
ALGEBRA I

G.H.

Contents

1. Introduction 1
2. Group theory 1

2.1. Beginnings, permutations and transpositions, examples of groups 1
2.2. Subgroups 5
2.3. Group homomorphisms 9
2.4. Finite abelian groups 12
2.5. Group actions, the class equation, Sylow’s Theorems 14

3. Ring theory 17
3.1. Basic definitions and examples 17
3.2. Subrings 20
3.3. Ring homomorphisms 22
3.4. Integral domains and maximal ideals 24
3.5. Integral domains and principal ideals 27

4. Field theory 30
4.1. Polynomial rings and field extensions 30
4.2. Classification of finite fields 39
4.3. Solvability and Galois miscellany 41

5. Addendum 41
5.1. Addendum/examples 41

1. Introduction

These notes were taken in University of Delaware’s MATH650 (Algebra I) course,
taught by Dr. Ivan Todorov in Spring 2021. I typed them based on hand-written notes
taken during class each week- the hope was that a typed version would provide a bet-
ter record in the future and be much more useful. Dr. Todorov’s lecture notes were
self-contained, though we (i.e. me) took material from:

• Gallian, Contemporary Abstract Algebra (9th Edition)
• Dummit & Foote, Abstract Algebra
• Isaacs, Algebra: A Graduate Course

These notes are a work in progress; all mistakes are mine and mine alone (either through
mistyping or a misunderstanding of the material). If you have any error corrections, tips,
or general comments, please reach out to me at: ghoefer@udel.edu.

2. Group theory

2.1. Beginnings, permutations and transpositions, examples of groups. As a
tiny bit of historical background: basics in group theory were initially tied to polynomial
equations and their solutions. Working with roots of polynomials, and related questions,
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2 G.H.

led to the basic formulation of a group; originally, the first groups that were studied were
permutation groups, although they were not formally defined as such. Much of this work
was done by Galois, Abel, and Lagrange. A question that also highly motivated develop-
ment in this area was:

Question: Can you always solve a polynomial equation of degree greater than or equal
to 5 in radicals?

It is Galois and his remarkable genius that made a connection between the question above
and the “solvability” of a group.

Definition 2.1. A group G is a nonempty set of elements endowed with a binary operation
· such that G contains an identity element e, inverses for each g ∈ G, and is associative
with respect to the operation.

Note: The identity element depends on the operation, and is unique (easy to prove).

Motivation: Symmetries of objects in nature- as an example, look at the symmetries of a
square:

• (( •

��
•

GG

•hh

, and • (( •hh

• '' •hh

In the two pictures above, we either rotate clockwise by some specified angle, or we fix
an axis of reflection (as seen in the picture on the right, where our axis of reflection is
the vertical line directly through our square). All others for the square can be obtained
through some combination of the two.

Note: Inverses in a group are also unique; if we suppose g1, g2 are inverses for some
element g ∈ G, then

g1 = g1e = g1(gg2) = (g1g)g2 = eg2 = g2,

using associativity of the group.

Notation: For x ∈ G, where G is a group, we say xn = x · · ·x︸ ︷︷ ︸
n times

, for n ≥ 1. We set

x0 = e, and x−n = (xn)−1, for all n ∈ N.

Note: If x1, . . . , xk ∈ G then (x1 · · ·xk)−1 = x−1
k · · ·x

−1
1 (Socks and Shoes property).

This relies on extending associativity by induction.

Proposition 2.2. (Cancellation) Let G be a group, and x, y, z ∈ G. Then

(i) xy = xz ⇒ y = z
(ii) yx = zx⇒ y = z

Proof. If xy = xz, then

x−1(xy) = x−1(xz)⇒ (x−1x)y = (x−1x)z ⇒ ey = ez ⇒ y = z.

The other proof is almost identical. �
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Examples:

(i) (Z,+)
(ii) (Zn,+) for n ≥ 2

Note: For future reference/assignments, make sure to add square braces around numbers
when working with Zn = {[0], [1], . . . , [n− 1]}.

Definition 2.3. A group G is abelian if xy = yx for all x, y ∈ G.

Other group examples:

(i) GLn(R) : set of all invertible matrices in Mn(R)- the operation is matrix multipli-
cation with identity element In. (GLn(R) has a lot more structure, incidentally,
outside of being a group e.g. convergence of elements, etc)

(ii) The symmetric group Sn, where n ∈ N. Consider the set [n] = {1, . . . , n}; a
permutation on [n] is a bijection

π : [n]→ [n]

The operation in this group is function composition, and the identity is the identity
map. There are two types of permutations:
• Transposition- π ∈ Sn moves only 2 elements, fixes all others. The notation

for this is (i, j) when i 6= j.
• Cycle- choose i1, . . . , ik distinct. A cycle moves

ii → i2 → · · · → ik → i1.

The notation for this is (i1, . . . , ik) where k is the length of the cycle.

Definition 2.4. The support of π ∈ Sn is defined as

supp(π) = {i ∈ [n] : π(i) 6= i}

Note: supp(π) is the complement of the fixed point set of π, where π ∈ Sn.

Note: |Sn| = n!.

Definition 2.5. For a group G, the order of the group is defined as

|G| =

{
the number of elements in G if G is finite.

∞, if G is infinite.

Note: If π, ρ ∈ Sn where n ≥ 3 then πρ 6= ρπ in general; however, if supp(π)∩supp(ρ) = ∅,
then the two commute.

Theorem 2.6. Every permutation is the product of disjoint cycles. Furthermore, every
cycle is the product of transpositions.

Proof. (Sketch) We’ll induct on |supp(π)| for π ∈ Sn. Pick any i ∈ supp(π); take
i, π(i), π2(i), . . .. Pick the smallest k, ` with k < ` such that πk(i) = π`(i). If k ≥ 1,
apply π−1 to both sides to get πk−1(i) = π`−1(i). This would contradict the minimality
of k, `- so k = 0. This means we have a cycle i, π(i), . . . , π`−1(i). Let σ be the cycle

i→ π(i)→ · · · → π`−1(i)→ i
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Then write π = ρσ where

ρ(j) =

{
π(j), if j 6∈ supp(σ)

j, if j ∈ supp(σ)

By induction, factor ρ into disjoint cycles; since σ is a cycle and supp(ρ) ∩ supp(σ) = ∅,
we’re done. For the cycle part, note that

(i1, . . . , ik) = (i1, i2)(i2, i3) · · · (ik−1, ik).

�

Note: Applying the previous theorems twice, we immediately have that every permuta-
tion is the product of transpositions.

Fact: The parity of the number of transpositions τk where

π = τ1τ2 · · · τm
does not depend on the decomposition.

Definition 2.7. For any π ∈ Sn, we define the sign of π as

sgn(π) =

{
1, m even

−1, m odd

Definition 2.8. (Alternating group) The alternating group An is the group of permuta-
tions π on [n] where sgn(π) = 1. (i.e., the group of even permutations)

More examples:

(i) The dihedral group Dn where n ∈ N; has elements

Dn = {e, r, r2, . . . , rn−1, s, rs, . . . , rn−1s}

and relations rn = e, s2 = e, rs = srn−1. We use the fact that rks = srn−k to
reduce “words” down to simplified form. We can represent the group in terms of
generators and relations (this is a very powerful tool for groups). We can also take
a geometric view, seeing it as the group of rotations and reflections of a polygon
with n vertices (where we rotate by 2π

n
).

(ii) The free group on 2 generators. Let a, b be distinct symbols. We define a−1, b−1 as
“inverses” of a, b respectively. This gives 4 elements {a, b, a−1, b−1}. The free group
F2 has elements which are “words” (aka finite strings) on a, a−1, b, b−1 together
with the empty word ε. The group operation is concatenation of strings. The
reduced form of a word is when no cancellations can take place.

Note: There are no other relations outside of the basic stipulation that aa−1 = a−1a = ε-
hence the name “free” group, as there are no relations constraining the group.

Note: A relation in a group is an equation involving elements of a group of the form
g1 · · · gk = ε.

Special case: If we look at F1, we have exactly one symbol a and its inverse a−1; the

group has elements {. . . , a−2, a−1, ε, a, a2, . . .}. It is clear that a bijection between F1 and
Z can be made- therefore, F1

∼= Z.

Note: If g ∈ G and gm = e, then o(g)|m (where o(g) denotes the order of the indi-
vidual element g).
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Proof. Let n = o(g). By the Euclidean algorithm, we have m = nq + r with q ≥ 0 and
0 ≤ r ≤ n− 1. We see

e = gm = gnq+r = (gn)q · gr = (e)qgr = gr.

If r > 0, this contradicts the minimality of n- therefore, r = 0. So m = nq, meaning
o(g)|m. �

Definition 2.9. We say a group G is generated by a subset S ⊆ G if G = 〈S〉 :=
{s1 · · · sk : si ∈ S or s−1

i ∈ S}.

Note: 〈S〉 ⊆ G obviously, so if 〈S〉 = G this means any element in G is a product of
elements of S.

Examples:

(i) {r, s} generate Dn
(ii) {e} generates {e}
(iii) If G is finite, then G is generated by itself
(iv) Z generated by {1} or {−1}
(v) F2 generated by {a, b}
(vi) Sn generated by transpositions

Definition 2.10. A group G is called cyclic if there exists g ∈ G such that G = 〈g〉.

2.2. Subgroups.

Proposition 2.11. Let G be a group and g ∈ G. Then o(g) = |〈g〉|.

