.27 1,012 19.85 2,636

Table 1. Summary of experimental conditions. The friction velocity and 10 m wind speed were obtained
from the wind velocity profiles. The peak wave frequencies, 5? , were measured with single-point optical
wave gauges, and other parameters with subscript ?were derived from linear wave theory. The dimensionless
amplitude and roughness length were respectively estimated using 0+? = 0?D∗/a and Z+0 = Z0D∗/a, where
0? =

√
20A<B is the peak amplitude, 0A<B is the root-mean-square amplitude, and Z0 is the roughness

length. The viscous sublayer thickness is estimated as XaD∗/a = 10. The Stokes layer height was calculated
as XB = (2a /(: ?�?))1/2. Finally, '4F = �?/2a: ? is the wave Reynolds number.

data were obtained from a set of laboratory experiments in the wind-wave tank at the Air-Sea
Interaction Laboratory of the University of Delaware. Through a combination of high-resolution
particle image velocimetry (PIV) and laser-induced fluorescence (LIF) techniques, along-channel
two-dimensional velocity fields were acquired in the airflow above wind-generated waves. For the
analysis presented here, the experimental conditions span a range of 10 m equivalent wind speeds
ranging from 0.89 to 16.59 m s−1. The resulting wind and wave properties are reported in table 1.
The estimated roughness length indicates that the flow is expected to be smooth at our lowest wind
speed, fully rough for our highest two wind speeds, and transitional in between (Kitaigorodskii
& Donelan 1984; Donelan 1990, 1998). However, as noted in Donelan et al. (1993), laboratory
surface wind waves are substantially smoother than their field equivalents (see also Harris et al.
1996). Also, these laboratory experiments were performed at a fixed fetch, and thus, the wave
parameters in table 1 all vary simultaneously with increasing wind speed. This makes it difficult
to evaluate the dependency of the result on the wave age independently of the wave slope, for
example.
In order to examine thewavemotions close to the surface and below thewave crest, we introduce

a wave-following, orthogonal coordinate system (b1, b3) = (b, Z) that connects the conventional
Cartesian coordinates (G1, G3) = (G, I) to the instantaneous water surface:[

b

Z

]
=

[
G− 80=48 (:=G+i=)4−:=Z
I− 0=48 (:=G+i=)4−:=Z

]
, (2.1)

with summation on =, and where the instantaneous surface profile [(G) is expressed as a Fourier
series, i.e., [ (G) = 0=48 (:=G+i=) in which 0=, :=, and i= are the amplitude, wavenumber, and
phase of the =th mode, respectively. This orthogonal curvilinear coordinate system follows the
wave shape close to the water interface and tends toward a Cartesian coordinate system farther
away from the surface, as schematically illustrated in figure 1. Here, the constant Z–lines are wave-
following (pseudo-horizontal), and Z = 0 denotes the water surface. In this coordinate system, the
projected components of the airflow velocity vector are noted (*1,*3) = (*,,).
Ensemble averaging the velocity fields for a given instantaneous wave phase i yields the

corresponding wave-phase average 〈*8〉 (i, Z) (e.g., Melville 1983; Siddiqui & Loewen 2010;
Vollestad et al. 2019). Hence, an instantaneous velocity field can be decomposed into wave-phase
coherent and turbulent components:
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Figure 1. Schematic representation of coordinate transformation from (a) the Cartesian physical
domain (G1, G3) = (G, I) to (b) the decaying wave-following, orthogonal curvilinear coordinate system
(b1, b3) = (b, Z). Here, (*1,*3) = (*,,) are, respectively, the horizontal (along b–axis) and vertical (along
Z–axis) components of the velocity vector u in the orthogonal curvilinear coordinate system. The projected
velocities * and , are aligned with lines of constant Z and b, respectively. The Z coordinate follows the
wave shape close to the surface and tends toward a rectangular coordinate system farther away from the
surface. The line Z = 0 represents the water surface. The constant b–lines are orthogonal to the constant
Z–lines, and decay toward rectangular coordinates far away from the surface. The color denotes*1 in m s−1.

*8 (b, Z , C) = 〈*8〉 (i, Z) +* ′8 (b, Z , C) . (2.2)
By further separating the wave-phase coherent velocity into the sum of the mean and wave-
induced components, i.e. 〈*8〉 =*8 + *̃8 , the so-called triple decomposition of an instantaneous
velocity field can be obtained (Hussain & Reynolds 1970; Reynolds & Hussain 1972):

*8 (b, Z , C) =*8 (Z) +*̃8 (i, Z) +* ′8 (b, Z , C) , (2.3)
in which*8 are the mean velocities and *̃8 are the wave-induced velocities (with zero mean).
We wish to emphasize that, for the remainder of this paper, we use * and, , the components

of the velocity vector projected in the surface-following coordinate system. As such, direct
comparison with numerical results and field data, which are likely to be expressed in the Cartesian
coordinate system, needs to be performed with prudence. This is especially important near
the interface where the difference between the surface-following and Cartesian coordinates is
maximum. However, while the projected* may be locally different from the Cartesian horizontal
component D, ensemble-averaged quantities are less sensitive to the coordinate system. For
example, to first order in the wave slope,* ∼ D.

3. Kinetic energy in the turbulent and wave-coherent flows
Before analyzing the flow kinetic energies and their budgets, it is important to remember that

the PIV measurements are two-dimensional (the spanwise velocity component is not measured).
In addition, because of the finite spatial resolution of the PIV, some of the terms in the kinetic
energy equations (section 4) are beyond our measurements. The pressure is also not estimated
from the PIV data. Still, some simplifications are afforded by the nature of the flow. For example,
in a frame of reference where b1 is aligned with the mean flow, *1 is a function of b3 only,
and *2 = *3 = 0. Here, the wave and wind fields also propagate in the same direction. This
implies *̃2 = 0 and the wave-phase coherent flow properties are functions of b1 and b3 only,
〈 5 〉 = 〈 5 〉(b1, b3). Furthermore, when horizontally averaged, the gradients in the along-wind
direction that appear in the kinetic energy transport terms reduce to zero. Yet, the turbulent flow
above the wave surface is three-dimensional, and thus, we have no direct measurements of* ′2 or
measurements of gradients in the b2 spanwise direction. These will be approximated based on the
available measurements if and when needed.
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3.1. Wave-phase coherent flow conditions
3.1.1. Turbulent kinetic energy
Because of the absence of direct measurements of the turbulent flow in the transverse direction,
estimates of TKE rely on additional assumptions. Here, the TKE is estimated by approximating
the spanwise turbulent velocity as the average of the streamwise and vertical turbulent velocities,
i.e.,* ′2*

′
2 = (*

′
1*
′
1+*

′
3*
′
3)/2. This approach is supported by field measurements of, for example,

Smedman (1988) (see also Panofsky & Dutton 1984; Pahlow et al. 2001). Thus, we estimate that

4C =
1
2
* ′8*

′
8 =

3
4
(* ′1*

′
1 +*

′
3*
′
3). (3.1)

The first column of figure 2 shows the wave-phase coherent distributions of the normalized
TKE, 〈4C 〉/D2

∗, for different wind speeds. The distributions of TKE over surfacewindwaves exhibit
along-wave phase-locked variations, which result in along-wave spatial heterogeneity. The TKE
is enhanced in a region that starts just before wave crests and extends away from the surface
up to the wave troughs (i ∼ c). This pattern is relatively independent of wind speed, but the
location of the maximum TKE shifts upwind with wind speed and its magnitude increases. For
example, max 〈4C 〉/D2

∗ ≈ 7 is located at i ∼ 85◦ for U10 = 2.25 m s−1, while max 〈4C 〉/D2
∗ ≈ 14 is

located at i ∼ 55◦ for U10 = 16.59 m s−1. These regions of enhanced turbulence over the leeward
face of wave crests are mainly attributed to airflow separation events in which high shear layers
intermittently separate from wave crests and generate intense turbulence away from the surface.
The data suggest that this enhanced turbulent energy is not advected far away downstream by
the separated flow but rather restricted to the waves’ downwind face. This is in contrast with the
numerical results of Shen et al. (2003), who estimated that the intense TKE region extends up
to the windward side of the next wave (see also Husain et al. 2019). In the present experiments,
the TKE was also observed to be intensified downwind of wave crests of the lowest wind speed
of U10 = 2.25 m s−1, although only a small portion of waves experienced separation in that wind
speed. A similar region of enhanced TKE is also observed downstream of hills and terrains and is
generally attributed to the airflow separation (e.g., Breuer et al. 2009; Palmer et al. 2012; Sauer
et al. 2016).

3.1.2. Wave kinetic energy
Assuming that the wave field is two-dimensional and co-linear with the wind direction (*̃2 = 0),
the WKE can be readily estimated from the available data as

4F =
1
2
*̃8*̃8 =

1
2
(*̃1*̃1 +*̃3*̃3). (3.2)

The wave-phase coherent distributions of the normalized WKE, 〈4F 〉/D2
∗, are next shown in

figure 2(f-j). We acknowledge that normalizations involving the wave slope and the wave phase
speed (wave age) would likely yield a more robust scaling of the WKE, but we wish here to
compare WKE directly with TKE. The distributions of (normalized) WKE present an along-
wave asymmetry pattern whereby it is intense and positive on the upwind side of waves and
comparatively less intense and positive on the downwind side. The peak WKE is located on the
upwind side of waves close to the surface and increases with wind speed. The maximum of WKE
is 〈4F 〉/D2

∗ = 1.04 for the lowest wind speed of 2.25m s−1 and 〈4F 〉/D2
∗ = 6.93 for the highest wind

speed of 16.59 m s−1. We also note that the regions of high-level WKE are intertwined with the
areas of low (almost-zero) energy just past the wave crests and downwind of wave troughs. These
low energy regions coincide with the locations of negative wave-induced stress (see Yousefi et al.
2020a).
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Figure 2.Wave-phase coherent distributions of the normalized (a-e) TKE, 〈4C 〉/D2
∗ , and (f-j)WKE, 〈4F 〉/D2

∗ ,
where 4C = 3(* ′1*

′
1 +*

′
3*
′
3)/4 and 4F = (*̃1*̃1 +*̃3*̃3)/2, for all experimental conditions. The wave-phase

coherent fields are plotted above the mean water surface as a function of the dimensionless distance : ?I.
The 10 m wind speeds corresponding to each experimental condition are indicated on the left.

