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ABSTRACT

The quantification of pressure fields in the airflow over water waves is fundamental for understanding the coupling of the atmosphere and the
ocean. The relationship between the pressure field, and the water surface slope and velocity, are crucial in setting the fluxes of momentum
and energy. However, quantifying these fluxes is hampered by difficulties in measuring pressure fields at the wavy air-water interface.
Here we utilise results from laboratory experiments of wind-driven surface waves. The data consist of particle image velocimetry of the
airflow combined with laser-induced fluorescence of the water surface. These data were then used to develop a pressure field reconstruction
technique based on solving a pressure Poisson equation in the airflow above water waves. The results allow for independent quantification of
both the viscous stress and pressure-induced form drag components of the momentum flux. Comparison of these with an independent bulk
estimate of the total momentum flux (based on law-of-the-wall theory) shows that the momentum budget is closed to within approximately
5%. In the partitioning of the momentum flux between viscous and pressure drag components, we find a greater influence of form drag at
high wind speeds and wave slopes. An analysis of the various approximations and assumptions made in the pressure reconstruction, along
with the corresponding sources of error, is also presented.

1. Introduction

The vast majority of themechanical energy exchange be-
tween the atmosphere and ocean occurs through the ocean
surface wave field (Wunsch and Ferrari 2004). Winds
blowing over the surface of the ocean generate surface
gravity waves, and a host of processes arising from the
wavy surface then modify the exchanges of momentum,
energy, and gases in the near-surface boundary layer be-
tween ocean and atmosphere. The alterations in these
fluxes due to surface waves are known to have important
implications for the climate system (Cavaleri et al. 2012),
as well as in weather prediction (Zhang et al. 2006), and
ocean circulation (Ardhuin et al. 2004).

A principal barrier to understanding and quantifying
the exchange of momentum and energy at the air-water
interface is the extreme difficulty in performing measure-
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ments near a moving wavy interface. In order to quan-
tify atmosphere-ocean fluxes it is necessary to measure
velocities, pressure, and interface displacements simulta-
neously, at distances very close to the moving air-water
interface, and over scales small enough to resolve wave
phases. While a number of coupled physical processes in-
fluence the air-water momentum budget (e.g., wave break-
ing, airflow separation), momentum is directly exchanged
between the air and the water either through surface vis-
cous stresses, or pressure-induced form drag (e.g., Phillips
1977). The relative importance of each of these viscous
and form drag components has been of interest for the past
decades. Quantifying their respective roles in the gener-
ation of ocean surface currents and waves still remains a
major challenge (Sullivan and McWilliams 2010; Grare
et al. 2013; Buckley et al. 2020).

Pressure measurements within the air-side boundary
layer over wind waves are sparse (e.g. Elliott 1972; Dob-
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son 1971; Hasselmann and Bösenberg 1991; Donelan et al.
2006), with the most recent ones reported by Savelyev
et al. (2011) and Grare et al. (2013) from experiments in
wind-wave flumes. Particle image velocimetry (PIV) mea-
surements within the water-side (Banner and Peirson 1998)
and air-side (Veron et al. 2007; Buckley et al. 2020) viscous
sublayers of wind-generated waves have given reliable es-
timates of viscous drag for laboratory wind waves. Mean
form drag contributions were estimated using the law-of-
the-wall, and it was suggested that the relative contribution
of viscous drag to the air-sea momentum flux dominates
over smooth nascent waves, but decreases with increasing
wave slope (Buckley et al. 2020). However, to the best
of our knowledge, both quantities have never been mea-
sured simultaneously. While significant advances have
been recently made using both direct numerical simula-
tions (DNS) and large eddy simulations (LES) of wind-
wave dynamics (see e.g., Husain et al. 2019, with match-
ing airflow PIV measurements), modeling efforts suffer
from a number of drawbacks. Some of these limitations
include either neglecting or not resolving viscous effects at
the surface, incomplete air-water coupling physics, and re-
strictions to unrealistic Reynolds numbers and wave fields
(typicallymonochromatic) (e.g., Sullivan et al. 2000, 2018;
Liu et al. 2010; Hao and Shen 2019).

In the present study we use laboratory measurements to
simultaneously estimate both the viscous tangential stress
and the pressure-induced form stress. This is done by us-
ing two-dimensional velocity fields measured over wind-
generated waves through PIV, together with interface de-
tection from laser-induced fluorescence (LIF). This is nec-
essarily done with an extremely high spatial resolution that
is capable of resolving the viscous boundary layer along
the air-water interface (Buckley and Veron 2016, 2017).
The velocity measurements are then used to estimate an
approximate reconstruction of the pressure field based on
a Poisson-solver approach (Murai et al. 2007; Van Oud-
heusden 2013). To our knowledge, the results reported
herein are the first spatially-resolved pressure fields directly
measured above wind-generated waves. The assumptions
involved in this method, such as approximate boundary
conditions and the limitations of two-dimensional velocity
inputs, are systematically tested. We find that the form
stress calculated from the reconstructed pressure fields re-
sults in a momentum budget that is closed to within 5%.
The results allow for a partitioning of momentum fluxes
between viscous and form stresses, and demonstrate the
increasing importance of form stress at high wind speeds
and wave slopes. The accurate reconstruction of pressure
fields also opens new possibilities for examination of the
physical mechanisms of wind-wave coupling.

The paper is organised as follows. After a brief descrip-
tion of the experimental setup, we describe the methods
used in reconstructing the pressure field. Then results of
the pressure field reconstruction are presented including a

comparison of viscous and form drag stresses for different
wind speeds. In the discussion section we test the various
assumptions made in our pressure reconstruction method
utilising a large-eddy simulation of turbulent airflow over
fixed sinusoidal wave forms. Conclusions are summarised
in the final section.