Proof. If o(g) = ∞, then the elements of {gn : n ∈ Z} are all distinct. This means
|〈g〉| =∞. So assume o(g) = n <∞. As gn = e, then |〈g〉| ≤ n. For any m ∈ Z, we have
m = nq + r where 0 ≤ r ≤ n− 1; then

gm = gnq+r = (gn)q · gr = gr ∈ {e, g, . . . , gn−1}.

However, g, g2, . . . , gn are mutually distinct: if gk = g` for k < `, then g`−k = e, with
`− k < n contradicting the minimality of n. Therefore, n ≤ |〈g〉|. This shows |〈g〉| = n =
o(g). �

Definition 2.12. Let G be a group. A non-empty set H ⊆ G is called a subgroup of G,
denoted H ≤ G if:

(i) x, y ∈ H ⇒ xy ∈ H
(ii) x ∈ H ⇒ x−1 ∈ H

Examples:

(i) trivial subgroups {e} and G itself
(ii) An ≤ Sn
(iii) In any group G, any g ∈ G with produce 〈g〉 ≤ G

Proposition 2.13. Let H ⊆ G, with H 6= ∅. The following are equivalent:

(i) H ≤ G
(ii) xy−1 ∈ H if x, y ∈ H

Proof.
(i) ⇒ (ii) If x, y ∈ H, y−1 ∈ H by basic axioms of a subgroup. Therefore, xy−1 ∈ H.
(ii) ⇒ (i) Let a, a−1 ∈ H- so aa−1 = e ∈ H. If a ∈ H, ea−1 = a−1 ∈ H. Finally, if
a, b−1 ∈ H then a(b−1)−1 = ab ∈ H. This completes the proof. �
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Theorem 2.14 (The Fundamental Theorem of Cyclic Groups). Every subgroup of a cyclic
group is cyclic.

Proof. Let G be a cyclic group, and H ≤ G; we want to show that H is cyclic. As G is
cyclic, it has a generator- call it g ∈ G. We’ll break the proof into cases:

Case 1: The trivial case: if H = {e}, then H = 〈e〉; so H is cyclic.

Case 2: If H 6= {e}, there exists some k ∈ Z with k 6= 0 such that gk ∈ H. As H is
closed under inverses, we can assume k > 0 without loss of generality. Let n = min{k ∈
N : gk ∈ H}. We claim 〈gn〉 = H. It is clear that as gn ∈ H, 〈gn〉 ⊆ H. Take any h ∈ H-
let h = gm for some m ∈ Z. We set m = nq + r (by the Euclidean algorithm), where
0 ≤ r ≤ n− 1. Then

gr = gm(gn)−q.

As gm, (gn)−q ∈ H, then gr ∈ H as well. However, as r < n, this forces r = 0- so
gm = gnq, meaning gm ∈ 〈gn〉. Then as gm was an arbitrary element of H, this shows
H ⊆ 〈gn〉, and so 〈gn〉 = H, and so H is cyclic. �

Definition 2.15. (External direct product) Let G1, G2 be groups. On the set G1 × G2 I
define a binary operation: (g1, g2)(h1, h2) = (g1h1, g2h2). The neutral element under this
operation is (e1, e2) where e1 ∈ G1 and e2 ∈ G2 (naturally). The inverse of an element
(g1, g2) ∈ G1 ×G2 is (g−1

1 , g−1
2 ).

Note: Direct products give a way to split a complicated group into simpler components.

Notation: If G is a group and H,K ⊆ G then HK := {hk : h ∈ H, k ∈ K}. For
example:

(i) H{e} = {he : h ∈ H} = H
(ii) If H ≤ G, then HH = H

Construction: (Equivalence relations from a subgroup) Let G be a group and H ≤ G.
Define

g ∼r H if gh−1 ∈ H, g ∼` h if g−1h ∈ H
where g, h ∈ G.

Examples:

(i) Let H = {e}; if g ∼r h then gh−1 ∈ H, so gh−1 = e meaning g = h. Same for if
g ∼` h.

(ii) Let H = G. Then g ∼r h ⇐⇒ gh−1 ∈ G, which is always true as G is a group.
Therefore, g ∼r h for all g, h ∈ G (so its essentially useless).

The main point of equivalence classes is we want to consider only “coarse” characteristics
of objects- it is not important to consider more specific details.

Note: Both ∼r,∼` are equivalence relations (easy to check- exercise!!). This means
both have corresponding equivalence classes- these are called the right and the left cosets
of H in G. The right cosets are precisely the sets of the form Hg, where g ∈ G. The left
cosets are the sets of the form gH, with g ∈ G.

Note: Oftentimes, distinct elements in G have the same left coset.

Theorem 2.16 (Lagrange’s Theorem). If G is a finite group and H ≤ G, then |H|
∣∣ |G|.
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Proof. The equivalence relation ∼r splits G into disjoint equivalence classes of the form
Hx, where x ∈ G. So:

G = Hx1 ∪ · · · ∪Hxk
for x1, . . . , xk ∈ G where our union is disjoint. However, as |Hxi| = H for 1 ≤ i ≤ k, as
the map

h 7→ hxi

is a bijection from H to Hxi for 1 ≤ i ≤ k, then

|G| = |Hx1|+ · · · |Hxk| = |H|+ · · ·+ |H|︸ ︷︷ ︸
k times

= k|H|;

therefore, |H|
∣∣ |G|. �

Definition 2.17. (Index) The index of a subgroup H of a finite group G is the number of
distinct right cosets (i.e. the number of mutually distinct equivalence classes). We denote
this as [G : H].

Note: We see [G : H] = |G|
|H| .

Note: Hg is a subgroup if and only if Hg = H ⇐⇒ g ∈ H.

Corollary 2.18. If G is a group with |G| prime, then G is cyclic.

Proof. Let g 6= e ∈ G be arbitrary. Consider 〈g〉 ⊆ G. As 〈g〉 is a subgroup, |〈g〉|
∣∣ |G|

(by Lagrange’s Theorem). As g 6= e and |G| is prime, this implies |〈g〉| = |G|. This then
implies 〈g〉 = G, and so G is a cyclic group. �

Note: For g ∈ G, |g|
∣∣ |G|.

Aim: Start with H ≤ G. We want to define a group operation between the right cosets
of H in G. Our goal is to define this operation naturally, where (Hx)(Hy) = H(xy);
however, this typically does not happen.

Proposition 2.19. Let H ≤ G. The following are equivalent:

(i) (Hg)(Hh) = H(gh) for all g, h ∈ G
(ii) g−1Hg ⊆ H for all g ∈ G

(iii) gH = Hg for all g ∈ G

Definition 2.20. A subgroup H ≤ G is normal if g−1Hg ⊆ H for all g ∈ G.

Notation: If H is normal in G, we denote this by H �G.

Definition 2.21. Let G be a group and H�G. The quotient group (also called the factor

group) G�H is the group with underlying set {Hg : g ∈ G} (i.e. the set of right cosets),
the operation (Hx)(Hy) = H(xy) for all x, y ∈ G, and neutral element H.

Note: The elements of G�H are subsets of G.

Claim: The operation on G�H is well-defined.



8 G.H.

Proof. Assume Hx1 = Hx2 and Hy1 = Hy2; we want to show H(x1y1) = H(x2y2), i.e.
(x1y1)(x2y2)−1 ∈ H. We know that x1x

−1
2 ∈ H and y1y

−1
2 ∈ H; this means there exists

some h ∈ H such that h = y1y
−1
2 . Then

(x1y1)(x2y2)−1 = x1y1y
−1
2 x−1

2 = x1hx
−1
2 .

As H �G, there exists some h′ ∈ H such that hx−1
2 = x−1

2 h′. So

(x1y1)(x2y2)−1 = x1hx
−1
2 = x1x

−1
2 h′ ∈ H,

as H is a subgroup and therefore closed under the operation. This shows H(x1y1) =
H(x2y2), and so the operation is well defined. �

*Alternatively- we can also look at the quotient group by the following: let

φ : G→ G′

be a homomorphism with kernel H ≤ G. By the First Isomorphism Theorem (soon to be

discussed), G�H ∼= im(φ). So the image of G under φ is our quotient group.

Example: Let φ : Z → Zn; the kernel of φ are the elements in Z which map to 0-

so ker(φ) = nZ. Then Z�nZ ∼= Zn.

Note: The property of being normal is an embedding property, i.e. it depends on the
relation of N to G, not the internal structure of N itself (as a subgroup).

Note: The study of homomorphisms between groups is equivalent to the study of quotient
groups (by the comments above)

Examples:

(i) If G is abelian, then H ≤ G is normal for any subgroup of G
(ii) If [G : H] = 2, then H �G (see Proof Set 2 for explanation)
(iii) 〈r〉�Dn, as [Dn : 〈r〉] = 2
(iv) {e, s} ≤ Dn is not normal

Definition 2.22. (Internal direct product) Let G be a group, and let H �G,K �G. We
call G the internal direct product of H and K if:

(i) H ∩K = {e}
(ii) G = HK = {hk : h ∈ H, k ∈ K}

Note: The external and internal direct products are “the same” (i.e. isomorphic)

Proposition 2.23. Suppose G is the internal direct product of H and K. Then:

(i) for all g ∈ G, there exists a unique h ∈ H, k ∈ K with g = hk
(ii) If h ∈ H and k ∈ K, then hk = kh (i.e. elements of H and K commute with each

other)

Proof.
(i) Write g = h1k1 = h2k2 (as uniqueness is the only thing we have to prove- existence is
guaranteed). Then h−1

2 h1 = k2k
−1
1 - so h−1

2 h1 ∈ H ∩K, k2k
−1
1 ∈ H ∩K. As H ∩K = {e},

we see h1 = h2, k1 = k2; this proves uniqueness.