3.2. Ensemble mean flow conditions
The mean profiles of TKE, 4̄C , are plotted as a function of dimensionless height : ?Z in figure 3(a)
for different wind-wave cases. The profiles are all normalized by the friction velocity. For
comparison purposes, the computational results of Rutgersson & Sullivan (2005) for idealized
water waves at low Reynolds number with 0: = 0.1 and �/D∗ = 7.8 are also added to this
figure. However, the results of Rutgersson & Sullivan (2005) were averaged horizontally in a
fixed coordinate system and thus did not extend below the wave crests. The TKE profiles are
reasonably consistent with those observed in classical turbulent flow over a smooth flat plate (see,
for example, Hussain & Reynolds 1975; Kim et al. 1987; Kitoh et al. 2005). As expected, the
TKE is damped within the viscous sublayer near the interface and appears to collapse above the
WBL for : ?Z > 0.5. For example, far above the surface, the TKE tends toward a constant value of
slightly below ∼ 5.45, which is generally reported for fully rough atmospheric turbulent boundary
layers (e.g., Panofsky & Dutton 1984; Smedman 1988; Pahlow et al. 2001).
In these experiments over wind-waves, the maximum normalized TKE for the lowest wind

speed case (U10 = 2.25 m s−1) is roughly 5.5, which is comparable with the peak TKE of about
5 found in classical turbulent boundary layers over flat surfaces (see Kreplin & Eckelmann 1979;
El Telbany & Reynolds 1982; Kim et al. 1987). However, in higher winds with steeper surface
waves, the peak TKE is comparatively enhanced and reaches approximately 8 for the moderate
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Figure 3. Vertical profiles of themean (a) turbulent kinetic energy 4̄C/D2
∗ , and (b) wave kinetic energy 4̄F/D2

∗
for different experimental conditions. The turbulent and wave kinetic energies are normalized by the friction
velocity and plotted as a function of dimensionless height : ?Z . Solid grey lines denote computational results
of Rutgersson & Sullivan (2005) for idealized water waves with �/D∗ = 7.8 and 0: = 0.1 obtained using
Cartesian velocities (not a direct comparison with our measurements). The arrow at the top of panel (a)
show canonical values of TKE for atmospheric turbulent boundary layers with neutral stability (Panofsky &
Dutton 1984; Pahlow et al. 2001).

to high wind speed cases (U10 = 5.08-16.59 m s−1). This lack of collapse with traditional friction
velocity scaling indicates that surfacewaves do indeedmodify the TKE in the near-surface airflow.
The profiles of the normalized mean WKE, 4̄F/D2

∗, as a function of the dimensionless height
from the surface are also shown in figure 3(b). As a general trend, the WKE is null at the interface
and increases toward a peak value close to the surface, at approximately : ?Z = 0.1, and then
decrease to zero farther above the surface. Therefore, as expected, 4̄F is largest within the WBL
and vanishes above it.

4. Turbulence and wave kinetic energy budgets
This section examines various terms that contribute to the kinetic energies in the mean, wave-

induced, and turbulent flows.

4.1. Wave-phase coherent flow
The kinetic energy of the wave-phase coherent flow, denoted as 4i = 〈*8〉〈*8〉/2, is obtained by
multiplying the wave-phase coherent momentum equations by the wave-phase coherent velocities
〈*8〉 (Yousefi & Veron 2020):

D4i
DC

=
1
ℎ

m

mb 9

(
− ℎ

ℎ ( 9)

〈?〉
d
〈* 9〉 −

ℎ

ℎ ( 9)
〈*8〉*̃8*̃ 9 −

ℎ

ℎ ( 9)
〈*8〉〈* ′8* ′9〉 +

ℎ

ℎ ( 9)
2a〈(8 9〉〈*8〉

)
−
*8*̃ 9

ℎ ( 9)

m*8

mb 9
−*̃8*̃ 9 (̄8 9 +*̃8*̃ 9 〈(8 9〉︸      ︷︷      ︸

−ΠF

+ 〈* ′8* ′9〉〈(8 9〉︸         ︷︷         ︸
−ΠC

−2a〈(8 9〉〈(8 9〉︸         ︷︷         ︸
εφ

,
(4.1)

in which
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(8 9 =
1
2

[
1
ℎ ( 9)

m*8

mb 9
+ 1
ℎ (8)

m* 9

mb8
−

(
*(8) ^8 9 +*( 9) ^ 98

)
+2*<^ (8)<X8 9

]
(4.2)

is the strain rate tensor. Also, D/DC is the mean material derivative, b 9 are the orthogonal
coordinate axes, d is the density, and a is the kinematic viscosity. The orthogonal curvilinear
coordinate system introduces scale factors ℎ8 , with ℎ = ℎ1ℎ2ℎ3, and curvature coefficients ^8 9 .
The scale factors and curvature coefficients associated with the curvilinear coordinate system can
be substantially simplified assuming linear surface waves. Here, we use the notation introduced
in Yousefi & Veron (2020) in which indices enclosed within parentheses are excluded from the
summation.
In equation (4.1) above, ΠC and ΠF represent the transfer of energy between the wave-

phase coherent shear and the turbulence and wave-induced motion, respectively. The wave-phase
coherent shear 〈(8 9〉 can be further decomposed to extract the contributions of the mean shear
(̄8 9 and that of the wave-coherent shear (̃8 9 :

ΠC = −〈* ′8* ′9〉〈(8 9〉 = −〈* ′8* ′9〉(̄8 9 − 〈* ′8* ′9〉(̃8 9 = %C +,C , (4.3)

ΠF = −*̃8*̃ 9 〈(8 9〉 = −*̃8*̃ 9 (̄8 9 −*̃8*̃ 9 (̃8 9 = %F +,F . (4.4)

4.1.1. Turbulence production
The wave-phase coherent turbulence production ΠC = −〈* ′8* ′9〉〈(8 9〉 represents energy exchanges
between wave-phase coherent flow and turbulent fields. An exact estimate of ΠC requires all
six independent components of the turbulent stress and velocity gradient tensors. In the current
experiments, however, only the following three terms can be directly measured:

ΠC ,11 = −〈* ′1*
′
1〉〈(11〉 = −〈* ′1*

′
1〉

1
ℎ1

m〈*1〉
mb1

− 〈* ′1*
′
1〉〈*3〉^13, (4.5)

ΠC ,33 = −〈* ′3*
′
3〉〈(33〉 = −〈* ′3*

′
3〉

1
ℎ3

m〈*3〉
mb3

− 〈* ′3*
′
3〉〈*1〉^31, (4.6)

ΠC ,13 = −2〈* ′1*
′
3〉〈(13〉 = −〈* ′1*

′
3〉
ℎ1

ℎ3

m

mb3

(
〈*1〉
ℎ1

)
− 〈* ′1*

′
3〉
ℎ3

ℎ1

m

mb1

(
〈*3〉
ℎ3

)
. (4.7)

Here, ΠC ,11 and ΠC ,33 represent the transfer of energy between the wave-phase coherent shear
and the diagonal elements of the turbulent stress tensor (i.e., turbulent velocity variances), while
ΠC ,13 represents the energy transfer to off-diagonal elements of the turbulent stress tensor (i.e.,
turbulent velocity covariance). The turbulence production components not directly measured,
namely ΠC ,12, ΠC ,22, and ΠC ,23, need to be appropriately estimated to compute the total turbulence
production ΠC accurately. By assuming a boundary-layer type scaling in which the vertical length
scale of the motion is small compared to the horizontal length scale (see Yousefi & Veron 2020),
the turbulence production can be expressed by

ΠC ≈ −〈* ′9* ′1〉
1
ℎ ( 9)

m〈*1〉
mb 9

− 〈* ′9* ′2〉
1
ℎ ( 9)

m〈*2〉
mb 9

. (4.8)

Further, since the wave-phase coherent flow field is two-dimensional, 〈*8〉 = 〈*8〉(b1, b3) and
〈*2〉 = 0, the turbulence production can be simplified to,

ΠC ≈ −〈* ′1*
′
1〉

1
ℎ1

m〈*1〉
mb1

− 〈* ′1*
′
3〉

1
ℎ3

m〈*1〉
mb3

. (4.9)
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The wave-phase coherent distributions of the turbulence production (as defined in equation 4.9)
are presented on linear and logarithmic vertical scales in figure 4 for different wind speeds varying
from 2.25 to 16.59 m s−1. Here, ΠC is normalized by D3