2. Laboratory experiments

a. Setup

The laboratory measurements used in this paper were
obtained at University of Delaware’s large wind-wave-
current facility. Since the experiments are described in
detail in Buckley and Veron (2017), we will offer here only
a very brief description. A multi-laser, multi-camera, op-
tical wind-wave measurement system was placed at a fetch
of 22.7 m, in the wind-wave-current tank that is 42 m long,
1 m wide and 1.25 m high. The mean water depth was
0.70 m, with an airflow space of 0.55 m. A sketch of the
experimental setup is presented in Figure 1, along with ex-
amples of instantaneous airflow velocity fields obtained by
PIV, embedded in larger LIF snapshots of the wave field.

In this paper, measurements from 3 different wind/wave
conditions are used. Winds with mean 10-m equivalent
speeds of U10 = 2.2, 5.0, and 9.4 m s−1 were generated by
the recirculating wind tunnel. Wind waves were observed
for all three wind speeds and all waves studied here were
wind-generated (no paddle generatedwaves). The different
experimental conditions are summarized in Table 1.

Despite the limited domain of the laboratory channel,
the mean airflow characteristics within the first ∼10-20
cm above the surface, as well as the statistics of turbulent
momentumflux, are in good agreementwith past in situ ob-
servations and LES simulations of steady state conditions
(see figure 11 of Buckley and Veron 2016).

b. Data processing and phase averages

As mentioned above, the waves generated in these lab-
oratory experiments are generated by the wind and are
therefore notmonochromaticwaves. However, at short lab-
oratory fetches, the wave field is relatively narrow banded.
Furthermore, it is generally useful to examine the data and
their variations relative to the phase of an equivalent ide-
alized periodic water wave. To do so, we average our data
relative to the local wave-phase and height above the water
surface (see Fig. 2). Throughout the rest of the paper,
we refer to such an average as the phase average. In this
section, we describe our method of phase averaging the
data.

The details of the wave phase averaging procedure are
as follows: first and foremost, phase averaging requires
a method of reliably determining wave phase along each
part of the water surface. This is done using the Hilbert
transform of thewater surface profile, identical to the phase
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Fig. 1. Sketch of the experimental setup, placed at a fetch (i.e., distance down-wind from the onset of wind-wave growth) of 22.7 m within
University of Delaware’s large wind-wave-current facility, along with examples of composite instantaneous two-dimensional LIF-PIV data products,
for the three wind speeds examined here (U10 = 2.2, 5.0, and 9.4 m s−1).

Table 1. Summary of experimental conditions. Each experiment is characterised by a friction velocity u∗, and the 10-m extrapolated velocity
U10, computed by fitting the logarithmic part of the averaged PIV velocity profile in the air. Peak wave frequencies fp were obtained from laser
wave gauge frequency spectra. The phase speed, cp , and wavenumber, kp , were derived by applying linear wave theory to fp . The wave amplitude
ap was obtained from root-mean-square amplitude ap =

√
2arms computed from the wave gauge derived water surface elevation time series.

U10 u∗ cp cp/u∗ ap λp apkp fp
m s−1 cm s−1 m s−1 − cm m − Hz
2.2 7.3 0.47 6.5 0.15 0.14 0.07 3.3
5.0 17 0.62 3.7 0.5 0.25 0.13 2.5
9.4 31 0.78 2.5 1.20 0.39 0.19 2.0

detection in Buckley and Veron (2017). Figure 2 shows a
typical wave profile in a PIV image. We begin the phase
averaging process by defining a new coordinate system
(φ, ζ) in the region above the wave,

φ(x, z) = φ(x) and ζ(x, z) = z−η(x). (1)

In this coordinate system, the φ-coordinate represents the
wave phase, and η the water surface elevation. A wave
phase of 0 denotes the wave crest and a wave phase of ±π
denotes the wave trough (see abscissa in Fig. 2). The new
vertical coordinate ζ , measures distance above the water
surface.

To obtain phase-averaged fields, we bin data into 144
uniformly sized phase bins covering the interval −π < φ <
π. We average data from all PIV snapshots that are within

the same φ and ζ bin. The resultant phase average has the
same vertical resolution as the original data but only 144
grid points in the horizontal direction (one per phase bin).
The phase average of an arbitrary field, Ξ, (which can be a
PIV velocity field or any other derived product such as the
vorticity) is denoted by

〈
Ξ
〉
.

3. Pressure reconstruction method

For incompressible flows in fluids of homogeneous den-
sity, the pressure is related to gradients in velocity through
the following pressure Poisson equation

−∇2p = f with f ≡ ρ∇ · (u · ∇)u. (2)

Here, p is the deviation of pressure from its mean hy-
drostatic level; ρ is the air density; and u = (u,v,w) is the
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Fig. 2. Plot of the coordinate system used in the analysis. The
green lines indicate a constant phase (φ), as detected using the Hilbert
transform method. The blue lines indicate lines of constant ζ and the
black line is the water surface (ζ = 0). The red region exemplifies a bin
as used in the phase averaging process, albeit much bigger than those
actually used. All values within the same bin are averaged together.

velocity vector in the standard Cartesian (x, y, z) coordinate
system. We use the ≡ symbol to denote definitions. Eq.
(2) is derived by taking the divergence of the Navier-Stokes
equations. It has been shown to yield reliable pressure
fields from PIV data in engineering applications (Murai
et al. 2007; Van Oudheusden 2013).