(ii) Let h ∈ H, k ∈ K. By normality of both groups, we have hk = kh′ for some h′ ∈ H,
with kh′ = h′k′ for some k′ ∈ K. By (i), this forces h = h′, k = k′- and so hk = kh. As
h, k were arbitrary elements of H and K, this shows they commute with each other. �
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2.3. Group homomorphisms.

Definition 2.24. Let G and H be groups. A map φ : G→ H is called a homomorphism
if φ(ab) = φ(a)φ(b) for all a, b ∈ G.

Note: If φ : G→ H is a homomorphism then φ(eG) = eH , and φ(x−1) = φ(x)−1.

Definition 2.25. (Special types of homomorphisms) Let φ : G→ H be a homomorphism.
We say φ is a(n):

• monomorphism, if φ is injective
• epimorphism, if φ is surjective
• isomorphism, if φ is bijective
• automorphism, if φ is an isomorphism and H = G
• endomorphism, if H = G

Notation: We let G ∼= H mean G is isomorphic to H.

Examples:

(i) (R+, ·) ∼= (R,+) via the log function
(ii) det: GLn(R)→ R \ {0} (only an isomorphism if n = 1)
(iii) D3

∼= S3 (exercise! use generators)
(iv) HK ∼= H×K and G1×G2

∼= G2×G1 (here G = HK is an internal direct product)
I consider the map

φ : H ×K → G, φ((h, k)) = hk.

We see

φ((h1, k1)(h2, k2)) = φ((h1h2, k1k2)) = (h1h2)(k1k2) = (h1k1)(h2k2) = φ((h1, k1)φ((h2, k2))

by normality. It is easy to check for injectivity, therefore showing the two are iso-
morphic.

Note: φ : G1 × G2 → G2 × G1 where φ((g1, g2)) = (g2, g1) is the isomorphism
between the two.

(v) Cyclic groups are isomorphic to one of Z or Zn for n ∈ N
(vi) If gcd(n,m) = 1, then Zn × Zm ∼= Zmn
(vii) Inner automorphisms: for a ∈ G, let φa : G→ G where φa(x) = axa−1. Then φa is

an automorphism of G (as φa is clearly a homomorphism, and to show injectivity
we see if

axa−1 = aya−1 ⇒ ax = ay ⇒ x = y.

It is surjective, as y = a(a−1ya)a−1 for any y ∈ G).

Definition 2.26. Let G be a group. The automorphism group Aut(G) has underlying
set {φ : G → G;φ is an automorphism}, where the operation is composition, the neutral
element is the identity map, and where each map is guaranteed to have an inverse as all
automorphisms are bijective.

Notation: Inn(G) = {φa : a ∈ G}. Here φa : the inner automorphism of G by a, as seen
above.

Proposition 2.27. Inn(G) � Aut(G).
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Proof. First, note that id = φe, so Inn(G) 6= ∅. If we let φa, φb ∈ Inn(G), then φa ◦ φb =
abxb−1a−1 = φab- so φab ∈ Inn(G), as ab ∈ G. It is similarly easy to show that inverses
exist for each element in Inn(G), and so Inn(G) ≤ Aut(G).

To prove normality, let φa ∈ Inn(G) and θ ∈ Aut(G). We see

(θ ◦ φa ◦ θ−1)(x) = θ(φa(θ−1(x))) = θ(aθ−1(x)a−1) = θ(a)θ(θ−1(x))θ(a)−1

= θ(a)xθ(a)−1 = φθ(a) ∈ Inn(G).

As this holds for all x ∈ G, and φa, θ were arbitrary, this proves Inn(G) � Aut(G). �

Definition 2.28. Let φ : G→ H be a homomorphism. We define

ker(φ) = {x ∈ G : φ(x) = eH} ⊆ G,
im(φ) = {φ(x) : x ∈ G} ⊆ H

Proposition 2.29. Let φ : G→ H be a group homomorphism. Then

(i) ker(φ) �G
(ii) im(φ) ≤ H

(iii) φ is injective ⇐⇒ ker(φ) = {e}

Proof.
(i) We note as φ is a homomorphism, φ(e) = e; so ker(φ) 6= ∅. Let x, y ∈ ker(φ). Then
φ(x) = φ(y) = e. From this, we have φ(xy) = φ(x)φ(y) = e · e = e, so xy ∈ ker(φ).
Similarly, we see φ(x−1) = φ(x)−1 = e−1 = e, so x−1 ∈ ker(φ). This shows ker(φ) ≤ G.
To show normality, let g ∈ G and x ∈ ker(φ) be arbitrary. We see

φ(gxg−1) = φ(g)φ(x)φ(g)−1 = φ(g)eφ(g)−1 = φ(g)φ(g)−1 = e,

so gxg−1 ∈ ker(φ). Then ker(φ) is closed under conjugation by G (as our elements were
arbitrary), so ker(φ) �G.

(ii) Exercise!

(iii) If φ is injective, then if φ(x) = e = φ(e), we have x = e. Conversely, if ker(φ) = {e},
suppose φ(x) = φ(y) for x, y ∈ G. Then φ(x)φ(y)−1 = e, so φ(xy−1) = e. This means
xy−1 ∈ ker(φ), and so x = y. Therefore, φ is injective. �

Theorem 2.30 (First Isomorphism Theorem). Let φ : G→ H be a group homomorphism.
Then

G�ker(φ)
∼= im(φ).

Proof. Note- we write [x] for the right coset of x in the group G�ker(φ). Define ψ :

G�ker(φ)→ im(φ) by ψ([x]) = φ(x), for any x ∈ G. We first claim that ψ is well-defined:

if [x] = [y], then xy−1 ∈ ker(φ). Then φ(xy−1) = e ⇐⇒ φ(x) = φ(y). This means if
[x] = [y], then ψ([x]) = ψ([y]), and so ψ is indeed well-defined. We next claim that ψ is a
homomorphism; we see

ψ([x][y]) = ψ([xy]) = φ(xy) = φ(x)φ(y) = ψ([x])ψ([y]).

for arbitrary x, y ∈ G. As x, y ∈ G were arbitrary elements, this holds for all of G and
so ψ is a homomorphism. That ψ is surjective is clear, by definition. Finally, we claim
ψ is injective: suppose ψ([x]) = e. Then φ(x) = e, so x ∈ ker(φ). As this is true if and

only if [x] = e ∈ G�ker(φ), we see ψ is injective. This proves ψ is an isomorphism, which

completes the proof. �
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Assume: H�G,H ≤ ker(φ). Then G�H is well-defined, and let G�H →θ im(φ) be defined

in almost the same way, but using cosets xH ∈ G�H instead. This is well-defined, for if

xH = yH, xy−1 ∈ H; therefore, xy−1 ∈ ker(φ), and so φ(x) = φ(y).

Note: θ is not injective, unless H = ker(φ).

Remark: Generalization- for any H ≤ ker(φ), H � G, there exists a homomorphism

θH : G�H → im(φ) such that the following diagram is commutative:

G

q

��

φ // im(φ)

G�H

θH

<<

Remark: If H �G, then H = ker(φ) where φ : G→ K (where K is some other group).

Note: q : G→ G�H is the quotient map.

Theorem 2.31 (Second Isomorphism Theorem). Let H ≤ G, and K�G. Then HK ≤ G,
K �HK, H ∩K �H, and

HK�K ∼=
H�H ∩K.

Theorem 2.32 (Third Isomorphism Theorem). Let K ≤ H � G, and K � G. Then

K �H, H�K �G�K, and

G�K�H�K
∼= G�H.

Theorem 2.33 (Cayley’s Theorem). Every group is isomorphic to a subgroup of the
symmetric group on a (possibly infinite) set.

Recall: For any set X, Sym(X) is the set of all bijections π : X → X. It is a group
under compositions- this is the symmetric group on X.

Proof. Let φ : G → Sym(G), where φ(g)(x) = gx, for x ∈ G. Clearly, φ(g) is a bijection
(as if gx = gy ⇒ x = y by cancellation, and z = g(g−1z)). We also claim φ is a
homomorphism: we see

φ(g1g2)(x) = g1g2x = g1(g2x) = φ(g1)φ(g2)(x)

⇒ φ(g1g2) = φ(g1)φ(g2).

Now, assume g ∈ ker(φ). Then φ(g) = id, so gx = x for all x ∈ G. If x = e, then ge = e,
implying g = e. This shows ker(φ) = {e}, and so φ is injective. By the First Isomorphism
Theorem, we see

G = G�ker(φ)
∼= H = im(φ),

where H ≤ Sym(G). �
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Corollary 2.34. If |G| = n, then G is isomorphic to a subgroup of Sn.

2.4. Finite abelian groups.

Theorem 2.35 (Cauchy’s Theorem for Finite Abelian Groups). Let G be a finite abelian
group and p be a prime with p | |G|. Then G has elements of order p.

Proof. We’ll prove it by induction on |G|. For the base case, if |G| = 2, then clearly G
contains an element of order 2 (just pick the non-identity element). Assume the statement
holds for all orders less than or equal to k−1. Take |G| = k, where k = prm with p prime
and p - m. Fix x ∈ G, with x 6= e. Let |x| = qn`, where q is prime and q - `. We know

xq
n−1` = y for some y ∈ G, and so yq = (xq

n−1`)q = xq
n` = e. This means there exists

a y ∈ G whose order is prime (specifically, prime q). If q = p, then we are done. So

suppose not- consider the quotient group G�〈y〉. As
∣∣G�〈y〉∣∣ = |G|

q
< |G|, by the inductive

hypothesis there exists a z ∈ G�〈y〉 such that |z| = p. We know z = g〈y〉, where g ∈ G.