∗: ? (as in Calhoun & Street 2001 and Yang
& Shen 2010, for example) and plotted over wave-phase coherent surface profiles. Upwind of
wave crests, the normalized ΠC presents a thin layer of intense turbulence production that remains
close to the surface (figure 4a-e). A larger region of enhanced turbulence production is also found
at wave crests and downstream of waves up to the middle of the leeward side of waves. Beyond
the shear-driven turbulence, these large values of turbulence production downwind of waves are
attributed to the detachment of high shear layers from the surface due to airflow separation events.
The airflow and consequently the high shear layers are more frequently separated from the surface
as wind speed increases leading to producing (more) intense turbulence farther downwind of wave
crests. In this study, the fraction of waves that are experiencing airflow separation is more than
15% for the case with a wind speed of 5.08 m s−1 up to approximately 90% for the highest wind
speed of 16.59 m s−1 (see Buckley et al. 2020). Also, the regions of intense turbulence production
are closely connected to the regions of enhanced TKE (see figure 2a-e). Away from the surface,ΠC
is slightly negative upwind of wave crests. This negative region is located where, for these young
waves, the mean winds accelerate on the windward side of the wave shape, thereby producing a
favorable pressure gradient.
The turbulence production results from the interaction between the turbulent stress and wave-

phase coherent shear. The turbulent stress is damped near the surface within the viscous sublayer
and increases with height. Above the WBL, the turbulent stress supports most of the total stress.
In contrast, the wave-phase coherent shear is the largest near the interface in the viscous sublayer
and vanishes away from the interface. These competing trends lead to a relatively thin region of
large turbulence production near the top of the viscous layer (indicated in figure 4(f-j) with solid
grey lines). For information, we have also plotted the height of the critical layer (grey dashed
lines). The latter is located very near the surface in these strongly forced conditions.
The measured terms of the wave-phase coherent turbulence production ΠC ,11, ΠC ,33, and ΠC ,13

are next presented in figure 5. Again, all terms are scaled using D3
∗: ? . The two dominant terms are

ΠC ,11 and ΠC ,13. Together, they contribute on average more than 90% of ΠC . Here, ΠC ,13 is always
positive (see figure 5f-j), indicating that the energy is systematically transferred from the wave-
phase coherent flow to the turbulent stress. The along-wave variability indicates a leeward face
enhancement and a minimum at wave crests. ΠC ,11 (figure 5a-e) presents an along-wave pattern
that is in sharp contrast with ΠC ,13, so that they generally compete against each other. Indeed,
ΠC ,11 is negative on the windward and most of the leeward side of waves. It is positive above wave
crests and slightly downwind, with its maximum located almost at the wave crest. Interestingly,
when averaged along the waves (for all wave phases), these negative and positive peaks cancel
out and ΠC ,11 ≈ 0. This reveals the value of the wave-phase averages, as the importance of ΠC ,11
would be missed otherwise. Finally, ΠC ,33 (figure 5k-o) is smaller than ΠC ,11 and ΠC ,13 by one to
two orders of magnitude. Thus, our measurements confirm that the boundary layer scaling, which
resulted in the approximations that led to equation (4.9), is justified. Furthermore, we note that
our dataset is sufficiently comprehensive to reach convergence even for these high-order small
terms of the kinetic energy balance equations.
Overall, the along-wave distributions of the total turbulence production are determined by a

close competition between ΠC ,11 and ΠC ,13. Close to the surface, ΠC ,13 is larger than ΠC ,11 over
almost the entire windward and leeward side of waves leading to a positive turbulence production
in these regions for all experimental cases. Away from the surface and above the upwind face of
waves, however, ΠC ,11 and ΠC ,13 compete against each other in a more complex way as a function
of wind speed. The values of ΠC ,13 start larger than those of ΠC ,11 upwind of waves farther above
the surface for the lowest wind speed of 2.25 m s−1, but ΠC ,11 quickly takes over ΠC ,13 with
increasing wind speed resulting in ΠC < 0 over the upwind side of waves (i.e., ΠC ,11 dominates)
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Figure 4. Wave-phase coherent distributions of turbulence production, ΠC (defined in equation 4.9),
normalized by D3

∗: ? plotted on (a-e) linear and (f-j) logarithmic vertical scales. The linear and logarithmic
wave-phase coherent fields are plotted above the mean water surface as a function of nondimensional
heights : ?I and : ?Z , respectively. The heights of the viscous sublayer and critical layer are denoted
by grey horizontal solid and dashed lines, respectively. The 10 m wind speeds corresponding to each
experimental condition are indicated on the left. The existence of a thin layer of near-zero production close
to the surface within the viscous sublayer can be observed even for high-wind-speed conditions. Intense
turbulence production takes place just above the viscous layer.

for moderate-high wind speed cases of 5.08 to 16.59 m s−1. These negative values result from
m〈*1〉/mb1 > 0 as the airflow accelerates, passing over the windward face of these young waves.
For these wind-generated surface waves, the distribution of turbulence production is similar to

that observed in turbulent flows over stationary wavy surfaces (e.g., Hudson et al. 1996; Calhoun
& Street 2001) and past large-scale hills (e.g., Sauer et al. 2016). Over a solid wavy surface, for
instance, Hudson et al. (1996) observed large values of the production on the downwind side
of the crest. However, while ΠC ,13 (or more accurately, the first term of ΠC ,13) is the only term
required (the rest are negligible) for an accurate estimate of the total turbulence production over
flat surfaces (see, for example, Antonia et al. 1992; Kitoh et al. 2005; Abe & Antonia 2016),
ΠC ,11 is also needed to accurately represent the magnitudes and locations of maxima and minima
in ΠC over propagating surface waves, especially close to the surface.
For moderate-high wind speed cases, the along-wave distributions of the turbulence production

present a pattern different from those observed by, for example, Shaikh & Siddiqui (2011) and
Buckley & Veron (2019), in which they found negative turbulent production on the upwind side
of waves close to the surface (see also Yang & Shen 2010). In particular, Buckley & Veron (2019)
observed an intense region of negative turbulence production for moderate wind speeds, which
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Figure 5. Wave-phase coherent distributions of measured components of the turbulence production (a-e)
ΠC ,11, (f-j) ΠC ,13, and (k-o) ΠC ,33 (defined in equations 4.5-4.7). The wave-phase coherent production
components are all normalized by D3

∗: ? and plotted above the mean water surface as a function of
nondimensional height : ?I. The 10 m wind speeds corresponding to each experimental condition are
indicated on the left. Here, ΠC ,33 is smaller by about two orders of magnitude than the two dominant
components ΠC ,11 and ΠC ,13.

moved downstream past the wave crest in high winds. This is unlikely as airflow separation will
generate intense phase-locked turbulence in these regions. These discrepancies are attributed to
different coordinate systems employed in different studies. Here, we employed a wave-following
orthogonal coordinate system while Cartesian coordinates were used in other studies. We suggest
that a wave-following coordinate system is more relevant, close to the interface, to establish along-
and perpendicular-surface gradients of the mean velocity fields, for example.

4.1.2. Wave production
The wave-phase coherent wave production ΠF = −*̃8*̃ 9 〈(8 9〉 represents the rate of energy
exchanges between the phase-coherent flow and the wave perturbation field. Similarly to the
turbulence production, only three terms of ΠF can be directly measured, which are:

ΠF,11 = −*̃1*̃1〈(11〉 = −*̃1*̃1
1
ℎ1

m〈*1〉
mb1

−*̃1*̃1〈*3〉^13, (4.10)

ΠF,33 = −*̃3*̃3〈(33〉 = −*̃3*̃3
1
ℎ3

m〈*3〉
mb3

−*̃3*̃3〈*1〉^31, (4.11)
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ΠF,13 = −2*̃1*̃3〈(13〉 = −*̃1*̃3
ℎ1

ℎ3

m

mb3

(
〈*1〉
ℎ1

)
−*̃1*̃3

ℎ3

ℎ1

m

mb1

(
〈*3〉
ℎ3

)
. (4.12)

Moreover, as done with ΠC , using boundary-layer scaling and the expected properties of the
averaged flow, the total wave production reduces to

ΠF ≈ −*̃1*̃1
1
ℎ1

m〈*1〉
mb1

−*̃1*̃3
1
ℎ3

m〈*1〉
mb3

. (4.13)

The wave production,ΠF , represents the production (destruction) of wave kinetic energy by the
wave-phase coherent shear when it is positive (negative). Figure 6 shows the wave-phase coherent
fields of ΠF scaled by D3

∗: ? for all wind-wave experimental conditions. In all cases, the wave
production is positive and intense upwind of wave crests, and positive and less intense downwind
of waves. Therefore, in general, intense wave energy is produced (ΠF > 0) upwind and downwind
side of wave crests within the WBL, particularly close to the surface for : ?Z / 0.1. The intense
ΠF is extended into the surface of the waves (see the right-hand column of figure 6). The regions
of strong positive wave productions upwind and downwind face of waves are intertwined with
the regions where the wave energy is slightly destroyed (ΠF < 0) farther above the surface, just
above wave crests and troughs.
The wave production results from the interaction between the wave-induced stress and wave-

phase coherent shear. The wave stress is confined near the interface and damped above the
WBL. Likewise, the wave-phase coherent shear is the largest near the interface in the so-called
Stokes layer (Lamb 1932) and vanishes away from the interface. The Stokes layer thickness is
XB = (2a/(: ?�?))1/2 and is indicated in figure 6(f-j) with horizontal solid grey lines. Note that
the dimensionless Stokes layer height is related to the wave Reynolds number, XB: ? = '4−1/2

F with
'4F = �?/(2a: ?) (see Longuet-Higgins 1969). Together, the wave stress and the wave-phase
coherent shear lead to a relatively thin region of large wave production within the Stokes layer.
The balance between the along-wave behaviors of the wave and turbulence productions

determines the total production of the fluctuation energy, Π = ΠC +ΠF . Close to the interface,
the total production is always positive but ΠF > ΠC on the upwind side of waves and ΠC > ΠF
over the downwind side. In other words, near the surface, there is a preferential production of
WKE upwind of wave crests and TKE downwind of crests. Away from the surface, just upwind
of wave crests, there is a region where the mean flow is accelerated and where both turbulence
and wave production terms are slightly negative for all wind speeds except the lowest wind speed
(U10 = 2.25 m s−1). The negative production has been previously attributed to coherent structures
in turbulent shear flows (e.g., Hussain 1983; Cheung & Street 1988; Cimarelli et al. 2019).