The quantity f will be referred to as the forcing func-
tion of the system. It is proportional to the second-order
invariant of the velocity gradient tensor, and because it is
independent of the frame of reference, it can be meaning-
fully interpreted. In fact, f can be split into two different
contributions, strain and vorticity (or enstrophy):

f ≡ ρ∇ · (u · ∇)u = ρ
(
S : S−

1
2

q ·q
)

(3)

whereS≡ 1
2
(
∇u+ (∇u)T

)
is the strain tensor, andq≡∇×u

the vorticity. This comes from the fact that ∇ · (u · ∇)u =
(u · ∇)(∇ ·u)+∇u : ∇u, with the first term vanishing, and
the second rewritten as S : S− 1

2 q ·q (see Davidson 2015,
p. 45). The strain component is positive since S : S = α2+
β2+γ2 > 0, with α, β, γ the principal rates of strain. Also,
the enstrophy component is always negative, i.e., − 1

2 q ·
q < 0. Therefore, f gives a local measure of the relative
importance of strain and vorticity. If f < 0, the flow is
dominated by vorticity (i.e., has high enstrophy), whereas
if f > 0 it is dominated by strain. Equivalently, regions of
high vorticity (strain) lead to ∇2p > 0 (∇2p < 0) such that
there is forcing towards a local minimum (maximum) in
the pressure field.

Due to the limitations of the PIV data in measuring
only two-dimensional, xz-planar flows, it is not possible
to use the full f to force the pressure Poisson equation.
We will therefore proceed by tentatively assuming that
the deviations from planarity cancel out over long time
averages. This assumption is discussed in section 5, in

which turbulence-resolving numerical simulations are used
to demonstrate that accurate average pressure fields and
form drag estimates are obtained. Utilising only the planar
terms, the forcing function simplifies to

f = −2ρ
(
∂u
∂x

∂w

∂z
−
∂u
∂z

∂w

∂x

)
. (4)

Alternate forms of f are possible with the same assump-
tions on the airflow [see, for instance Van Oudheusden
(2013)]. These formulations are identical for perfectly two-
dimensional flows, but may lead to slightly different results
when deviations from planarity exist. We have chosen the
above formulation because it gives an unbiased estimate
of f when there is random noise in the velocity gradient
data. Once f is determined from the PIV measurements,
the pressure field is readily estimated.

a. Numerical procedure

In order to solve the pressure Poisson equation (2), we
use a finite difference scheme. On the interior of the do-
main, at coordinate indices (i, j),

pi+1, j −2pi, j + pi−1, j

(∆x)2
+

pi, j+1−2pi, j + pi, j−1

(∆z)2
= − fi, j,

(5)
where ∆x and ∆z are the grid spacings in the horizontal (x)
and vertical (z) directions. The finite differences algorithm
is implemented on a square grid (with ∆x = ∆z) coinciding
with the experimental measurements.

The computational domain is rectangular except that the
bottom boundary is taken as the wavy water surface, and is
identical to the PIV measurement domain. Boundary con-
ditions on the bottom water surface are implemented using
a combination of the numerical methods described by Fox
(1944), Noye and Arnold (1990), and Morton and Mayers
(2005). Wave-height measurements, described previously
in Buckley and Veron (2016), are used to determine the
position and slope of the bottom boundary over sub-grid
scales. The key results presented in this paper do not
change significantly when simpler boundary approxima-
tions involving the discretization of the bottom water sur-
face are used (see Noye and Arnold 1990, for a description
of the standard method). Thus, the results presented here
are independent of the interpolation scheme used at the
bottom boundary. The side and top boundaries are located
at the edges of the PIV field.

b. Boundary conditions

For each PIV field, instantaneous pressure fields are
computed. At the air-water interface, we use the Neumann
condition where

∇p|0 ·n = −ρ
Du
Dt

����
0
·n+ ρν∇2u|0 ·n, (6)
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with ν the kinematic viscosity, along the air side of the
water surface, denoted by the subscript 0. This condition
is derived by taking the dot product between the unit vector
normal to the water surface, n, pointing into the air, and the
Navier-Stokes equations by evaluating the equations in the
limit as the air-water interface is approached from above.

The acceleration of the water surface (first term on the
right hand side of Eq. 6) is computed by decomposing
the surface measurements into spatial Fourier components.
We assume that each individual wave component propa-
gates with an angular frequency given by the deep water
gravity-capillary wave dispersion relationship

ω =

√
k
(
g+

σk2

ρw

)
. (7)

Here, k is the wave number; g is the acceleration due to
gravity; ρw is the water density; and σ = 0.074 Nm−1 is
the surface tension. Note that alterations in this dispersion
relation due to interaction with wind are small, of the order
of the ratio of the air to water densities, and are therefore
neglected (e.g., Young and Wolfe 2014). The accelera-
tion of the water surface is then computed by calculating
and summing accelerations of individual wave components
using linear wave theory. At every step throughout the cal-
culation, the surface profiles (displacement, velocity, and
acceleration) are smoothed using a second order low-pass
Butterworth filter with a cutoff wavelength of 1 cm.