Since |z| = p, we have (g〈y〉)p = eG�〈y〉
= 〈y〉. Therefore, gp〈y〉 = 〈y〉, and so gp ∈ 〈y〉.

We have two cases:

(i) gp = e- then we are done.
(ii) gp = yi- then if we take gq, we have (gq)p = (gp)q = (yi)q = (yq)i = e, and so
|gq| = p.

By induction, this completes the proof. �

Note: In the proof above, we use the fact that in a cyclic group of prime order p, any
non-identity element is a generator for the group.

Theorem 2.36 (Fundamental Theorem of Finite Abelian Groups). Every finite abelian
group G is isomorphic to a group of the form

Zpn1
1
× Zpn2

2
× · · · × Zpnk

k

where p1, . . . , pk are primes, n1, . . . , nk ∈ N and the list pn1
1 , . . . , p

nk
k is uniquely determined

by G up to a permutation.

Example: Abelian groups of order pn, where p is prime. Write down n = n1 + · · ·+ nk

where n1 ≤ · · · ≤ nk- this gives direct product decomposition.

Lemma 2.37. Assume |G| = pnm where p is prime and p - m. Let H = {x ∈ G : xp
n

= e}
and K = {x ∈ G : xm = e}. Then G ∼= H ×K and |H| = pn.

Example: Take a group of order p2- there are two abelian groups it might be isomorphic

to: either Zp ×Zp or Zp2 , which are non-isomorphic (as one is cyclic, the other is not). If
p 6= q is prime, abelian group of order pq is isormorphic to Zpq ∼= Zp × Zq.

Proof. For the proof of the Lemma above, we’ll break it into steps.

Step 1: Show H,K ≤ G- exercise!

Step 2: Show G = HK. Take x ∈ G; as gcd(pn,m) = 1, there exist t, s ∈ Z such
that 1 = pns+mt. Then

x = xp
ns+mt = xp

nsxmt ⇒ (xsp
n

)m = (xp
nm)s = es = e.
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Similarly,

(xtm)p
n

= (xp
nm)t = et = e,

and so xp
ns ∈ K, xmt ∈ H. This proves x = hk for some h ∈ H, k ∈ K; as x ∈ G was

arbitrary, this means G = HK.

Step 3: Show H ∩K = {e}. If x ∈ H ∩K, then |x| | pn and |x| | m. As gcd(pn,m) = 1,

this implies |x| = 1, and so x = e. As x was arbitrary, this shows H ∩K = {e}.

The last two steps together imply that as G = HK is an internal direct product, we
immediately have G ∼= H ×K.

Step 4: If |H| 6= pk, let q | |H| for some prime q. By Cauchy’s Theorem, there exists

an x ∈ H such that xq = e. Therefore, q | pn, which contradicts x ∈ H. This means
H must have an order of some power of p. We have shown that G ∼= H × K, and so
G�H ∼= K. We note that p - |G�H|- if it did, there exists a y ∈ G�H such that yp = e

(again by Cauchy’s Theorem). However, as y ∈ G�H ∼= K, then |y| | m- as p - m,

this is impossible. This guarantees p - |G�H|. This implies |H| = pn (if |H| ≤ pn−1,

then |G�H| = p`, which leads to the contradiction discussed above), which completes the
proof. �

Note: If G = H ×K then H can be seen as a subgroup of G, where H̃ := {(h, e) : h ∈
H} ⊆ G, with H̃ �G. We can similarly see K as a subgroup of G, which is also normal.

Then G ∼= H̃K̃. We also have:

• G�H̃
∼= K̃;

• H̃ ∼= H;

• K̃ ∼= K;

• H ×K�H ∼= K.

Note: By the lemma above, group G splits as a direct product of groups Gi where each
Gi has order a prime power.

Lemma 2.38. Let G be abelian, |G| = pn. Let a ∈ G be an element of prime order. Then
G ∼= 〈a〉 ×K for some group K.

Proof. If |a| = pn, we are done (as G = 〈a〉). Assume |a| = pm with m < n. Set
B = {b ∈ G : b 6∈ 〈a〉} and choose b ∈ B of the smallest order. We claim the following:

Claim 1: |b| = p;
Claim 2: 〈a〉 ∩ 〈b〉 = {e}.

To prove the first claim, we start by noticing

(bp)p
m−1

= bp·p
m−1

= bp
m

= e.

Then (bp)p
m−1

= e, so |bp| | pm−1- therefore, |bp| < |b|. As b ∈ B is the element of smallest
order, we see bp ∈ 〈a〉; if not, there would exist an element in B with order strictly smaller

than b, contradicting our choice. This forces bp = ai for some i ∈ Z. Then (ai)p
m−1

= e,
and so ai is not a generator of 〈a〉 (as |ai| < pn). On the other hand, ak is a generator
for 〈a〉 if and only if p - k- this implies p | i. So there exists some j ∈ Z such that i = pj.
Consider the element c = ba−j ; we note:
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(i) c 6∈ 〈a〉; for if c ∈ 〈a〉, then ba−j ∈ 〈a〉, so b ∈ 〈a〉- a direct contradiction.
(ii) cp = bpa−jp = bpa−i = bpb−p = e.

Then by (i) and (ii), as b has minimal order, this implies |b| = p.

For the proof of Claim 2, let g ∈ 〈a〉 ∩ 〈b〉 by arbitrary but fixed, with g 6= e. Then
g = bk for some k with 1 ≤ k ≤ p − 1. Then g` = b for some ` ∈ Z (as every element
in 〈b〉 is a generator). Then b ∈ 〈a〉, directly contradicting our choice of b. This proves
g ∈ 〈a〉 ∩ 〈b〉 if and only if g = e.

Let G := G�〈b〉 and write [g] for the corresponding cosets; note that |G| = |G|
p

= pn−1.

We make a further claim:

Claim 3: |[a]| = pm, and hence [a] is an element of max order in G.

To prove this, we first note that |[a]| = pk for some k- also, |[a]| 6≤ pm−1; if we as-

sume it is, then ap
m−1

∈ 〈b〉; so ap
m−1

∈ 〈a〉 ∩ 〈b〉, meaning ap
m−1

= e. As |a| = pm and
pm−1 < pm, this contradicts our original assumption. This shows |[a]| ≥ pm. We also

know |[a]| ≤ pm, as [a]p
m

= [ap
m

] = [e]. Therefore, |[a]| = pm, so [a] has maximal order

in G. By using induction on n, we can write G = 〈[a]〉 ×K for some subgroup K ≤ G.

Define K := {g ∈ G : [g] ∈ K}.

Claim 4: 〈a〉 ∩K = {e}.

To prove the previous claim, we let g ∈ 〈a〉 ∩ K. So [g] ∈ K and [g] ∈ 〈[a]〉. Then
[g] = [e] = [b] (by 2). This means g ∈ 〈b〉 and g ∈ 〈a〉, forcing g = e. Then 〈a〉 ∩K = {e},
as g was arbitrary.

Claim 5: G = 〈a〉K.

To prove the final claim, we first recall that |G| = pn- so |G| = pn−1. As |[a]| = pm,

then |〈a〉| = pm as well. This means |K| = pn−m−1, and so |K| > |K| (as we can
take the non-trivial quotient)- so |K| ≥ pn−m (as |K| must be a power of p). Then
|〈a〉K| ≥ |〈a〉||K| = pmpn−m = pn. This shows G = 〈a〉K, and so G ∼= 〈a〉 ×K. �

The Fundamental Theorem of Finite Abelian Groups is proved by induction, where we
split G into an external direct product of subgroups Gi all with some prime order. If we
assume |G| = pn, we induct on n. By the lemma, G ∼= Zpm ×K; we know |K| < pn, and
so by the induction hypothesis it will decompose into an external direct product

Zpn1
1
× Zpn2

2
× · · · × Zpnk

k
,

meaning

G ∼= Zpm × Zpn1
1
× Zpn2

2
× · · · × Zpnk

k
.

For uniqueness, see the textbook (we didn’t go over that part of the proof).

2.5. Group actions, the class equation, Sylow’s Theorems. Question: Given a fi-

nite group G, what orders can its subgroup have? If |G| = pnm, where p is prime and p
does not divide m, does there exist H ≤ G such that |H| = pn?

Answer: Yes!
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Definition 2.39. Let G be a group and Ω be a set. An action of G on Ω is a map
G× Ω→ Ω where (g, w) 7→ g(w) such that

g1(g2(w)) = (g1g2)(w),

e(w) = w

for all w ∈ Ω, and g1, g2 ∈ G.

Notation: Sometimes, we write g · w = g(w).

Equivalently, there is a homomorphism from G→ Sym(Ω).

Definition 2.40. Given w ∈ Ω, we say CG(w) = {g ∈ G : g(w) = w} and orbG(w) =
{g(w) : g ∈ G}.

Theorem 2.41. Let G be a finite group acting on a finite set Ω. The following hold:

(i) CG(w) ≤ G,w ∈ Ω
(ii) | orbG(w)| = [G : CG(w)], w ∈ Ω

(iii) The relation w ∼ w′ if w′ ∈ orbG(w) is an equivalence relation
(iv) if orbG(w1), . . . , orbG(wk) are the distinct orbits of the action, then

|Ω| =
k∑
i=1

[G : CG(wi)]

The previous equation is called the Class Equation.