The measured components of the wave production, i.e., ΠF,11, ΠF,13, and ΠF,33, are next
shown in figure 7 for all experiments. The dominant component contributing to the total wave
production isΠF,13 (see figure 7a-e). On average, it carriesmore than 90%of thewave production.
Therefore,ΠF,13 shows a similar pattern toΠF in that the positiveΠF,13 onwindward and leeward
sides of waves is intertwined with moderately negative ΠF,13 above wave crests and troughs. The
along-wave phase distribution of ΠF,13 and thus ΠF results from the interactions between the
wave-induced stress and the gradient of the wave-phase coherent flow. Within the WBL, the
wave-induced stress dominates where it is positive (negative) upwind and downwind (above crest
and trough) of waves (see Yousefi et al. 2020a). Also, for all wind-wave conditions presented in
this study, 〈(13〉 > 0, but it is limited to a thin layer above waves (see Yousefi et al. 2020b). Hence,
as noted above, the wave-phase coherent shear, and thus the wave production, are confined near
the surface within the Stokes layer.
For completeness, the other two terms in the wave production that are directly measured, i.e.,

ΠF,11 and ΠF,33, are also presented in figure 7(a-e) and 7(k-o), respectively. Here, as expected
from boundary layer scaling,ΠF,33 is approximately two orders of magnitude smaller thanΠF,13.
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Figure 6.Wave-phase coherent distributions of wave production,ΠF (defined in equation 4.13), normalized
by D3

∗: ? plotted on (a-e) linear and (f-j) logarithmic vertical scales for different wind speed cases. The linear
and logarithmic wave-phase coherent fields are plotted above the mean water surface as a function of
nondimensional heights : ?I and : ?Z , respectively. The heights of the Stokes layer XB and critical layer are
denoted by grey horizontal solid and dashed lines, respectively. The 10 m wind speeds corresponding to
each experimental condition are indicated on the left. Intense wave production takes place below the Stokes
layer.

Also, for low–moderate wind speed cases, ΠF,11 is smaller than ΠF,13 by almost one order of
magnitude, and therefore, the along-wave distributions of the total wave production can be
accurately estimated using ΠF ≈ΠF,13 ≈ −*̃1*̃3ℎ3

−1m〈*1〉/mb3. However, in high winds, ΠF,11
becomes significant. In fact, it becomes essential for an accurate estimation of the magnitude and
location of negative extrema of ΠF .

4.1.3. Wave–turbulence interaction
From equations (4.3) and (4.4), we recall that

ΠC = −〈* ′8* ′9〉(̄8 9 − 〈* ′8* ′9〉(̃8 9 = %C +,C , (4.14)

ΠF = −*̃8*̃ 9 (̄8 9 −*̃8*̃ 9 (̃8 9 = %F +,F , (4.15)

and noting that gF
8 9
= −*̃8*̃ 9 and gC

8 9
= −* ′

8
* ′
9
are the wave-induced and turbulent stresses,

respectively, then
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Figure 7. Wave-phase coherent distributions of the measured components of the wave production (a-e)
ΠF,11, (f-j) ΠF,13, and (k-o) ΠF,33 (defined in equations 4.10-4.12) for different wind speed cases. The
wave-phase coherent production components are all normalized by D3

∗: ? and plotted above the mean
water surface as a function of nondimensional height : ?I. The 10 m wind speeds corresponding to each
experimental condition are indicated on the left. Here, ΠF,33 is smaller by about one and two orders of
magnitude compared to the two dominant componentsΠF,11 andΠF,13 in thewave production, respectively.

%F = 〈gF8 9 〉(̄8 9 , (4.16)

%C = 〈gC8 9〉(̄8 9 . (4.17)

This indicates that both %C and %F are analogous to 〈gC 〉 and 〈gF 〉 simply multiplied by the
mean shear. Furthermore,,F represents the work done by wave stresses against the gradients of
wave-induced velocities. As such, it is more akin to a transport rather than a (net) production of
energy. We will see this explicitly below. However, the rate of energy transfer between the wave
perturbation and turbulence fields is governed by the wave-turbulent interaction term in the TKE
budget. Indeed, ,C = −〈* ′8* ′9〉(̃8 9 (same as 〈,C 〉) describes the net work done by wave-phase
coherent turbulent stresses against the gradients of wave-induced velocities (i.e., the wave-induced
strain rate). Equivalently, it denotes the production or destruction of the turbulent energy by the
waves through the action of wave-phase coherent turbulent stresses (see also Hara & Belcher
2004). The wave-turbulence interaction term is essential in the energy balance of the surface
waves, but because it is challenging to measure directly, it has been routinely ignored in past
studies (e.g., Cheung & Street 1988; Chalikov & Belevich 1993; Anis & Moum 1995; Thais
& Magnaudet 1996). To the best of our knowledge, the wave-phase coherent variations of the
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Figure 8.Wave-phase coherent distributions of themeasured components of the wave-turbulence interaction
term (a-e) ,C ,11, (f-j) ,C ,13, and (k-o) ,C ,33 (defined in equations 4.18-4.20) for different wind speed
cases. The wave-phase coherent wave-turbulence interaction components are all normalized by D3

∗: ? and
plotted above the mean water surface as a function of nondimensional height : ?I. The 10 m wind speeds
corresponding to each experimental condition are indicated on the left.

wave-turbulence interaction term over wind-generated surface waves are presented for the first
time in this study.
In the current experiments, we can directly measure the following components of wave-

turbulence interaction term:

,C ,11 = −〈* ′1*
′
1〉(̃11 = −〈* ′1*

′
1〉

1
ℎ1

m*̃1

mb1
− 〈* ′1*

′
1〉*̃3^13, (4.18)

,C ,33 = −〈* ′3*
′
3〉(̃33 = −〈* ′3*

′
3〉

1
ℎ3

m*̃3

mb3
− 〈* ′3*

′
3〉*̃1^31, (4.19)

,C ,13 = −2〈* ′1*
′
3〉(̃13 = −〈* ′1*

′
3〉
ℎ1

ℎ3

m

mb3

(
*̃1

ℎ1

)
− 〈* ′1*

′
3〉
ℎ3

ℎ1

m

mb1

(
*̃3

ℎ3

)
(4.20)

Figure 8 shows these measured (normalized) terms. For all experimental conditions, the terms
contributingmost to the wave-turbulence interaction are,C ,11 (figure 8a-e) and,C ,13 (figure 8f-j),
while ,C ,33 (figure 8k-o) is almost one order of magnitude smaller. Here, ,C ,11 contributes, on
average, more than 75% to the total wave-turbulence interaction term.Within the bulk of the flow,
both,C ,11 and,C ,13 are negative on the upwind face of waves and positive from the crest to the
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Figure 9.Wave-phase coherent distributions of thewave-turbulence interaction term,,C (defined in equation
4.22), normalized by D3

∗: ? plotted on (a-e) linear and (f-j) logarithmic vertical scales for different wind
speed cases. The linear and logarithmic wave-phase coherent fields are plotted above the mean water surface
as a function of nondimensional heights : ?I and : ?Z , respectively. The 10 m wind speeds corresponding
to each experimental condition are indicated on the left.

downwind face with a jet-like flow region past the wave crest. Also, closer to the surface, ,C ,13
shows a clear phase shift (see, for example, figure 8f). Indeed,,C ,13 is positive (negative) on the
windward (leeward) side of waves near the interface. We attribute this to the phase shift in the
horizontal wave-coherent velocity *̃1 across the critical layer (see Yousefi et al. 2020a).
Another noteworthy finding is that if we use the boundary-layer scaling of Yousefi & Veron

(2020) to reduce,C , we find that,C ,11 ≈ 0, and

,C ≈ −〈* ′1*
′
3〉

1
ℎ3

m*̃1

mb3
. (4.21)

However, the data indicates that ,C ,11 is of the same order of magnitude as ,C ,13, and we find
instead that

,C ≈ −〈* ′1*
′
1〉

1
ℎ1

m*̃1

mb1
− 〈* ′1*

′
3〉

1
ℎ3

m*̃1

mb3
. (4.22)

This apparent shortcoming of the boundary layer scaling stems from the fact that Yousefi &
Veron (2020) considered homogeneous and isotropic turbulence, which is not the case here. We
emphasize, however, that this potential source of error does not enter in the estimates that led to



18 K. Yousefi, F. Veron and M. P. Buckley

equations (4.9) and (4.13), which were used to estimate the wave-phase coherent turbulence and
wave production terms, ΠC and ΠF , above.
The phase dependence of the wave-turbulence interaction term (as defined in equation 4.22)

normalized by D3
∗: ? is presented on both linear and logarithmic vertical scales in figure 9. In

moderate to high wind speed cases, as a general trend above the surface, the energy is drained
from the turbulence and transferred into the wave perturbation field (,C < 0) upwind of wave
crests. At and downwind of wave crests, energy is transferred from the wave perturbation into
the turbulence (,C > 0). The intense regions of wave-turbulence interaction are confined between
0 < i < π/2. The downwind and vertical extent of these regions is smaller than that of the regions
of enhanced turbulence generated by the airflow separation events (see figure 2a-e). The peak
values of,C occur downwind of wave crests at a phase of approximately π/6. This result is robust
across all conditions studied here.
We note that there is no straightforward single relevant vertical scale for,C . Indeed,,C results

from the interaction between the turbulent stress, which is damped below the viscous sublayer,
and the wave-phase coherent flow, which is likely to be reduced above the Stokes layer. Therefore,
it is tempting to anticipate that significant wave-turbulence interaction will take place in a thin
layer between the heights of the viscous and Stokes layers (at least provided that turbulent stress
and wave-coherent shear are sizeable and that their along-wave patterns interact in constructive
ways). This wave-turbulence interaction layer may exist if the Stokes layer is thicker than the
viscous sublayer. This occurs when '4−1/2

F (�?/D∗) / 5. For the experiments presented here, this
condition is satisfied in all but the lowest wind speed of U10 = 2.25 m s−1. Figure 12 confirms
that no substantial wave-turbulence interaction takes place at this wind speed. However, the
anticipated presence of a thin band in which,C is significant is not observed here in higher winds
(see figure 9g-j). This is because the bulk of ,C is provided by ,C ,11 (equation 4.22), which
involves m*̃1/mb1, a divergence term rather than shear. Thus, the vertical extent of,C will be in
part controlled by the vertical behaviour of m*̃1/mb1. We anticipate that wave slope and wave age
are important parameters, but no scaling parameter has yet emerged from our analysis.