In order to estimate the spatial velocity gradients in the
viscous term of Eq. 6, the instantaneous velocities mea-
sured by PIV were first fitted with cubic smooth spline
shells, and gradients were subsequently estimated using
analytical derivatives of the spline fits (for additional de-
tails, see Buckley and Veron 2017, and references therein).
Since the wind-wave conditions are within the transition-
ally rough regime in all three experiments (with Reynolds
roughness numbers greater than 0.2, see for example the
classification proposed by Kitaigorodskii and Donelan
1984; Donelan 1998), the near-surface instantaneous ve-
locities fluctuate significantly in the vertical and stream-
wise directions, and higher order spatial derivatives are
expected to show significant variability. However, the spa-
tial resolution of the measurements used here is such that
the viscous sublayer is fully resolved in all wind speed con-
ditions. A sensitivity analysis is performed in section 5 to
examine any errors arising in the treatment of the viscous
term (second term on the right hand side of Eq. 6).

On the side boundaries, we use the Neumann condition
∇p ·n = 0. This boundary condition may lead to a distor-
tion of the pressure field near the side of the computational
domain. As a result, when doing subsequent pressure cal-
culations, we only include pressure values on the interior
60% of the domain. The improvement in doing so, is
discussed in section 5.

On the top boundary, we use the boundary condition
p = 0. This Dirichlet condition ensures that the Poisson
problem is well-posed. Pressure perturbations caused by
the waves decay away from the water surface, making the
approximation a good one for small amplitude waves, and
relatively large domain sizes.

4. Results

a. Instantaneous fields

Figure 3 shows u, w, f , and p for a single PIV field
in the U10 = 5.0 ms−1 wind speed experiment. The fig-
ure highlights the different steps used to compute pressure
fields. First, the PIV data yields u and w velocity fields. As
suggested from the u field, and confirmed by an analysis of
the vorticity field [not shown, see Buckley et al. (2020)],
airflow separation occurs starting at the wave crest and ex-
tends down the entire leeward face of the wave (Fig 3a).
Figure 3(b) shows that variability in the vertical velocity,w,
is strongest at the boundary between the free stream and the
separated flow on the leeward side of the wave crest. The
high variability in w indicates that turbulence is strongest
in this region, which is characterised by a separated shear
region (Buckley and Veron 2016). Slight trends of upward
(downward) air motion exist on the windward (leeward)
side of the wave. In general, wave-coherent velocities of
the surface waves are difficult to distinguish in the instan-
taneous velocity fields of the airflow, but become apparent
once suitable averaging is performed. For time average
wave-coherent motions, see Buckley and Veron (2019).

Next, we estimate the forcing function f from the PIV
velocity fields using (4). As can be seen, f has large vari-
ability over the entire PIV field (Fig. 3c, top). Since f
is computed from spatial gradients in (u,w), it highlights
the small-scale turbulent variability that is present. This
variability is strongest on the leeward side of the wave,
reflecting the fact that the flow is most turbulent in this
region. The bottom panel of Figure 3c shows f vertically
integrated over the first 3 cm above the water surface, then
smoothed using a 3.5 cm width-at-half-maximum Gaus-
sian filter. This curve will be denoted as Fsm, and gives
an estimate of the net f forcing close to the water sur-
face, without the turbulent variability. As can be seen, Fsm
is positive on the windward side of the wave where the
surface shear is maximum. In contrast, Fsm tends to be
negative in the separated region on the leeward side of the
wave, indicating that this is a region of high vorticity. De-
spite the high f variability present, the small-scale regions
of strong turbulent strain and vorticity largely cancel one
another in the separated lee of the wave, and the smoothed
near-surface distribution of Fsm exhibits comparable am-
plitudes on the windward and leeward wave faces.

Finally, from the forcing function we estimate the in-
stantaneous pressure field using the procedure described
above. The pressure field (Fig. 3d) obtained from the
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Fig. 3. Plot of (a) horizontal velocity, u, (b) vertical velocity, w, (c) pressure forcing, f , and (d) pressure, p, for one sample PIV field of the
U10 = 5.0 ms−1 wind speed case. The upper panel of (c) shows the instantaneous f , while the lower panel shows Fsm, obtained from f vertically
integrated over the first 3 cm above the water surface, then smoothed using a Gaussian filter with 3.5 cm half power width. The wind is flowing
from the left and the wave is propagating rightwards. The forcing function f was computed from the u and w fields using (4). The instantaneous
pressure field was then calculated from f using the method described in section 3.

Poisson solver resembles the smoothed, integrated version
of the forcing function. High pressure is located on the
strain dominated windward face of the wave. On the other
hand, low pressure is located on the vorticity dominated
leeward side of the wave crest. The overall pressure re-
sponse is comparable in magnitude on both the windward
and leeward sides. The large turbulent variability in f
is responsible for creating localised eddy structures, most
clearly visible on the leeward side of the wave (Fig. 3d).

The instantaneous pressure field shown here is primarily
intended to demonstrate the method of computing pressure
fields. Due to non-planar turbulent structures in the flow
(i.e., with an out-of-plane y component), the instantaneous
fields obtained in the Poisson solver are expected to depart
substantially from actual instantaneous pressure fields. We

show in Section 5, however, that once the instantaneous
fields are suitably phase-averaged, the resulting form drag
shows relatively small error, indicating that the pressure
field is also a relatively unbiased estimate. For the remain-
der of the paper, we therefore focus only on phase-averaged
quantities.

b. Phase-averaged pressure fields

The pressure fields obtained by phase averaging instan-
taneous pressure fields (such as those above) are shown in
Figure 4, with each panel corresponding to a different wind
speed case.