Proof.
(i) First, we note that by definition e ∈ CG(w). If we suppose g, h ∈ CG(w), then

(gh)(w) = g(h(w)) = g(w) = w,

by properties of group actions. Therefore, gh ∈ CG(w), and so CG(w) is closed under the
group operation (as g, h were arbitrary). Similarly, if g ∈ CG(w), then

gw = w ⇒ g−1(gw) = g−1 ⇒ (g−1g)w = g−1w ⇒ w = g−1w.

Therefore, g−1 ∈ CG(w), and so CG(w) is closed under inverses. This proves CG(w) ≤ G.

(ii) Consider a map f : orbG(w) → {left cosets of CG(w)} where f(gw) = gCG(w). We
first want to check if f is a well-defined mapping: let gw = hw for g, h ∈ orbG(w).
Then h−1g = w, and so h−1g ∈ CG(w). Then gCG(w) = hCG(w), meaning the map
is well-defined. That f is surjective is clear- so we will focus on injectivity. Suppose
gCG(w) = hCG(w)− so h−1g ∈ CG(w), meaning h−1gw = w. Then gw = hw, which
implies f must be injective. As this shows f is a bijection between two finite sets, this
proves | orbG(w)| = |{left cosets of CG(w)}|. However, as [G : CG(w)] is by definition the
number of left cosets of CG(w) in G, this shows

| orbG(w)| = [G : CG(w)].

(iii) This one is fairly obvious- just follow the properties of an equivalence relation to
establish that ∼ satisfies them all.

(iv) We first note that by (iii), Ω splits as a disjoint union of its equivalence classes.
Also by (iii), it is clear that these equivalence classes are precisely its orbits- if we pick
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distinct representatives w1, . . . , wk from each equivalence class, we know Ω =
⊔

orbG(wk).
Then

|Ω| =
k∑
i=1

| orbG(wi)| =
k∑
i=1

[G : CG(wi)].

�

Note: It may be the case that an action has only one orbit: then for any w ∈ Ω, w′ ∈ Ω
there exists a g ∈ G such that gw = w′.

Definition 2.42. Let G be a finite group of order pmn, where p is a prime that does not
divide n. A subgroup of G of order pm is called a Sylow p-subgroup. We use the notation
Sylp(G) for the set of all Sylow p-subgroups in G.

Theorem 2.43 (Sylow’s Theorems). Let G be a finite group such that |G| = pmn, where
p is prime and p does not divide n. The following hold:

(i) G has a Sylow p-subgroup
(ii) If H,K ∈ Sylp(G), then there exists a g ∈ G such that g−1Hg = K

(iii) |Sylp(G)|
∣∣ n

(iv) |Sylp(G)| ≡ 1 mod p

Proof.
(i) Let Ω = {subseteq of G of cardinality pm}. We see

|Ω| =

(
pmn

pm

)
=
pmn(pmn− 1) · · · (pmn− pm + 1)

pm(pm − 1) · · · 2 · 1 .

If we cancel factors of pm in the numerator and denominator, we get

n · p
mn− 1

pmn− 1

pmn− 2

pm − 2
· · · p

mn− pm + 1

1
.

We note that pk|i if and only if pk|pmn − i for 1 ≤ k ≤ m. This implies we can cancel
out factors of pk in the previous product equally, leaving us with something that is no
longer divisible by p while still being a product of integers. This means p does not divide
|Ω|. Let G act on Ω by left multiplication- so if we have set K = {g1, g2, . . . , gpmn},
then G acts on Ω with gK = {gg1, . . . , ggpmn}. By the previous proposition, we know

|Ω| =
k∑
i=1

[G : CG(wi)]; as p does not divide the order of Ω, there exists an i such that

p - [G : CG(wi)]. However, |G| = |CG(wi)|[G : CG(wi)], and so pm||CG(wi)|; this implies
pm ≤ |CG(wi)|. Fix h ∈ Wi, where Wi ⊆ Ω. The map CG(wi) → wi, where g 7→ gh is
one-to-one, and so |CG(wi)| = |Wi| = pm. As CG(wi) ≤ G, then CG(wi) must be our
Sylow p-subgroup.

(ii) Let Ω = {left cosets of K}. Let H act on Ω by “left multiplication”- i.e., for h ∈ H, we
have gK 7→ hgK. Define Ω0 = {w ∈ Ω : orbH(w)| = 1}. Note- Ω0 6= ∅; if | orbH(w)| > 1
for all w, then [H : CH(w)] > 1. Then p|| orbH(w)|, meaning p||Ω|; as |Ω| = [G : K] = n,
and p - n, we have a contradiction. So there must exist at least one w ∈ Ω such that
| orbH(w)| = 1. This means there exists a gK ∈ Ω0, meaning hgK = gK for all h ∈ H.
This means g−1hg ∈ K for all h ∈ H. Therefore, g−1Hg ⊆ K- but as |H| = |K|, this
forces g−1Hg = K.

(iii) We want to prove |Sylp(G)|
∣∣ n. Let Ω = Sylp(G), and let G act on Ω by conjugation.

By (ii), for all H,K ∈ Ω there exists a g ∈ G such that g−1Hg = K (i.e., our action
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is transitive). This implies orbG(H) = Sylp(G). We know | orbG(H)| = [G : CG(H)];
now, H ≤ CG(H), as CG(H) = {g ∈ G : gHg−1}. Therefore, |H| = pm ≤ |CG(H)|.
On the other hand, pmn | |CG(H)|[G : CG(H)]- so [G : CG(H)] | n ⇒ | orbG(H)| | n ⇒
|Sylp(G)| | n.

(iv) Let Ω = Sylp(G), and fix P ∈ Sylp(G); furthermore, let P act on Ω by conjuga-
tion: for Q ∈ Ω, and g ∈ P we have Q 7→ gQg−1 ∈ Ω. We want to find the fixed elements-
we note that P is clearly fixed under conjugation by itself. Suppose Q is another fixed el-
ement under the action, and let NG(Q) = {g ∈ G : gQg−1 = Q}. The subgroup NG(Q) is
called the normalizer of Q. We note Q ≤ NG(Q) (which is obvious); similarly, P ≤ NG(Q)
as Q is a fixed element under P by design. However, both P and Q are Sylow p-subgroups
of NG(Q); as they are maximal subgroups in G, they must be maximal in subgroup NG(Q)
as well. Therefore, by (ii) there exists a g ∈ NG(Q) such that gQg−1 = P . Then as Q is
fixed, we see Q = gQg−1 = P - so if we have a fixed element, it must be unique. Now, by
the Class Equation we see

|Ω| =
∑
k

| orbP (wk)| = 1 +
∑
k

{| orbP (wk)| : | orbP (wk)| > 1}.

However, if | orbP (w)| > 1, then p | | orbP (w)|. Then p must divide the right term in the
sum above, which implies

|Sylp(G)| ≡ 1 mod p.

�

Corollary 2.44. Let G be a finite group. Then G has a normal Sylow p-subgroup if and
only if G has a unique Sylow p-subgroup.

Proof.
(⇒) If H ≤ G is a Sylow p-subgroup, then gHg−1 is a Sylow p-subgroup for all g ∈ G. If
H is normal, and K is a Sylow p-subgroup there exists a g ∈ G such that gHg−1 = K by
(ii) of Sylow’s Theorems. As gHg−1 ⊆ H, this forces H = K. Therefore, H is unique.

(⇐) If H is unique, then gHg−1 = H for all g ∈ G. This clearly shows H �G. �

Example: If |G| = 189, then there exists a normal subgroup H in G.

Proof. We see 189 = 7 · 33. Let n7 be the number of Sylow 7-subgroups in G. By Sylow’s
Theorems, we know n7|27 and n7 ≡ 1 mod 7. This forces n7 = 1, when looking at the
divisors of 27. Then H ≤ G is the unique Sylow subgroup of order 7 in G, and by the
previous corollary this proves H �G. �

In the previous example, what about n3? By Sylow’s Theorems, we have two possibilities-
n3 = 1, or n3 = 7- given only this information, we can’t say for sure whether or not what
Sylow 3-subgroups exist in G.

3. Ring theory

3.1. Basic definitions and examples.

Examples:

(i) (Z,+, ·) where 1 · · ·x = x for all x ∈ Z
(ii) (Mn(R),+, ·) where I ·A = A · I = A for all A ∈Mn(R)
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Note: In the previous examples, multiplication in (i) was commutative while multiplica-
tion in (ii) is not.

Definition 3.1. A ring is a set R, equipped with operations + and · such that

(i) (R,+) is an abelian group with neutral element 0,
(ii) The operation · is associative,

(iii) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

R is called unitial if there exists some 1 ∈ R such that a · 1 = 1 · a = a for all a ∈ R.

Examples:

(i) (Q,+, ·), (R,+, ·), (C,+, ·)
(ii) 2Z = {2n : n ∈ Z}
(iii) Mn(Z),Mn(R),Mn(C)

More generally, if R is a ring, so is Mn(R) for n ∈ N. They are called matrix rings,
and they have operations:

(aij) + (bij) := (aij + bij),

(aij) · (bij) =

( n∑
k=1

aikbkj

)
ij

Definition 3.2. Let R be a ring. The opposite ring Rop has underlying sets R, where
addition is the same as in R and multiplication a ∗ b := ba. If R is commutative, then
R = Rop.