4.2. Ensemble mean flows
4.2.1. Governing equations
The budget equation for the kinetic energy of the mean flow (i.e., mean kinetic energy), 4< =
*8*8/2, is (for details on derivations see Yousefi & Veron 2020)

D4̄<
DC

=
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ℎ
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mb 9

(
− ℎ

ℎ ( 9)

?̄

d
* 9 −

ℎ

ℎ ( 9)
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ℎ ( 9)
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8
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9
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ℎ ( 9)
2a*8 (̄8 9

)
︸                                                                                  ︷︷                                                                                  ︸
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+
(
*̃8*̃ 9 +* ′8* ′9

)
(̄8 9︸                 ︷︷                 ︸
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.

(4.23)

The left-hand side of equation (4.23) describes the rate of change of the mean kinetic energy, and
the right-hand side represents various mechanisms that precipitate such changes. The first term
on the right-hand side (in the flux divergence form) represents the transport of kinetic energy by
the mean pressure term, the wave-induced and turbulent stresses, and the molecular diffusion.
The fifth term is the viscous dissipation noted by ε<, and the last term %< is analogous to the
well-known shear loss term and represents the exchange of energy between the mean shear and
the fluctuating velocity (i.e., the work done by the turbulent stress against the mean shear). Of
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course, here, the fluctuating velocity is decomposed into wave-induced and turbulent fields. Thus,
the production term can likewise be split into:

%< = −*̃8*̃ 9 (̄8 9 −* ′8* ′9 (̄8 9 = %F +%C , (4.24)

where again %F = gF8 9 (̄8 9 and %C = g
C
8 9 (̄8 9 . With this sign convention, gF > 0 and a positive mean

shear imply %F > 0 and growing waves.
Equivalently, the balance of the kinetic energy for the wave-induced motion can be expressed

as
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, (4.25)

where 4F = *̃8*̃8/2 is the kinetic energy density of the wave-induced flow; we will refer to it
as the WKE. In equation (4.25), as previously noted, the left-hand side represents the rate of
change of the meanWKE, and the first four terms on the right-hand side describe the transport (or
redistribution) of WKE by the wave-coherent pressure, wave-induced turbulent stresses, wave-
induced wave stresses, and viscosity, respectively. The fifth term εF , similar to its counterpart
in equation (4.23), represents the viscous dissipation due to the wave motion (Longuet-Higgins
1969). The sixth term %F appears in the mean energy budget equation (4.23) but with the
sign reversed and represents the transfer of energy from the mean shear to the wave-induced
motion. The last term is the production (or sink) of total fluctuating kinetic energy (both wave
and turbulent kinetic energies) by the wave shear, which describes the net work done by the
wave-phase coherent wave and turbulent stresses against the wave-induced shear. Thus, ,F is
the generation of wave motion by the wave shear, and , C represents energy exchanges between
the wave-induced shear and the wave-coherent turbulent stress (e.g., Reynolds & Hussain 1972;
Makin & Mastenbroek 1996; Hara & Belcher 2004; Rutgersson & Sullivan 2005). Noting that
the so-called wave-induced turbulent stress is AF

8 9
= 〈* ′

8
* ′
9
〉 −* ′

8
* ′
9
, it follows that

,F = g
F
8 9
(̃8 9 , (4.26)

, C = −AF8 9 (̃8 9 . (4.27)

It is clear that,F simply redistributes wave-induced motions and can therefore be incorporated
into the transport term of kinetic energy density of the wave-induced flow. Indeed,

1
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(
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ℎ ( 9)
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)
+,F =

1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
4F*̃ 9

)
, (4.28)

which explicitly describes the vertical transport of WKE by the wave-induced motion. Thus,
equation (4.25) reads
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We note that ℎ−1m (ℎℎ−1
( 9)4F*̃ 9 )/mb 9 is generally considered to be negligible compared to the

other transport terms, particularly the wave-coherent pressure transport (e.g., Einaudi & Finnigan
1993; Makin & Mastenbroek 1996; Makin & Kudryavtsev 1999; Janssen 1999; Hara & Belcher
2004; Hara & Sullivan 2015; Cifuentes-Lorenzen et al. 2018). If neglected, equation (4.29)
reduces to a form that is identical to that of Makin & Mastenbroek (1996) (their equation 20) and
Hara & Belcher (2004) (their equation 33).
Finally, the budget for the mean TKE is given by
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(4.30)

in which 4C =* ′8*
′
8
/2. In equation (4.30) above, the first four terms on the right-hand side describe

the transport of TKE within the flow by the fluctuating pressure, turbulence, wave-induced stress,
and viscous diffusion, respectively. The fifth term ε̄C is the viscous dissipation of TKE. The sixth
term %C is TKE production that describes exchanges between the mean flow and turbulence. It
appears in the equation for the mean flow’s kinetic energy (4.23) but with the opposite sign. The
last term is the energy exchange between the wave-induced shear and the wave-coherent turbulent
stress. This term also appears in the equation for the mean WKE (4.25), but with the opposite
sign. Overall, %C , %F , and, C emerge as the main relevant terms that produce wave and turbulent
kinetic energies, and transfer energy between waves and turbulence.

4.2.2. Turbulent kinetic energy production
The ensemble-averaged profiles of TKE production, %C = −* ′8* ′9 (̄8 9 , are next examined. Using a
boundary-layer type scaling (as explained above), and noting that*1 is a function of b3 only and
*2 =*3 = 0, we can easily deduce that:

%C ≈ −* ′1*
′
3

1
ℎ3

m*1

mb3
. (4.31)

The vertical mean profiles of TKE production, %C , scaled by D3
∗: ? are plotted as a function of

non-dimensional height : ?Z in figure 10(a) for different experimental wind-wave conditions. The
laboratory measurements of Hsu et al. (1981) are also shown for comparison. The normalized
profiles of %C collapse within a relatively narrow band for moderate to high wind speed cases.
From figure 10(a), we observe that the TKE production is positive at all heights (indicating the
transfer of energy from the mean flow to the turbulence) and concentrated near the interface,
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Figure 10. (a) Vertical profiles of the mean TKE production %C scaled by D3
∗: ? for different wind speed

cases as a function of the non-dimensional height : ?Z . For comparison purposes, the results of Hsu et al.
(1981) for mechanically generated waves with U10 = 2.4 m s−1 and �?/D∗ = 18.2 are also indicated by
grey circles. Most of the shear production is concentrated close to the water interface, below : ?Z ≈ 0.2, in
all cases. (b) Comparison of TKE production over wind waves with those in wall-bounded turbulent flows.
The profiles of the law-of-the-wall turbulent production %+C (defined in equation 4.32) are plotted against
wall coordinates Z+ for wind waves with low-moderate wind speeds of 2.25, 5.08, and 9.57 m s−1 and the
smooth water surface case with *10 = 0.89 m s−1. For comparison, the results of El Telbany & Reynolds
(1982), Papadimitrakis et al. (1986), Wei &Willmarth (1989), and Antonia et al. (1992) in a fully developed
turbulent channel flow, and those of Kim et al. (1968), Spalart (1988), and Krogstad & Antonia (1999) in
the turbulent boundary layer flow over a flat plate are also shown. Finally, the theoretical value of 1/^Z+ is
also shown with grey solid lines.

below : ?Z ≈ 0.2. The profiles of %C present the same general behaviour as the classical turbulent
flow over solid surfaces with a positive peak close to the surface. Far above the interface, TKE
production approaches zero because of the small magnitudes of mean velocity gradients. This is
in spite of the turbulent stresses that are large (see Yousefi et al. 2020a). Very close to the surface
(: ?Z → 0), the TKE production profiles rapidly decrease to zero within the viscous sublayer,
where the turbulent stresses are significantly reduced. Overall, the peak TKE production in the
vicinity of the surface is attributed to high shear (and vorticity) layers and intense turbulent
stresses in this region.
Also, the peak TKE production lies below : ?Z ≈ 0.1, and therefore, measurements taken

with fixed height instrumentation placed above the wave crests may not capture the peak TKE
production, particularly over strongly forced young wind-generated waves. Finally, in the study
of turbulent flow over wavy solid surfaces, the peak values of the TKE production are generally
located close to the surface (e.g., De Angelis et al. 1997; Kruse et al. 2006; Sun et al. 2018).
Kruse et al. (2006) specifically showed that the location and magnitude of TKE production near
a wavy rigid surface are strongly dependent on the wave slope.
In addition, it is useful to contrast our results against classical TKE production over flat solid

surfaces. In wall-layer coordinates, the TKE production reads

%
+
C = −D′+1 D

′+
3

1
ℎ3

mD+1
mb+3

, (4.32)

where D′+
8
= * ′

8
/D∗, D+8 = *8/D∗, and b+8 = b8D∗/a. Figure 10(b) shows our data in wall-layer
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coordinates for the low-to-moderate wind speeds of U10 = 2.25, 5.08, and 9.57 m s−1 and for
the smooth water surface case with U10 = 0.89 m s−1. In this figure, the results of El Telbany
& Reynolds (1982), Papadimitrakis et al. (1986), Wei & Willmarth (1989), and Antonia et al.
(1992) in a fully developed turbulent channel flow and those of Kim et al. (1968), Spalart (1988),
and Krogstad & Antonia (1999) in the turbulent boundary layer flow over a flat plate are also
shown for comparison purposes. The profile of %