For the U10 = 2.2 ms−1 wind speed case, the pressure
field is approximately 90◦ out of phase with the water
surface displacement. This configuration of the pressure
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Fig. 4. Phase average pressure fields over wind-driven water waves for wind speeds (a)U10 = 2.2 ms−1, (b)U10 = 5.0 ms−1, and (c)U10 = 9.4
ms−1. The wind is flowing from the left and the wave is propagating rightwards. The dashed gray lines indicate the location of the wave crest
(φ = 0). Below each pressure field is a plot showing the pressure-slope correlation averaged by wave phase. Values of pressure slope correlation
are normalized by total stress, as estimated using (10).

field, with high pressure on the windward side and low
pressure on the leeward side of the wave crest, is optimal
for transferring momentum to the water (see below).

For the two higher wind speed cases, the pressure field
shifts upwind and becomes nearly in phase with the water
wave elevation. Nonetheless, a small phase shift is present,
with maximum and minimum pressures located slightly
leeward of the wave trough and crest, respectively. Note
that the amplitude of the pressure field variations increases
by roughly one order of magnitude with each successive
wind speed case.

c. Momentum flux

The average flux of momentum across the water surface
is determined by the sum of both a viscous stress acting
tangential to the water surface, and a pressure-induced
form drag acting normal to it. The horizontal component
of these two stresses can be calculated as

τv = ρν

(
∂u
∂z
+
∂w

∂x
−2

∂u
∂x

∂η

∂x

)����
0
, (8)

and

τ f = p|0
∂η

∂x
, (9)
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for the viscous and form drags, respectively. In these equa-
tions the overbar refers to an ensemble average for all mea-
surements in an experiment. These equations are derived
from the stress tensor for incompressible Newtonian fluids
(see Appendix A for details). Due to difficulties in measur-
ing velocity gradients directly at the water surface, and to
reduce measurement noise, we use all PIV measurements
within the viscous sub-layer when calculating the viscous
stress. The viscous sublayer thickness is defined here as
five wall units, ν/u∗, from the water surface. Here, u∗
refers to the friction velocity.

In Figure 4, we also plot the pressure-slope correlations,
〈p|0 ∂η/∂x〉, below each phase-averaged pressure field.
Here again, the subscript |0 denotes the surface values.
To a good approximation, the average value of this curve
yields the value of τ f , quantifying the mean pressure-
induced flux of horizontal momentum across the water
surface. The exact calculation of τ f requires the average to
beweighted slightly in order to accommodate a nonuniform
phase distribution of data points, due to deviations of the
observed waveforms from perfect sinusoids. The τ f values
estimated in this way are listed in Table 2.

For the U10 = 2.2 ms−1, the optimal 90◦ phase shift
between the pressure field and the surface elevation in-
deed leads to a pressure-slope correlation that is positive at
nearly every phase. The form drag curve has two maxima
along the wave profile. The first maximum occurs wind-
ward of the wave trough and the second maximum is just
leeward of the wave crest. These are the regions where the
pressure field most strongly influences wave growth since
the interface slope is a maximum. Most of the transfer of
horizontal momentum at the air-sea interface is split evenly
between the windward and leeward sides of the wave, as
evidenced by the fact that the pressure-slope correlation
curves are of a similar magnitude there.

For the two higher wind speed cases, the phase shift
between the pressure field and the surface elevation is re-
duced (less than 90◦). Yet, the pressure-slope correlation
exhibits a skew toward positive values indicating an overall
momentum transfer which leads to a positive form drag.

Summing together (8) and (9) we estimate the average
total stress on the water surface (i.e., the total flux of hori-
zontal momentum across the water surface) by

τtot = τ f + τv . (10)

To validate the results, we also compute an independent
estimate of the total stress using law-of-the-wall theory as

τ∗tot = ρu2
∗ . (11)

The friction velocity, u∗, can be estimated from dU/dz, the
mean flow shear within the logarithmic layer. Here U(z)
denotes the ensemble mean of the air velocity at height z.
Values of u∗ for each wind speed were first reported and
described by Buckley and Veron (2016). In this analysis,
we use these reported values.

Table 2. Table of bulk momentum budget components over water
waves for each wind speed. Mean viscous stress (τv ), form drag (τ f ),
and total stress (τ∗tot ) were calculated using Eqs. (8,9,11).

U10
(ms−1)

u∗
(cms−1)

τv/τ
∗
tot τ f /τ

∗
tot τtot/τ

∗
tot

2.2 7.3 0.86 0.15 1.01
5.0 17 0.60 0.39 0.99
9.4 31 0.40 0.65 1.05

Table 2 shows the estimates of τtot , τv , and τ f for
each of the wind speeds as calculated with Eqs. (8,9,10).
For all three wind speed cases, our estimated viscous and
form stresses close the momentum budget to within 5% of
total stress. As wind speed increases, the contribution of
form drag to the total momentum flux increases. For the
U10 = 2.2 ms−1 wind speed, form contributes only 15%
to the total horizontal momentum flux across the surface.
However, at the largest wind speed of U10 = 9.4 ms−1,
form drag is the dominant component contributing 65%
of the momentum flux. Note that we cannot separate the
effects of wind speed (or wave age) variations from those
of wave slope variations since these are tightly related in
these experiments at fixed fetch.

In Figure 5, we show our mean normalized form drag
estimates τ f /τ∗tot , as a function of wave slope, alongside
estimates from previous laboratory pressuremeasurements
(Grare 2009; Savelyev 2009), LES (Hara and Sullivan
2015) andDNS (Sullivan et al. 2000; Yang and Shen 2010).
Since wave age is also suspected of influencing form drag
(e.g., Sullivan et al. 2000), only relatively young wave age
conditions were selected here (cp/u∗ < 8), including a sta-
tionary wave case from Sullivan et al. (2000). We observe
a good agreement in our form drag estimates with previ-
ous studies, in spite of differences in fetch, wave age, and
the mechanism of wind-wave generation. The cited stud-
ies use a mix of wind generated waves, mechanical waves
and numerically-imposed Airy waves, and include wind
speeds up to U10 = 26.9 m s−1 (Savelyev 2009; Savelyev
et al. 2011).