Proposition 3.3. Let R be a ring. Then for all a, b, c ∈ R
(i) a · 0 = 0 · a = 0

(ii) (−a)b) = −(ab) = a(−b)
(iii) (−a)(−b) = ab
(iv) (a− b)c = ac− bc, a(b− c) = ab− ac

Proof. (i) We note a · 0 + 0 = a · 0, and so

a · 0 + 0 = a · 0 ⇐⇒ a(0 + 0) = a · 0 + a · 0⇒ 0 = a · 0.

The others are proven in similar manners- exercise!! �

Cancellation: a+ b = a+ c⇒ b = c, but not always the case with multiplication.

Notation: Let a ∈ R, n ∈ N. We set

(i) na = a+ · · ·+ a︸ ︷︷ ︸
n times

(ii) an = a · · · a︸ ︷︷ ︸
n times

Definition 3.4. Let R a unital ring. We say a ∈ R is a unit (or invertible) if there exists
a b ∈ R such that ab = ba = 1. (We note such a b is unique, if one exists, and write it as
a−1).

Notation: R∗ = {a ∈ R : a is a unit }.

Note: R∗ is a group with respect to multiplication.
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Recall: Mn(R)∗ = GLn(R).

Important types of rings

(i) R is commutative if ab = ba for all a, b ∈ R
(ii) R is a domain if ab = 0 implies a = 0 or b = 0
(iii) R is a division ring if R∗ = R \ {0}
(iv) R is a field if R is a commutative division ring

Examples:

(i) Zn = {[0], [1], . . . , [n− 1]} where [i][j] = [ij] for i, j ∈ Z
(ii) Polynomial rings: let R be a ring → R[x] is the polynomial ring over R, where

R[x] = {
n∑
i=0

aix
i : ai ∈ R,n ≥ 0} (i.e. a polynomial with coefficients in R).

Common examples are Z[x],R[x],C[x]. It has mechanics:

n∑
i=0

aix
i +

n∑
i=0

bix
i =

n∑
i=0

(ai + bi)x
i,

(
∑

aix
i)(
∑

bix
i) =

∑
k

( k∑
i=0

aibk−i

)
xk

where x is our variable. More formally,

R[x] = {(a0, a1, . . . , an, 0, 0, . . .) : ai ∈ R,n ≥ 0}.

For polynomials in many variables:

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

(iii) Let V be a vector space over some field. Consider L(V ) = {f : V → V :
f is linear }. Addition is defined pointwise (as one expects), and multiplication
takes the form of function composition. One example we are already familiar with-
if V = Rn where V is a vector space over R, then L(V ) ∼= Mn(R). (We can also
consider the same space but endowed with the Schur/Hadamard product- this is
when we take the entrywise product of two matrices. Note that it is commutative,
compared to regular matrix multiplication.)
Definition: (Algebra) We say a ring which is a vector space endowed with specific
natural properties is an algebra.

Definition 3.5. (Product rings) Let R1, R2 be rings. We know R1 × R2 = {(a, b) : a ∈
R1, b ∈ R2} is a group with respect to entrywise addition. We also have a zero element
(0, 0). If we allow entrywise multiplication as well, this turns into a ring. If both R1, R2

have an identity, then (1R1 , 1R2) is the identity for R1 × R2. More generally, let I be an
index set and let Ri be a ring for each i ∈ I. The product ring is:

R =
∏
i∈I

Ri

where elements are (ai)i∈I with ai ∈ Ri. It has mechanics:

(ai)i∈I + (bi)i∈I = (ai + bi)i∈I ,

(ai)i∈I(bi)i∈I = (aibi)i∈I .

Example: Let Ri = R0 for some ring R0, for all i ∈ I. Then R =
∏
i∈I R0. Elements of

this R are functions, where

a : I → R0, with ai = a(i).
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Operations are as we expect for the product ring.

Construction: For any set I and any ring R0, consider the set F(I, R0) = {f : I → R0}
equipped with pointwise operations.

Examples: Let [a, b] ⊆ R and C[a,b] be the set of all continuous functions on [a, b]. Here

we have I = [a, b], R0 = R, and so C[a,b] ⊆ F(I,R). By what we know about continuous
functions, it is clear that C[a,b] is a ring.

3.2. Subrings.

Definition 3.6. (Subring) Let R be a ring. A nonempty set S ⊆ R is called a subring if

(i) x+ y ∈ S, for all x, y ∈ S
(ii) −x ∈ S, if x ∈ S

(iii) xy ∈ S, for all xy ∈ S

Proposition 3.7. (Subring criteria) Let S ⊆ R with S 6= ∅. The following are equivalent:

(i) S is a subring of R
(ii) If x, y ∈ S then x− y and xy ∈ S

Examples:

(i) nZ = {nx : x ∈ Z}
(ii) Gaussian integers: Z[i] = {a+ bi : a, b ∈ Z}
(iii) Z[

√
−5] = {a+ b

√
5i : a, b ∈ Z} ⊆ C}

(iv) Q[
√

2] = {a+ b
√

2 : a, b ∈ Q} ⊆ R
(v) C[0,1], C[a,b]

(vi) T2 :=

{[
a b
0 c

]
: a, b, c ∈ R

}
⊆M2(R)

In general, triangluar matrices:

Tn := {[aij ] ∈Mn(R) : aij = 0 if i > j} ⊆Mn(R)

Even more generally, we can define it over any ring R.

(vii) H =

{[
z w
w z

]
: z, w ∈ C

}
⊆M2(C)- the quaternions

Definition 3.8. Let R be a ring. An element e ∈ R is called idempotent if e2 = e. An
element a ∈ R is called nilpotent if there exists an n ∈ N such that an = 0.

Proposition 3.9. Let R be a commutative ring. The set N of all nilpotent elements in
R is a subring of R.

Proof. Take a nilpotent element a ∈ R, where an = 0 for some n ∈ N. Similarly, take any
b ∈ R. Then

(ab)n = anbn = 0.

This shows ab ∈ N (so if b ∈ N , ab ∈ N). Next, pick a, b ∈ N - without loss of generality
assume an = bn = 0 for some n ∈ N. Then

(a+ b)2n =

2n∑
`=0

(
n

`

)
a`b2n−` = 0,

as each term in the sum contains at least a power of an or bn. So a+ b ∈ N . This proves
N is closed under the operations, so N is a subring. �
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Definition 3.10. (Ideals) Let R be a ring. A non-empty subset I ⊆ R is called a left
ideal of R if

(i) If a, b ∈ I then a− b ∈ I
(ii) If a ∈ I, r ∈ R then ra ∈ I

Right ideals are defined similarly, with the order of multiplication swapped. The notation
we use is

I �` R, I �r R

for left and right ideals, respectively. We say I is a two-sided ideal, or just an ideal, if it
is both a left and a right ideal. This is denoted using I �R.

Remark: If R is commutative then I �` R ⇐⇒ I �r R ⇐⇒ I �R.

Examples:

(i) Let R = C[0,1]. Let Γ ⊆ [0, 1], and let

IΓ := {f ∈ C[0,1] : f(x) = 0, for all x ∈ Γ}

Then IΓ � C[0,1]. (In fact, any closed (in ‖ · ‖∞) ideal of C[0,1] has the form IΓ for
some (closed) set Γ ⊆ [0, 1]- this gives a very easy way to find ideals in C[a,b]).

(ii) The set I = {(x, 0) : x ∈ R1} is called an ideal of R1×R2 (where R1, R2 are rings)
(iii) Let I1 �`R1, I2 �`R2- then I1×I2 �`R1×R2 (same for right and two-sided ideals)
(iv) Let R be a ring and I �R. Then Mn(I) �Mn(R)

Question: Can one describe the ideals of Mn(R) in terms of the ideals in R? I.e.,

is every ideal J �Mn(R) of the form J = Mn(I) for some ideal I in R?
(v) Distinction between left, right, and two-sided ideals: in M2(Z)-[

Z 0
Z 0

]
:=

{[
x 0
y 0

]
: x, y ∈ Z

}
,[

Z Z
0 0

]
:=

{[
x y
0 0

]
: x, y ∈ Z

}
.

We clearly have

[
Z 0
Z 0

]
�` M2(Z), and

[
Z Z
0 0

]
�r M2(Z), but both of them are

not two-sided ideals.
(vi) In Z : nZ� Z for n ∈ N

(vii) Ideals vs. subrings:
Recall: In a commutative ring R, the set N(R) of all nilpotent elements is a
subring. In fact, N(R) �R.

Definition 3.11. The center Z(R) of a ring R is the set

Z(R) := {a ∈ R : ax = xa for all r ∈ R}.

Note: Z(R) is a subring of R, but not an ideal.

Note: If R is unital and a left ideal I of R contains the identity 1, then I = R.

Proof. Let 1 ∈ I, and let r ∈ R. Then

r = r · 1 ∈ I,
and so R ⊆ I. As I ⊆ R, we are done. �

Note: A non-zero left ideal I �` R, where R is unital, is equal to R ⇐⇒ 1 ∈ I.
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Examples: (Singly generated ideals) Let R be a ring, and a ∈ R.

(i) aR = {ar : r ∈ R}�r R
(ii) Ra = {ra : r ∈ R}�` R

(iii) 〈a〉 := {
n∑
i=1

riaqi : ri, qi ∈ R,n ∈ N}�R

(Note aR is closed under addition→ ax+ay = a(x+y) for x, y ∈ R- others hold similarly).