+
C above the smooth water surface, i.e., with no

waves, closely follows the typical turbulent boundary layer flows. Close to the surface, the TKE
production over the flat water surface exhibits a peak value that is moderately enhanced compared
to the (smooth) flat rigid surface measurements. This is because the flat water surface is slightly
more rough than the smooth solid surfaces leading to increased shear stress (and thus turbulent
production). For example, here, the roughness height is Z0 = 0.035 mm for the smooth water
surface case but it is Z0 ≈ 0.018 mm in the experiments of Kim et al. (1968) over a smooth wall.
Likewise, a somewhat enhanced TKE production rate over rough solid surfaces compared to the
smooth walls was also reported for turbulent boundary-layer flows on flat plates by, for example,
Krogstad & Antonia (1999). However, the TKE production profiles start to substantially deviate
from the law of the wall when surface waves are formed at the water surface. With increasing
wind speed, the profiles of %

+
C are reduced compared to the law-of-the-wall TKE production

values close to the surface (approximately Z+ < 30). This is mainly because the mean shear flow
also contributes to generating surface waves (see equation 4.24), and such contribution increases
with wind speed.

4.2.3. Wave kinetic energy production

Wenext look at themeanWKE production, defined as %F =−*̃8*̃ 9 (̄8 9 . Again, using the boundary
layer scaling and considering the averaged flow properties (i.e., *1 =*1 (b3) and *2 =*3 = 0),
the total mean WKE production reads

%F ≈ −*̃1*̃3
1
ℎ3

m*1

mb3
. (4.33)

The vertical profiles of the mean WKE production %F are normalized by D3
∗: ? and plotted as a

function of dimensionless height : ?Z in figure 11(a) for wind speeds varying from 2.25 to 16.59
m s−1. The results of Hsu et al. (1981) are also presented with grey circle symbols for comparison
purposes. In general, the ensemble-averaged WKE production is positive in the lower portion of
the WBL (approximately : ?Z < 0.15). This represents a transfer of energy from the mean flow to
the wave-coherent field. In the upper portion of the WBL, %F is slightly negative, and energy is
thus transferred from the wave-coherent field to the mean flow. Farther above the surface outside
the WBL, as expected, the WKE production quickly decreases to an almost zero value. The
change in the direction of energy transfer happens at a dimensionless height of : ?Z ≈ 0.25 for the
lowest wind speed of U10 = 2.25 m s−1 and : ?Z ≈ 0.15 for higher wind speed cases of U10 = 5.08
to 16.59 m s−1. This compares reasonably well with the laboratory results of Hsu et al. (1981)
for mechanically generated waves with �/D∗ = 18.2 and numerical predictions of Rutgersson &
Sullivan (2005) for a single monochromatic wave with �/D∗ = 3.91 reporting an energy transfer
reversal at a dimensionless height of about 0.18 and 0.25, respectively. With increasing wind
speed, the peak value of the WKE production increases but it is further restricted close to the
surface; the maximum of %F/D3

∗: ? ≈ 15 happens at : ?Z ≈ 0.05 for U10 = 2.25 m s−1, and it
increases to %F/D3

∗: ? ≈ 60 located at : ?Z ≈ 0.01 for U10 = 16.59 m s−1.
The wave-induced stress, gF13 =−*̃1*̃3, clearly plays a significant role in determining the overall

behaviour of the WKE production term. As a general trend, the wave stress increases to a positive
peak near the interface from an almost zero value at the surface and then reduces rapidly to a
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Figure 11. (a) Vertical profiles of the mean WKE, %F , scaled by D3
∗: ? for different wind speed cases as a

function of the non-dimensional height : ?Z . For comparison purposes, the results of Hsu et al. (1981) for
mechanically generated waves with U10 = 2.4 m s−1 and �?/D∗ = 18.2 are also indicated by grey circles.
The mean WKE is positive (slightly negative) in the lower (upper) portion of the WBL representing energy
transfer from the mean flow (wave-induced field) to the wave-induced field (mean flow). (b) Vertical profiles
of the mean WKE production %F scaled by (0?: ?�?)2D∗: ? plotted as a function of the non-dimensional
height Z/XB . The maximum production is located within the Stokes layers. The gray solid line shows the
∼ exp (−Z/XB) decay curve.

negative value farther above the surface (see Yousefi et al. 2020a, figure 14). This is consistent
with the variations of WKE production because the mean shear in the WBL is positive at all
heights in the present wind-wave experiments. However, the negative (and relatively large) values
of wave-induced stress are significantly abated by the shear stress, which quickly drops to almost
zero values outside the viscous sublayer, resulting in slightly negative WKE production in the
upper portion of the WBL. Although the magnitude of the TKE production is generally greater
than that of theWKE production, i.e., |%C |/|%F | > 1 in the bulk of the flow, theWKE production is
larger than the TKE production, i.e., |%C |/|%F | < 1 close to the air-water interface approximately
below : ?Z . 0.05. Therefore, the total fluctuating kinetic energy production %< = %C +%F (see
equation 4.23) is positive at all levels above the surface, indicating a drain of energy from themean
flow in all wind speed cases. Accordingly, the net effect of the total fluctuating kinetic energy
production term %< is similar to the TKE production term in the classical flat plate turbulent
boundary layer flows.
Finally, in figure 11(b), we show the vertical profiles of %F plotted against the vertical distance

scaled with the Stokes layer height Z/XB . As expected, this vertical scaling affords a collapse of
the maximum WKE production location, which is found slightly below the height of the Stokes
layer located at Z/XB = 1. Above Z/XB = 1, the WKE production decays as %F ∼ 4G?(−Z/XB).
Finally, while convenient for comparison with previous works, there is no reason to expect that
WKE production would scale with D3

∗: ? . Indeed, from equation (4.33), we would instead expect
%F to contain wave scales, at least through *̃8 . Hence, anticipating that *̃8 ∝ 0?: ?�? , the WKE
production profiles normalized with (0?: ?�?)2D∗: ? are plotted in figure 11(b). This scaling
collapses %F for all but the lowest wind speed.
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4.2.4. Wave-Turbulence kinetic energy exchanges
Consideration is now given to themean behaviour of energy exchanges betweenwave-induced and
background turbulence fields. The ensemble-averaged wave-turbulence interaction term, present
in the WKE and TKE budget equations (equations 4.29 and 4.30), is defined as

, C = −〈* ′8* ′9〉(̃8 9 . (4.34)

Here, a positive wave-turbulence interaction implies a transfer of energy from the wave-induced
field to the turbulence. Based on the boundary layer scaling and wave-phase averaged data, we
estimate that:

, C ≈ −〈* ′1*
′
1〉

1
ℎ1

m*̃1

mb1
− 〈* ′1*

′
3〉

1
ℎ3

m*̃1

mb3
. (4.35)

Figure 12 presents the vertical mean profiles of the wave-turbulence interaction term along
with the measured components

, C ,11 = −〈* ′1*
′
1〉(̃11, , C ,33 = −〈* ′3*

′
3〉(̃33, , C ,13 = −2〈* ′1*

′
3〉(̃13 (4.36)

scaled by D3
∗: ? for different wind-wave conditions. The equivalent measurements of Hsu et al.

(1981) are also shownwith grey circles for comparison.We observe a drastic vacillation in the rate
of wave-turbulence energy transfer with height above the surface. As a general trend, , C peaks
near : ?Z ≈ 0.1, and gradually vanishes to zero above theWBL. There is also a secondary negative
peak below : ?Z ≈ 0.1 which indicates a small amount of energy flows from the turbulence to
the waves very near the surface. However, over the whole air column, energy is predominantly
transferred from the wave-coherent field to the turbulence (i.e.,, C > 0 over most of the domain).
Also, the rate of energy transfer between wave and turbulence fields is insignificant in the lowest
wind speed case (compared to the higher wind speeds). This was expected from our analysis in
section 4.1.3 because, in this case, the viscous layer and Stokes layer are not separated enough to
allow for sufficient interaction between the turbulent stress and wave-phase coherent shear.



Turbulent and wave kinetic energy budgets above wind waves 25

The (normalized) measured components, C ,11,, C ,33, and, C ,13 of the total wave-turbulence
interaction term are also shown in figure 12(b-f). In all cases, , C ,11 and , C ,13 are dominant,
and , C ,33 makes only a negligible contribution to the wave-turbulence interaction term. The
components, C ,11 and, C ,13 compete against each other to determine the overall behaviour of the
total wave-turbulence interaction. The near-surface negative peak in, C is due to, C ,13. Likewise,
the positive peak in , C at approximately : ?Z ≈ 0.1 is due to , C ,11. In fact, , C ,13 contributes
dominantly to the energy transfer from the turbulence to the wave fields near the interface, while
, C ,11 is the largest contributor to the total wave-turbulence interaction term farther above the
surface where energy flows from wave to turbulence fields. Therefore, unlike TKE and WKE
production, which are dominated by a single shear term, both m*̃1/mb1 and m*̃1/mb3 are crucial
for an accurate estimation of the wave-turbulence interaction term.
The wave-turbulence interaction results presented in this study compare well with other studies

investigating the organized motion in turbulent flows (e.g., Liu & Merkine 1976; Einaudi &
Finnigan 1993; Makin & Kudryavtsev 1999; Högström et al. 2015). Hsu et al. (1981) showed
that, for mechanically generated waves with U10 = 2.4m s−1 and�/D∗ = 18.2, the wave-turbulence
interaction term is positive for dimensionless heights above :Z ≈ 0.1, indicating the transfer of
energy from wave perturbation to the turbulence field. However, our results are in contrast with
those of Rutgersson & Sullivan (2005) who reported an inverse cascade where the energy transfer
is mainly from the turbulent field (small scales) to the wave perturbation field (large scales). We
note that the work of Rutgersson & Sullivan (2005) is a numerical investigation of airflow over
an idealized moving wavy surface conducted at a low (bulk) Reynolds number.