5. Error analysis

In this section we test each of the major assumptions
used in computing the pressure fields. We also use this to
arrive at an approximate estimate of the errors involved in
the pressure reconstruction. To do this we rely on com-
parisons with highly-resolved large eddy simulation (LES)
data of air flow over a fixed sinusoidal surface. The tur-
bulent velocity and pressure fields produced in this way
are expected to approximate that found at a fully coupled
air-water interface (see Yang and Shen 2010; Liu et al.
2010; Sullivan et al. 2000). Parameters and boundary con-
ditions in the LES are chosen to closely mimic conditions
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Fig. 5. Mean normalized form drag estimated using 2D pressure
fields retrieved from 2D airflow PIVmeasurements over laboratory wind
waves, normalized by the total stress, plotted versus wave slope (black
symbols). Results from pressure measurements above mechanically
generated waves from previous laboratory studies (Grare 2009; Savelyev
2009) are also shown, as well as previous form drag estimates from LES
(Hara and Sullivan 2015) and DNS (Sullivan et al. 2000; Yang and Shen
2010).

in the low wind speed wind-wave tank experiment. The
mean velocity in the LES, when averaged over a region of
8.0−9.7 cm above the solid boundary, is 1.45 ms−1, close
to the 1.33 ms−1 found in the laboratory experiment. The
wave slope in the LES of ak = 0.08 also compares well to
laboratory conditions of apkp = 0.07. See Appendix B for
details on the LES simulation.

When testing assumptions using the LES data, we input
xz-slices of the full, turbulent, three-dimensional LES flow
into our Poisson solver and compare the resulting output
with the exact pressure field output by the LES. In stan-
dard LES, the subgrid-scale (SGS) stress terms contribute
to the forcing function, f , of the pressure field, and can
produce a so-called “modified pressure" by contributing
to normal stresses. However, as described in appendix B,
the resolution of our simulation is high enough that these
SGS terms can be neglected except within a region very
close to the bottom boundary. Therefore, in the vast ma-
jority of the domain outside the near-bottom boundary, we
may refer to a pressure field (that does not include SGS
terms) without ambiguity. Form drags from the LES are
computed through eliminating the closest 5 grid points to
the surface topography in f in order to avoid numerical
artifacts and SGS stresses close to the bottom boundary.
We also evaluate the pressure gradients at this location to
use as input to the solver as a bottom boundary condition.
Form drag is then computed using the resulting pressure
fields evaluated at the water/topography surface.

(i) Top Boundary Condition Figure 6(a,b) show that,
as expected, the choice of the top boundary influences the

pressure fields near the top of the PIV domain. Near the
water surface, however, the amplitude of the pressure field
variations are comparable. When running these trials, xz-
slices are used that have the same height above the water
surface as the smallest of the PIV fields. We therefore
conclude that the top boundary condition does not affect
the overall structure of the estimated pressure fields near
the interface, provided that the domain extends sufficiently
far above the interface. Note that it is the structure and
variability of the surface pressure field that is most im-
portant for the momentum flux. The mean pressure has
no influence on momentum or energy transfers across the
air-water interface. It can be that errors in surface pressure
are amplified by the surface slope which may lead to larger
errors in the estimates of the form drag. In the LES simula-
tions presented here, a −25% error in the surface pressure
amplitude yields a −26% error in the estimated form drag.

This error can be reduced by placing the top boundary
further from the water surface, however, we found a trade-
off between error due to the side boundary condition and
the top boundary condition as the height of the domain
increases. In larger vertical domains, the error due to
the top boundary decreases while the error in the side
boundary approximation increases. Optimisation of these
errors could be performed in future studies, but was not
done here.

(ii) Side Boundary Condition Figure 6(c) shows how
the approximate side boundary conditions further impact
the pressure solution from the LES. Setting the side bound-
ary conditions to ∇p ·n = 0 introduces an additional error
of only +2% into the estimates of form drag for the LES
pressure field. The additional error in the surface pressure
is localized near the sides of the computational domain,
and is largely neglected when only the central 60% of the
domain is selected for further analysis.

Table 3. Table of changes in the form drag (τ̄ f ), expressed as a
percent of τ∗tot , obtained with various artificial amplifications of the
viscous term in the bottom boundary condition. A 1× denotes the
boundary condition as used throughout this analysis, and computed as
described in Sec. 3, whereas 0× indicates the viscous term is set to zero.

U10
(m s−1)

Boundary Amplification
0× 1× 2× 5×

2.2 +2% 0% -3% -9%
5.0 +4% 0% -4% -16%
9.4 +4% 0% -3% -11%

(iii) Bottom Boundary Condition The bottom bound-
ary condition (i.e., on the water surface) relies on comput-
ing both the divergence of the surface viscous stress, and
the acceleration of the interface [see Eq. (6)]. We discuss
each of these in turn.
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Fig. 6. Effect of boundary conditions on the pressure solution. (a) Time average pressure field obtained directly from the LES simulation; (b)
pressure field obtained by using the flow output by the LES simulation in the Poisson solver, with the top boundary condition, p = 0; (c) pressure
field obtained by using the flow output by the LES simulation in the Poisson solver, with the top boundary condition p = 0 and the side boundary
condition ∇p ·n = 0; (d) pressure variation along the water surface for each case: (a) red curve, (b) blue, (c) dashed green.