Constructions:

(i) Iα �R,α ∈ A⇒ ∩α∈AIα �R (i.e. intersection of ideals is an ideal)
(ii) Sums of ideals: if I, J �R then

I + J := {a+ b : a ∈ I, b ∈ J}

is an ideal in R

Proof. We note (a+ b)− (a′ + b′) = (a− a′) + (b− b′) ∈ I + J , where a, a′ ∈ I and
b, b′ ∈ J . Similarly, for r ∈ R, a ∈ I, b ∈ J we have

(a+ b)r = ar︸︷︷︸
∈I

+ br︸︷︷︸
∈J

as I, J �R. Similarly for left multiplication. �

Definition 3.12. (Factor rings) Let R be a ring and I�R. Since (R,+) is a commutative

group, I is a normal subgroup of (R,+). Consider the factor group R�I, and equip it with
a multiplication operation as follows:

(x+ I)(y + I) := xy + I, where x, y ∈ R.

This is well defined: if we assume x+ I = x′ + I, y + I = y′ + I, then

x′y′ − xy = x′y′ − xy′ + xy′ − xy = (x′ − x)y︸ ︷︷ ︸
∈I

+x(y′ − y)︸ ︷︷ ︸
∈I

∈ I �R.

So xy + I = x′y′ + I. It is easy to check the rest of the axioms for a ring are satisfied.

Definition 3.13. Let R�I be a factor ring. We define the quotient map

q : R→ R�I, q(x) = x+ I.

Note: If R is unital, then so is R�I. If R is commutative, so is R�I.

Note: q(xy) = q(x)q(y), q(x + y) = q(x) + q(y) (this is a reformulation of the defini-
tion of the operations).

3.3. Ring homomorphisms.

Definition 3.14. (Ring homomorphism) Let R,S be rings. A homomorphism ϕ : R→ S
is a map satisfying:

(i) ϕ(a+ b) = ϕ(a) + ϕ(b)
(ii) ϕ(ab) = ϕ(a)ϕ(b)

for all a, b ∈ R. If R,S are unital, we call ϕ unital if ϕ(1R) = 1S.

Note: If ϕ : R→ S is a homomorphism and e is idempotent, then ϕ(e)2 = ϕ(e)
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Definition 3.15. Let ϕ : R→ S be a homomorphism between rings R and S. The kernel
of ϕ is

ker(ϕ) = {r ∈ R : ϕ(r) = 0}
The image of ϕ is

im(ϕ) = {ϕ(r) : r ∈ R}

Proposition 3.16. Let ϕ : R→ S be a ring homomorphism. Then

(i) ker(ϕ) �R
(ii) im(ϕ) is a subring of S

Proof.
(i) Let a, b ∈ ker(ϕ). Then

ϕ(a− b) = ϕ(a)− ϕ(b) = 0− 0 = 0,

ϕ(ab) = ϕ(a)ϕ(b) = 0 · 0 = 0.

So ker(ϕ) �R.

(ii) Straightforward. �

Note: If ϕ : R→ S is a ring homomorphism then ϕ is injective if and only if kerϕ = {0}.

Examples:

(i) ϕ(a) = −a for a ∈ R
(ii) φ : M2(Z)→M2(Z), where[

a b
c d

]
7→
[
a −b
−c d

]
Theorem 3.17 (The factor theorem). Let φ : R→ S be a ring homomorphism and I�R,

with quotient map q : R → R�I. If I ⊆ kerφ, then there exists a unique homomorphism

ϕ : R�I → S such that φ = ϕ ◦ q; in other words, the following diagram commutes:

R

q

��

φ // S

R�I

ϕ

>>

Proof. We define ϕ : R�I → S by letting ϕ(x + I) = φ(x) for x ∈ R. We note that ϕ is
well-defined: if we assume x+ I = x′ + I, then x− x′ ∈ I, so x− x′ ∈ kerφ. This means
φ(x − x′) = 0, meaning φ(x) − φ(x′) = 0, and so φ(x) = φ(x′). By definition, we then
have φ = ϕ ◦ q- so we just need to prove ϕ is a homomorphism. We have

ϕ((x+ I)(y + I)) = ϕ(xy + I) = φ(xy) = φ(x)φ(y) = ϕ(x+ I)ϕ(y + I),

and

ϕ((x+ I) + (y + I)) = ϕ((x+ y) + I) = φ(x+ y) = φ(x) + φ(y)

= ϕ(x+ I) + ϕ(y + I)

for any two x + I, y + I ∈ R�I. So ϕ is a ring homomorphism. To show uniqueness,
suppose ϕ,ψ satisfy

ϕ ◦ q = φ = ψ ◦ q.
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Then for each x ∈ R, ϕ(x+ I) = ψ(x+ I) = φ(x). It is clear that this forces ϕ = ψ, and
so our homomorphism is unique. �

Theorem 3.18 (First Isomorphism Theorem). If φ : R → S is a ring homomorphism,
then

R�kerφ
∼= imφ.

Proof. (Sketch) In the previous theorem, consider S = imφ and I = kerφ; we are allowed
to do so, as kerφ is always an ideal. From this, we have

R

q

��

φ // imφ

R�kerφ

φ̃

;;

where φ̃ is unique. To finish the proof, we just need to show that φ̃ is an isomorphism
instead of just a ring homomorphism (this is quite easy- essentially follows by definition,
the previous theorem, and the Isomorphism Theorems for groups). �

Theorem 3.19 (Second Isomorphism Theorem). Let R be a ring, I � R and S be a
subring of R. Then

S + I�I ∼=
S�S ∩ I.

Note: We’d need to prove S + I is a subring- we have S ≤ R, I � R, where S + I =
{x+ a : x ∈ S, a ∈ I}.

Theorem 3.20 (Third Isomorphism Theorem). Let I �R, J �R, with J ⊆ I. Then

R�I�I�J
∼= R�J.

3.4. Integral domains and maximal ideals.

Definition 3.21. A commutative ring R with an identity (i.e. a unital ring) that is also
a domain is called an integral domain.

Definition 3.22. A domain is a ring R with no non-trivial zero divisors- i.e., if x, y ∈ R
with xy = 0 then either x = 0 or y = 0.

Note: From now on, we only consider rings R which are commutative and unital.

Definition 3.23. Let a, b ∈ R. We say a is a divisor of b if there exists an x ∈ R such
that b = ax.

Notation: If a is a divisor of b, we write a
∣∣b.

Definition 3.24. An element p ∈ R is called prime if p is not a unit, p 6= 0, and if p
∣∣ab

then p
∣∣a or p

∣∣b.
Note: In R = Z, prime elements are prime numbers and their “negatives” (opposites).

Definition 3.25. If I �R, J �R, define

IJ = {
k∑
i=1

aibi : k ∈ N, ai ∈ I, bi ∈ J}.
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Note: IJ �R.

Definition 3.26. An ideal P �R is called prime if P 6= R and if for A�R, B �R such
that AB ⊆ P , then either A ⊆ P or B ⊆ P .

Note: If A ⊆ P (or B ⊆ P ) then AB ⊆ P automatically, as P is an ideal.

Proposition 3.27. The following are equivalent for an ideal P �R:

(i) P is prime;
(ii) If ab ∈ P , then a ∈ P or b ∈ P (for all such a, b ∈ R).

Proof.
(i) ⇒ (ii) Let a, b ∈ R with ab ∈ P , and assume P is prime. Then 〈a〉〈b〉 ⊆ P , as

〈a〉〈b〉 = {abx : x ∈ R}.

By primality of P , we know that either 〈a〉 ⊆ P or 〈b〉 ⊆ P . In either case, we have a ∈ P
or b ∈ P .

(ii) ⇒ (i) Assume A�R,B �R such that AB ⊆ P . Suppose A 6⊆ P , and take a ∈ A \ P .
Take any b ∈ B; we then have ab ∈ AB ⊆ P . This forces b ∈ P , as P is an ideal in R. As
b ∈ B was arbitrary, this implies B ⊆ P , which completes the proof. �

Proposition 3.28. Let p ∈ R, where p 6= 0 or a unit. Then p is prime if and only if 〈p〉
is prime.

Proof. Exercise! �

Theorem 3.29. Let P � R, where P is proper. Then R�P is an integral domain if and
only if P is prime.

Proof.

(⇒) Assume R�P is an integral domain. Let a, b ∈ R such that ab ∈ P . Then

(a+ P )(b+ P ) = ab+ P = P

in R�P ; note that P is the neutral element of factor ring R�P . As R�P is an integral
domain, it has no non-trivial zero divisors- this forces either a + P = P or b + P = P .
Therefore, either a ∈ P or b ∈ P . By the proposition above, this means P must be prime.

(⇐) Assume P is prime, and suppose (a + P )(b + P ) = P . Then ab + P = P , and
so ab ∈ P . Then as P is prime, either a ∈ P or b ∈ P . This means either (a+ P ) = P or

(b+ P ) = P are the neutral element in R�P , and so R�P must be an integral domain (as
a, b ∈ R were arbitrary elements). �

Definition 3.30. An ideal M �R is called maximal if:

(i) M 6= R;
(ii) If N �R with M ⊆ N ⊆ R, then either M = N or N = R.

Examples:

(i) Let R = Z; ideals in Z are the sets nZ, where n ∈ N∪{0}. We note that nZ ⊆ mZ
if and only if m

∣∣n. From this, we have that M�Z is maximal if and only if M = pZ
where p is prime.
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(ii) Let R = C[0,1]. Recall: If F ⊆ [0, 1], we set

ΓF = {f ∈ C[0,1] : f(x) = 0, for all x ∈ F}.