5. Discussion
In the previous sections, we have independently explored both wave-phase coherent and

ensemble-averaged turbulence production, wave production, and wave-turbulence interaction
terms in the airflow above surface wind waves. Despite the limitations associated with PIV
measurements, it is interesting to attempt to close the kinetic energy budgets to the extent
possible. In this discussion, we focus specifically on the wave-induced and turbulent flows.

In the field, it has been shown that the local time rate of change of wave and turbulent
kinetic energies are generally negligible (e.g., Fairall & Larsen 1986; Sjöblom & Smedman
2002; Högström et al. 2009, 2015). Laboratory conditions are also statistically steady, and thus,
equations (4.29) and (4.30) reduce to:

)F − εF +%F −, C = 0, (5.1)

) C − εC +%C +, C = 0. (5.2)

We first consider the WKE budget, equation (5.1). We recall from equation (4.29) that the
transport of WKE has four components

)F = )
?

F +)
F

F +)
C

F︸    ︷︷    ︸
TF

+) aF , (5.3)

which represent respectively the wave pressure transport, the wave-induced and the turbulent
transport (noted T F ), and transport due to viscosity (or viscous diffusion). Among these, we
remark that only the pressure transport term cannot be directly estimated from our measurements.
Using the boundary-layer approximations outlined above, the remaining transport terms are
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estimated by

T F ≈ −
1
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m

mb3

(
*̃1*̃1*̃3

)
− 1
ℎ3
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mb3
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)
(5.4)

and
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a
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mb3
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mb3
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(
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mb3
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. (5.5)

In addition, the wave viscous dissipation term reduces to

YF ≈ a
(

1
ℎ3

m*̃1

mb3

)2

. (5.6)

Therefore, )
a

F can be expressed as )
a

F = n̄F + ȲF in which

n̄F ≈ a
1
ℎ3

1
ℎ3
*̃1

m

mb3

(
m*̃1

mb3

)
, (5.7)

is the wave-induced viscous diffusion, and will be the only remaining viscous term in the WKE
budget equation. Indeed,

T F + n̄F +%F −, C = −)
?

F , (5.8)

where the measured terms appear on the left-hand side, and the remaining terms are collected on
the right-hand side.
Figure 13 shows vertical profiles of all the terms of WKE budget equation (5.8) for U10 =

2.25−16.59 m s−1. All terms are normalized by D3
∗: ? and plotted against the dimensionless

height : ?Z . Except for the pressure transport term, all terms in the WKE budget are directly
estimated from the PIV velocity measurements. We observe that the WKE production %F and
pressure transport )

?

F (strictly speaking, the residual) dominate close to the surface for all wind-
wave experimental cases. The WKE production term is the principal gain term, while pressure
transport is the primary loss term. The positive and large %F decreases exponentially with height
above the WBL (i.e., %F ∝ 4−V:?Z with V < 1). The wave-turbulence interaction term, , C , is
smaller than both %F and )

?

F but is not negligible, particularly around : ?Z ≈ 0.1, where it
indicates a production of turbulence at the expense of wave energy. Finally, viscous effects are
negligible at all heights. This is consistent with the results of, for example, Einaudi & Finnigan
(1993) and Rutgersson & Sullivan (2005) (see also Liu & Merkine 1976; Makin & Mastenbroek
1996; Hara & Sullivan 2015). Overall, the wave field extracts energy from the mean wind field
within theWBL (: ?Z < 1) through theWKE production term. A small portion of this wave energy
is converted to turbulence by the wave-turbulence interaction term, and the rest is available to be
transported both to the surface and to higher levels above the surface, mostly by the wave pressure
transport.
Next, we look into the kinetic energy budget for the turbulent fluctuation. As for the WKE

budget, the transport of TKE has four components:

) C = )
?

C +)
F

C +)
C

C︸   ︷︷   ︸
TC

+) aC , (5.9)

which represent respectively the turbulent pressure transport, the wave-induced and the turbulent
transport (noted T C ), and turbulent viscous diffusion. Again, the pressure transport term cannot
be directly measured with PIV. Furthermore, as opposed to length scales in the wave-induced
velocity field, the smallest scales in the turbulent velocity field are expected to be on the order
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Figure 13. Profiles of the terms in the WKE budget (defined in equation 5.8) plotted above the mean water
surface as a function of dimensionless height : ?Z for all experimental wind-wave conditions with wind
speeds varying from 2.25 to 16.59 m s−1. All terms are scaled by D3

∗: ? . The pressure transport term )
?
F

is derived as a residual. Here, the production and pressure transport terms dominate near the surface for all
wind speed cases.

of the Kolmogorov microscale, [ ≈ (_?a3/D3
∗)

1/4, which is beyond the resolution of our PIV
measurements. Therefore, both the viscous diffusion and dissipation are not directly accessible
from these measurements. Again, we combine all viscous terms in the turbulent viscous diffusion:

n C = )
a

C − YC . (5.10)

Thus, in equation (5.9), only T C can be approximated. Assuming the spanwise turbulent stress
to be the average of the streamwise and vertical turbulent stresses, i.e.,* ′2*

′
2 = (*

′
1*
′
1 +*

′
3*
′
3)/2

(e.g., Panofsky & Dutton 1984; Smedman 1988; Pahlow et al. 2001), we find that the turbulent
and wave-induced transport terms approximate to:

T C = )
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C +)
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C ≈ −
3
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1
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mb3

(
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* ′1*

′
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− 3

4
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m

mb3

(
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′
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′
3

)
. (5.11)

Finally, the TKE budget (equation 5.2), can be written as

T C +%C +, C = −)
?

C − n C , (5.12)
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with terms directly available from the PIV measurements on the left-hand side.
The vertical profiles of the TKE budget terms (equation 5.12) are plotted in figure 14 as a

function of dimensionless height : ?Z for wind speeds varying from U10 = 2.25 to 16.59 m s−1

(panels a-e). Once again, all budget terms are normalized with D3
∗: ? . The TKE budget terms for

the smooth water surface without waves (U10 = 0.89 m s−1) are also plotted in panel f of figure 14
in wall-layer coordinates. The residual, i.e., '4B = )

?

C + n C , shows the terms that are not directly
measured. Previous works have established that the turbulent pressure transport )

?

C is generally
negligible in front of other terms in the TKE budget, mainly the production and viscous diffusion
terms (e.g., Finnigan & Einaudi 1981; Einaudi & Finnigan 1993; Makin & Kudryavtsev 1999;
Rutgersson & Sullivan 2005; Högström et al. 2009; Yang & Shen 2010). This suggests that the
the residual is dominated here by the viscous transport and dissipation, '4B ≈ n C ≈ )

a

C − YC . In
addition,)

a

C is expected to be significant only very close to the surface within the viscous sublayer,
where viscosity is important. Thus, throughout the bulk of the flow, we anticipate that '4B ≈ −εC .
For the case of the flat water surface (figure 14f), the TKE production is the primary gain term

that dominates the TKE budget at almost all heights. The positive TKE production balances the
turbulent viscous diffusion term (strictly speaking, the residual). Furthermore, the total transport
term T C , which in this case only consists of )

C

C as )
F

C = 0, increases to a positive peak close to the
surface from an almost zero value at the surface and then decreases rapidly to a negative value
farther above the surface. Away from the surface, T C falls back to a near-zero value again. The
transport term is smaller compared to the TKE production and transports the turbulent energy
both toward and away from the surface. In general, over the smooth water surface, there exists a
balance between the TKE production and turbulent viscous diffusion terms. Overall, the smooth
water surface presented a TKE budget broadly similar to that observed over flat plate surfaces in
the classical turbulent boundary layer flows (e.g., Kim et al. 1987; Pope 2000).
When waves are generated at the interface (figure 14a-e), the TKE budget starts to deviate

from that observed over the flat water surface. Over wind waves, the TKE production is still the
largest gain term, but most of %C is constrained near the interface in all cases. The positive TKE
production close to the surface moves further toward the surface as wind speed increases because
the strong mean shear confines the turbulence production near the surface. Away from the surface,
TKE production approaches zero due to the small mean velocity gradients. The wave-turbulence
interaction term, C , appears with the opposite sign in the WKE budget (see equation 5.8). Like
the TKE production term,, C appears as a source term and shows that energy is transferred from
WKE to TKE at almost all heights except very close to the surface. As expected, outside theWBL
and at the surface, the wave-turbulence interaction term is almost zero. The total TKE transport
term T C = )