The sensitivity of the derived form drag to the viscous
term in the bottom boundary condition was tested by ap-
plying various (artificial) amplifications of the term, cor-
responding to two- and five-fold amplifications, as well as
ignoring the term completely. The results of this analysis
are shown in Table 3, and demonstrate that changes in the
mean form drag in each wind speed case are only larger
than 4% of τ∗tot for the five-fold amplification of the vis-
cous term. We conclude that our results are not overly
sensitive to errors in the computation of the viscous term,
with errors of only a couple percent of total drag.

The acceleration of the airflow above the interface is
due to both the orbital velocity from the propagating sur-
face waves, and to the acceleration and deceleration of the
airflow (for these young waves) over the windward and
leeward face of the waves, respectively. In the absence of
wind, the pressure fluctuation at the air side of the water
surface has an amplitude of agρ, with a the wave ampli-
tude, and g the acceleration due to gravity (Kundu and
Cohen 2002). Using values from Table 1 results in wave-
induced pressure amplitudes of 0.018, 0.060, and 0.14 Pa,
for wind speeds of U10 = 2.2, 5.0, and 9.4 ms−1. These
values are 37%, 6%, and 3% of the amplitudes in the phase
average pressure fields shown in Figure 4, respectively.
Thus, in all but the U10 = 2.2 ms−1 experiment, the move-

ment of the surface is expected to have a minimal effect
on the pressure field. In addition, sensitivity tests similar
to those performed for the viscous term demonstrate that
form drag estimates are not sensitive to an amplification of
this term.

(iv) The planar- f approximation Finally, we test the
accuracy in reconstructing the pressure field using only the
planar (x, z) terms in the forcing function, f , as in (4). This
is done using the three-dimensional LES by comparing the
form drags obtained directly from the simulated pressure
field, to those resulting from applying our Poisson solver to
planar xz-slices. We have taken 450 total slices obtained
from 150 different time steps over a 15 s time window. The
distributions of form drag obtained from these samples are
shown in Figure 7. It can be seen that the location of the
means of the distributions are close to one another, differ-
ing by −5%. However, the much greater spread of the τf
obtained from making the planar- f approximation demon-
strates that significant errors are present for instantaneous
pressure fields, with rms relative errors for an instanta-
neous estimate of close to 300%. Furthermore, it can be
seen by the much smaller spread in the exact τf distribu-
tion (directly from the LES) that this is not due to a natural
turbulent variability, but results from making the planar- f
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approximation. Averaging over many fields is therefore
required to produce an accurate estimate of form drag, and
even with the 450 fields analysed herein, the 95% boot-
strapped confidence intervals give relative errors between
−33% and 22%. This planar- f approximation is therefore
a significant source of error that requires much averaging
over many hundreds of fields. This conclusion is in broad
agreement with previous studies that have assessed the
planar approximation in reproducing instantaneous pres-
sure fluctuations (Van der Kindere et al. 2019). Note also
that we have tested this approximation only for a single
wind speed and wave slope, there could be a dependence
on these variables, particularly when airflow separation is
present. Analysis of these cases is, however, difficult due to
the increased resolution needed to eliminate subgrid-scale
effects of f .

(v) Summary of error estimates The major sources of
error in reconstructed pressure fields were identified to be
due largely to two effects: the top boundary condition, and
the planar- f approximation. The estimated absolute errors
in mean form drag associated with all sources except the
uncertain bottom boundary condition, amount to roughly
31%. When converting these errors to percentages of the
total form drag, τ∗tot , using the values of τ̄f /τ∗tot from
Table 2, and taking a 4% error for the bottom boundary
condition, we arrive at an absolute error in total drag of
9− 24%. This is greater than the values reported in the
final column of Table 2, and suggests that the errors could
be somewhat compensating. The largest unknown error

Fig. 7. Testing of the planar- f approximation using three-
dimensional LESof turbulent flowover stationary sinusoidal topography.
The two histograms indicate the distributions of form drag, τ f , obtained
directly from the LES pressure field (orange), and those obtained from
using the planar- f approximation. Means of each distribution are indi-
cated by the dashed lines, and the sample size consists of 450 xz-slices.
The means are located at τ f = 7.5, 7.1×10−4 Pa, for the exact LES and
planar- f approximation, respectively, and differ by 5%.

source is likely to be the planar- f approximation, which
has large confidence intervals, and no definite sign. Note
that this discussion above applies only to mean pressure
fields. Errors for instantaneous fields are very large (i.e.,
hundreds of percent), and much averaging is required to
produce accurate means.

6. Summary and conclusions

In this paper, we present a technique for reconstructing
pressure fields in the airflow over water waves from com-
bined PIV and LIF laboratory data. This is done through
solving a pressure Poisson equation with a forcing that
is determined through the relative strength of strain and
vorticity (enstrophy) in the airflow. The method relies
on the application of various approximate boundary con-
ditions. Using the high resolution of the PIV measure-
ments, and the pressure field estimates, it is possible to
independently evaluate both the surface viscous stress and
the pressure-induced form drag, thus estimating the total
momentum flux at the interface. The results show that
pressure-induced form drag becomes the greater momen-
tum flux term at higher wind speeds (for 2.2 ≤ U10 ≤ 9.1
m s−1) and steeper wave slopes (for 0.07 ≤ apkp ≤ 0.19).

The agreement between the total stress, derived from
the pressure reconstruction, with an independent law-of-
the-wall bulk estimate, is within 5%. This suggests that
the pressure reconstruction technique is able to capture the
wave-phase coherent variations of the pressure field at the
interface. However, the analysis of the different approxi-
mations used in the reconstruction show that the two main
sources of error, which result from the top boundary condi-
tion and the planar approximation, have larger magnitudes
(with the sum of the errors at 31% of total form drag), and
may partially compensate. It is not clear that these errors
would still compensate in different wind sea conditions
(older wave ages for example), and the errors in the pres-
sure reconstruction may increase. Particularly uncertain
is the planar approximation, which could exhibit bias due
to out-of-plane components when wind and waves are not
aligned. We note however, that larger PIV domains that
reach heights beyond the wave boundary layer will reduce
the errors associated with the top boundary condition.

The ability to directly estimate pressure fields in the
vicinity of the air-water interface using PIV-LIF measure-
ments opens up new possibilities for studying the mecha-
nisms of momentum and energy transfers between the at-
mosphere and the ocean. Although such mechanisms have
long been the subject of numerous studies, direct mea-
surements of the pressure field have been lacking. This
work therefore, fills an important gap in the physics of
atmosphere-ocean coupling.

Acknowledgments. We would like to acknowledge fi-
nancial support from the Helmholtz Association through



12 JOURNAL OF PHYSICAL OCEANOGRAPHY

the PACES II programme, as well as the German Re-
search Foundation (DFG). This paper is a contribution to
the project M6 of the Collaborative Research Centre TRR
181, “Energy Transfers in Atmosphere and Ocean” funded
through DFG grant 274762653. MPB and FV acknowl-
edge support from the National Science Foundation, USA
(grantsOCE-1458977, OCE-1233808, OCE-0748767, and
AGS-PRF-1524733).

Data availability statement. The PIV-LIF data fields
used in this study are too large to be stored in a public
repository; data can be made available upon request to
Marc P. Buckley (marc.buckley@hereon.de). The input
files required to reproduce the LES can be found on the
Zenodo repository at the DOI 10.5281/zenodo.5355659.

APPENDIX A

Derivation of momentum fluxes

We denote the two dimensional stress tensor for incom-
pressible flows by

τi j =


−p+2µ ∂u∂x µ

(
∂u
∂z +

∂w
∂x

)
µ

(
∂u
∂z +

∂w
∂x

)
−p+2µ ∂w∂z

 (A1)

with µ the dynamic viscosity of the fluid (air, in the present
case). The total flux of horizontal momentum through the
water surface can then be calculated through

τtot =

∫
τ1j ·nds, (A2)

using the sign convention that positive τ corresponds to a
horizontal momentum loss by the air, and gain by the water.
Here we define n as the upward pointing unit normal to the
water surface, represented by s. In practise, we evaluate
this integral using instantaneousmeasurements of thewater
surface elevation, η(x, t), by substituting

n =
(
−
∂η

∂x
,1

)/ [( ∂η
∂x

)2
+1

]1/2
(A3)

and using the relation∫
f (x, η(x, t))ds =

∫
f (x, η(x, t))

[( ∂η
∂x

)2
+1

]1/2
dx.

(A4)
This leads to the following form for total horizontal stress

τtot =

∫
µ

(
∂u
∂z
+
∂w

∂x
−2

∂u
∂x

∂η

∂x

)
dx︸                                 ︷︷                                 ︸

viscous stress

+

∫
p
∂η

∂x
dx︸       ︷︷       ︸

form drag

(A5)

being composed of both pressure (form drag) and viscous
components, as indicated.

APPENDIX B

Description of the LES

The large-eddy simulation (LES) method is based on the
concept of the energy cascade, in which flow instabilities
break down large eddies into smaller eddies and so transfer
their energy to smaller scales. In LES, the contribution
of the small eddies is parameterized through a subgrid-
scale (SGS) model, whereas the large eddies are resolved.
We use the Parallelized Large-Eddy Simulation Model for
atmospheric and oceanic flows (PALM, version 6.0, re-
vision 4901), developed at the Institute of Meteorology
and Climatology of the Leibniz University of Hannover
(Raasch and Schröter 2001; Maronga et al. 2015).

The domain described for the simulations had dimen-
sions of 0.768 m × 0.128 m × 0.256 m along x, y and
z, respectively. The grid size was set to 1 mm in all di-
rections. Two sinusoidal waves of length 38.4 cm and
crest-to-trough height of 1.0 cm were prescribed along the
mean flow x-direction, giving a wave slope of ak = 0.082.
A horizontal mean pressure gradient was applied to allow
the mean flow to achieve a quasi-steady state.

The lateral boundaries of the domainwere assigned peri-
odic conditions, with a velocity bottom boundary condition
prescribed by Monin-Obukhov similarity using a nondi-
mensional roughness length of kz0 = 1.1× 10−4, which
prescribes a relationship between the surface momentum
flux and the tangential velocity at the first grid level. The
roughness length was chosen to match the value of the
low wind speed experiment (see Buckley et al. 2020). At
the domain top, a stress-free, rigid lid was used for the
velocity. To initiate the development of turbulence, ran-
dom perturbations in the velocity field with a magnitude
of up to 0.02 ms−1 were imposed at the initial time. A
minimum level of subgrid-scale turbulent kinetic energy
(SGS-TKE) was set in order to limit the eddy viscosity to
its molecular value. This state of minimum SGS-TKE was
found throughout the majority of the domain during the
quasi-steady period in which the analysis was performed.
The simulations are, in this respect, more representative of
direct numerical simulations, where the smallest turbulent
eddies are resolved, and there is no need for subgrid-scale
momentum fluxes. This also ensures that there is minimal
influence of the SGS terms in the pressure reconstruction.
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