C

C +)
F

C presents a negative extremum close to the surface for moderate–strong wind
speeds. One important observation here is that the peak value of T C increases and becomes more
negative with increasing wind speed. For high wind speed cases of U10 = 14.82 and 16.59 m s−1,
the transport term is larger than the shear production close to the surface, T C > %C . The strong
levels of the total transport term revealed by our measurements were also observed, for example,
by Thais & Magnaudet (1996) beneath surface wind waves and by Högström et al. (2009) above
surface waves.
Finally, assuming '4B ≈ n C , the viscous diffusion term (which includes viscous transport and

dissipation) is the second largest loss term. Thus, as a general feature, the TKE budget consists
roughly of a balance between the total transport, TKE production, and viscous terms. In many
studies, the transport term in the TKE budget is considered negligible, and thus, a balance between
the TKE production and dissipation is assumed (e.g., Large & Pond 1981; Fairall & Larsen 1986;
Chalikov & Belevich 1993; Makin & Mastenbroek 1996; Makin & Kudryavtsev 1999; Moon
et al. 2004). Our measurements, however, indicate that this is not a valid assumption close to the
surface : ?Z < 0.3, at least in the airflow above strongly forced wind-generated surface waves.
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Figure 14. Profiles of the terms in the TKE budget (defined in equation 5.12) plotted above the mean water
surface as a function of (a–e) dimensionless height : ?Z for wind waves with wind speeds varying from 2.25
to 16.59 m s−1 and (f) dimensionless law-of-the-wall height Z+ for the case of the smooth water surface
(scale shown at the right) with wind speed of 0.89 m s−1. The TKE budget terms are scaled by D3

∗: ? for
experiments with wind waves (panels a-e), and they are normalized using wall variables D+ = */D∗ and
Z+ = ZD∗/a for the experiment over the smooth water surface (panel f). All terms in the TKE budget are
measured directly except ) ?C and n C , which are derived as the residual, '4B = ) ?C + n C = −(T̄C + %C +, C ).
However, we expect the pressure transport ) ?C to be negligible such that '4B ≈ n C .

Aswe observed from figure 14, the peak value of TKE production and total transport terms near
the interface increases with wind speed. We partially attribute the enhanced values of %C and T C
to intermittent events of the airflow separation above the crest of wind waves. In order to further
provide insights on the effects of airflow separation on the TKE budget terms, instantaneous fields
equivalent to the turbulence production, wave-turbulence interaction, and total transport terms,
defined as

%C ≈ −* ′1*
′
3

1
ℎ3

m*1

mb3
, (5.13)
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Figure 15. Instantaneous fields of (a-b) the turbulent production term %C , (c-d) the wave-turbulence
interaction term ,C , and (e-f) the total transport term TC , defined in equations (5.13)-(5.15), over
non-separating (left column) and separating (right column) wind waves for the wind-wave experimental
condition of U10 = 5.08 m s−1. All terms are scaled by D3

∗: ? ×103.
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are shown in figure 15 over non-separating (left column) and separating (right column) wind
waves for the experimental case of U10 = 5.08 m s−1. All terms are normalized by D3

∗: ? × 103

and plotted above the instantaneous wave phase as a function of dimensionless height : ?I. Here,
the non-separating wind wave is smooth and nearly sinusoidal with a slope of ( = 0.18, while
the separating wave has a slope of ( = 0.31. Note that velocity fields alone cannot be employed
to determine the occurrence of airflow separation events. Instead, we use the (Galilean-invariant)
surface viscous stress to establish airflow separation (for details, see Yousefi et al. 2020a).
Instantaneously, the turbulence production is notably intense on the leeward side of the

separating wave compared to the non-separating one (figure 15a-b). The separated shear layer is
clearly the locus of a thin region of intense turbulence production. As this detached shear layer
becomes unstable, a thicker region of enhanced* ′1*

′
3 then dominates the production mechanism.

The enhanced wave-turbulence interaction downwind of the wave crest (figure 15d) results in
part from intense turbulence (* ′1*

′
3) from the airflow separation event. However, very close to the

surface, turbulence is damped by viscosity, and m*̃1/mb1 ∼ 0 and m*̃1/mb3 < 0 resulting in,C > 0.
Finally, local transport shows that TKE will be transported upwards (TC > 0) above the detached
region, and downwards beneath it. This suggests that a detached, yet coherent shear layer, may
serve to confine the turbulence generated by airflow separation events near the interface.
Overall, the airflow separation events past the wave crests are strongly associated with

enhanced turbulence production and wave-turbulence interaction. These local events prevail
through ensemble averaging and yield asymmetries between windward and leeward sides of the
waves that are particularly apparent in the wave-phase coherent averages presented above.
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6. Concluding remarks
We have investigated the mean, wave, and turbulent kinetic energy budgets in the airflow above

wind-driven surfacewaves. To this end,we utilized an existing data set of two-dimensional velocity
fields measured using combined PIV and LIF techniques (see Buckley & Veron 2017). The
acquired PIV velocity fields were separated into mean, wave-coherent, and turbulent components
using a linear, phase-dependent decomposition technique.

6.1. Turbulent and wave-coherent kinetic energies
The wave-phase averaged TKE, 〈4C 〉, shows along-wave variations that are consistent with the
occurrence of intermittent airflow separation events whereby TKE is enhanced downwind of
wave crests. The TKE is also observed to vanish within the viscous sublayer near the interface,
where the turbulent fluctuation velocities are substantially damped. In contrast, the along-wave
distribution of wave-phase averaged WKE, 〈4F 〉, is enhanced on the windward face of waves and
just above wave crests. Furthermore, because *̃8 → 0 at the surface, WKE also vanishes at the
surface.
The ensemble-averaged profiles of TKE, 4̄C , are consistent with those observed in the classical

turbulent flow over flat plates. However, the peak values are not completely scaled with classical
turbulent boundary layer parameters (i.e., friction velocity), indicating that surface waves alter
the turbulent boundary layer. As expected, all wave-coherent fields vanish above the WBL. Thus,
the ensemble-averaged WKE, 4̄F , is maximum at : ?Z ≈ 0.1 and vanishes both at the surface and
above the WBL.

6.2. Wave-phase coherent kinetic energy budget
In developing the kinetic energy equation for the wave-phase coherent flow, three terms appeared
of particular interest: the turbulence production ΠC , wave production ΠF , and wave-turbulence
interaction ,C . The distribution of the wave-phase coherent turbulence production presents a
region of enhanced production downwind of wave crests that extends up to the middle of the
leeward side of waves. These high-intense turbulence production regions, which are closely
connected to regions of enhanced TKE downwind of the waves, are in part attributed to the
detachment of high shear layers due to airflow separation events. Upwind of wave crests, ΠC is
slightly negative. This negative region is located where, for these young wind waves, the mean
wind accelerates on the windward side of the wave shape, thereby producing a favorable pressure
gradient.
The wave-phase dependence of ΠF shows production on both sides of the wave crests, albeit

with more intense production on the waves’ windward sides. These regions of strong positive
ΠF upwind and downwind side of waves, located close to the surface below roughly : ?Z < 0.1,
are intertwined with negative regions of ΠF above the wave crests and troughs wherein WKE is
slightly destroyed. Thus, there is a complex balance between the along-wave behavior of wave
and turbulence production terms that determines the total production of the fluctuation energy,
Π = ΠC +ΠF . Over the downwind side of waves, ΠC is always larger than that of ΠF at all wind
speeds, and on the upwind side of waves, the magnitude of the wave production term is greater
than that of the turbulence production. Overall, the total production is positive everywhere except
for the upwind side of wave crests for moderate-high wind speed cases with U10 = 5.08-16.59
m s−1. For the lowest wind speed of U10 = 2.25 m s−1, Π > 0 everywhere.

The wave-turbulence interaction term, which describes the production (or destruction) of the
turbulent energy by the waves through the action of wave-phase coherent turbulent stresses,
showed an alternating positive-negative pattern along the wave crest of surface wind waves. In
moderate to high wind speed cases,,C < 0 upwind of wave crests, and thus, the energy is drained
from the turbulence and transferred into the wave perturbation field. Downwind of wave crests,
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however, energy is transferred from the wave perturbation into the turbulence (,C > 0). The
wave-turbulence interaction is confined near the interface because the turbulence is abated by the
small vertical and horizontal gradients of the wave-induced velocity away from the surface.

6.3. Turbulent and wave kinetic energy budgets
The decomposition of the velocity fields into mean, wave-induced, and turbulent components
allowed us to examine separately turbulent and wave kinetic energy budgets. These budget
equations include, as in classical turbulent flows, energy production, transport, and dissipation. In
addition, there is also a wave-turbulence interaction term, which appears in both WKE and TKE
budgets but with the opposite sign and represents a direct energy exchange between the wave and
turbulence fields.
Over wind-generated surface waves, TKE production, %C , is the largest gain term in the TKE

budget. The vertical profiles of %C are qualitatively similar to those found in classical turbulent
flow over flat surfaces but do not fully collapse using only turbulent boundary layer parameters.
This indicates a clear effect of the surface waves on the TKE overall balance. We find that TKE
production is predominant near the top of the viscous sublayer.
The WKE production, %F , is the principal source of WKE. It represents the transfer of energy

from the mean flow to the wave field. In other words, wave growth occurs when %F > 0. Our
data showed that WKE production is mainly positive, particularly near the interface. This is to
be expected for these strongly forced waves. Yet, %F appears to be slightly negative in the upper
portion of the WBL, where the energy is thus transferred from the wave-induced field to the
mean flow. We find that WKE production occurs primarily below the Stokes layer height. Finally,
assuming a statistically steady state, we estimated the pressure transport term in the WKE budget
and found that the bulk of WKE production is balanced by the pressure transport.
The profiles of the mean wave-turbulence interaction,, C , show drastic vacillations with height

above the surface. Like %C , , C yields production of turbulence at all heights except very close
to the surface. As a general trend, , C vanishes above the WBL and is maximum at : ?Z ≈ 0.1.
A weak negative peak near the interface indicates a local transfer of energy from the turbulence
to the wave-phase coherent perturbations. The positive peak of , C increases with wind speed,
and therefore, more energy is transferred from the wave perturbation field to the turbulence with
increasing wind speed.
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