We have ΓF � C[0,1]; we note that if F1 ⊆ F2 ⊆ [0, 1], then ΓF2 ⊆ ΓF1 . Fix
t ∈ [0, 1] and consider Γt- these are the maximal ideals in C[0,1] (in fact, they are
the maximal ideals of any compact Hausdorff topological space- we’ll prove this
later).

Definition 3.31. Let R be a ring. We define

rad(R) =
⋂

M�R,
maximal

M

as the Jacobson radical of R. This is an ideal of R as well.

Note: The Jacobsen radical measures how “dense” maximal ideals are in the ring. If
rad(R) = {0}, then R is called semi-simple. The more maximal ideals you have, the
“better behaved” our ring is.

Note: From here on out, assume R is a commutative unital ring.

Theorem 3.32. Let A�R. Then A is a maximal ideal if and only if R�A is a field.

Proof. First, assume A is maximal. As R is a commutative unital ring, so is R�A. Let

b+A ∈ R�A such that b+A 6= A (so b 6∈ A). Let

B = {ideal generated by A and b} = {a+ bx : x ∈ R, a ∈ A}.

We note that A ⊂ B, and setting a = 0, x = 1 implies b ∈ B, with b ∈ B \ A. As A is
maximal, this implies B = R. Therefore, 1 ∈ B, and so 1 = a + bx for some x ∈ R and
a ∈ A. We have

(b+A)(x+A) = bx+A = (bx+ a) +A = 1 +A.

Therefore, b+A is a unit in R�A; as b+A was arbitrary, this proves R�A is a field.

Next, suppose R�A is a field, and that A ⊂ B�R. For b ∈ B \A, we know b+A 6= A.

As R�A is a field, there exists a c+A ∈ R�A such that

bc+A = (b+A)(c+A) = 1 +A.

Therefore, there exists an a ∈ A such that bc + a = 1. As bc ∈ B (as b ∈ B) and a ∈ B
(as A ⊂ B), we have 1 ∈ B. This forces B = R, which shows that A must be maximal.
This completes the proof. �

Corollary 3.33. For all t ∈ [0, 1], Γt � C[0,1] is maximal.

Proof. Consider the map

ϕ : C[0,1] → R, ϕ(f) = f(t).

Note that ϕ is a ring homomorphism. We have kerϕ = Γt, and imϕ = R. By the First
Isomorphism Theorem, we then have

C[0,1]�Γt
∼= R,

where R is a field. By the previous proposition, this shows Γt must be maximal. �
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Definition 3.34. A set X is called partially ordered if it is equipped with a relation ≤
such that

(i) x ≤ x for all x ∈ X;
(ii) If x ≤ y, y ≤ z then x ≤ z for x, y, z ∈ X;

(iii) If x ≤ y, y ≤ x then x = y for x, y ∈ X.

Examples:

(i) If X = R, a partial order is ≤ (as usually interpreted).
(ii) Let S be a set and P(S) be the power set of S. Set inclusion on P is a partial

order- we say A ≤ B if A ⊆ B for A,B ∈ P(S).

Definition 3.35. A subset C ⊆ X such that for all x, y ∈ C then either x ≤ y or y ≤ x
is called a chain in X.

Definition 3.36. For set P ⊆ S, an element m ∈ S such that x ≤ m for all x ∈ P is
called an upper bound of P .

Definition 3.37. If S is a set and ≤ a partial order on S, an element s ∈ S such that if
t ∈ S and s ≤ t then t = s is called a maximal element of S.

Theorem 3.38 (Zorn’s Lemma). Let (X,≤) be a partially ordered set. Assume that every
chain has an upper bound. Then X under ≤ has a maximal element.

Note: The above is logically equivalent to the Axiom of Choice.

Theorem 3.39. Every unital ring has a maximal ideal.

Proof. Let R be a unital ring. Let S be the set of all proper ideals of R. Equip S with
the partial order of set inclusion: for A,B ∈ S, A ≤ B if A ⊆ B. We note that (S,≤) is a
partially ordered set. Observe that M ∈ S is a maximal element for ≤ precisely when M
is a maximal ideal. Let C ⊆ S be a chain. Let

A = ∪{B : B ∈ C}.
This is an ideal in R, as C is necessarily a nested family of ideals. Furthermore, we note
A ⊂ R, as if 1 ∈ A then 1 must be in some B ∈ C, forcing B = R- a contradiction, as C is
a chain of proper subsets. Then by Zorn’s Lemma, A must be a maximal ideal in R. This
completes the proof. �

3.5. Integral domains and principal ideals. Recall: A unit in a unital ring R is an
element u ∈ R such that there exists an element v ∈ R where uv = 1.

Definition 3.40 (Associates, irreducibles). Elements a, b ∈ R are called associates if
there exits a unit u ∈ R such that b = au. An element a ∈ R s called irreducible if for
a = bc, then either b is a unit or c is a unit.

Example: In Z: irreducible elements are the primes, ±1, and the negatives of primes.

The units in Z are ±1. Associates in Z are also easy to describe: if a ∈ Z, then b = a or
b = −a are the only associates of a.

Note: For prime numbers in Z: we have p
∣∣ ab implies p

∣∣ a or p
∣∣ b ⇐⇒ p = ab

implies a = 1 or b = 1 (where p is prime).
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Theorem 3.41. If R is an integral domain, then every prime element of R is irreducible.

Proof. Let a ∈ R be a prime element. Assume that a = bc, with b, c ∈ R. Then a
∣∣ bc; as

a is prime, then either a
∣∣ b or a

∣∣ c. Without loss of generality, assume a
∣∣ b; then b = ax

for some x ∈ R. From this, we have a = axc. By cancellation (as we are in an integral
domain) we then see 1 = xc. Therefore, c must be a unit. As a was an arbitrary prime
element, this holds for every prime element. �

Note: The converse of the last theorem does not hold in general. Indeed, in the ring
Z[
√
−3] the element 1 + i

√
3 is irreducible but not prime (homework exercise!).

Recall: An ideal A�R is principal if there exists an a ∈ R such that

A = 〈a〉 = {ax : x ∈ R}.

Note: If a, b are associates, then 〈a〉 = 〈b〉. This holds, as if b = au where u is a unit,
then b ∈ 〈a〉, so 〈b〉 ⊆ 〈a〉. Also, a = bt, where ut = 1. This means a ∈ 〈b〉, which forces
〈a〉 ⊆ 〈b〉, and so the two are equivalent. In fact,

〈a〉 = 〈b〉 ⇐⇒ a = bu for a unit u.

Definition 3.42 (Principal ideal domain). A commutative, unital ring R is a PID if
A�R implies A is principal (i.e., every ideal in R is principal).

Theorem 3.43. Let R be a PID. Then an element a ∈ R is prime if and only if it is
irreducible.

Proof. We have seen (by the previous theorem) that if a is prime, it is irreducible. To
prove the converse, fix an irreducible element a ∈ R. Assume a

∣∣ bc, where b, c ∈ R. Let

I = {ax+ by : x, y ∈ R}.

We note that I � R. Since R is a PID, there exists a d ∈ R such that I = 〈d〉. As a ∈ I,
there exists an r ∈ R such that a = dr. As a is also irreducible, one of the following holds:

Case 1: Element d is a unit, so d is an associate to 1. Then 〈d〉 = 〈1〉 = R, and so
1 ∈ I. Then there exists x, y ∈ R such that ax + by = 1. Multiplying both sides of the
equation by c, we see c = cax+ bcy. As a

∣∣ bc by assumption and as a
∣∣ cax (clearly), this

means a
∣∣ c.

Case 2: Element r is a unit, and so 〈d〉 = 〈dr〉 = 〈a〉. Therefore, I = 〈a〉; as b ∈ I,
this means b ∈ 〈a〉, and so b = ax for some x ∈ R. This shows a

∣∣ b.
As we have shown either a

∣∣ b or a
∣∣ c, this shows a is prime. As a ∈ R was an ar-

bitrary irreducible element, this completes the proof. �

Example: Z[x] is not a PID (homework exercise!).

Proposition 3.44. If F is a field, then F [x] is a PID.

Proof. Let I � F [x] be an ideal. Let f ∈ I be an element with minimal degree deg(f).
We claim I = 〈f〉. It is clear that as f ∈ I, then 〈f〉 ⊆ I (as I is an ideal in F [x]). So
let g ∈ I, and assume f - g. Using the Division Algorithm, we write g = fq + r where
q, r ∈ F [x] such that deg(r) < deg(f). We note that

r = g − fq ∈ I,

as g, fq ∈ I. As f is an element of minimal degree in I, but deg(r) < deg(f), this forces
r = 0. However, this means g = fq, and so f

∣∣ g. This means I ⊆ 〈f〉, and so I = 〈f〉. As
I was arbitrary, this shows F [x] is a PID. �
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Example: 〈xk〉 = {fxk : f ∈ F [x]} = {g ∈ F [x] : deg(g) ≥ k}.

Definition 3.45 (Unique factorization domain). We call a commutative unital ring R
a UFD if for all a ∈ R, a 6= 0 there exist irreducible elements r1, . . . , rk such that a =
r1 · · · rk, where this factorization is unique (up to their ordering and associates- i.e., if
a = p1 · · · pm where pj are all irreducible then k = m and {p1, . . . , pk} and {r1, . . . , rk}
are equal up to multiplication by units).

Lemma 3.46. Let R be a PID. Every chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ . . .
terminates.

Note: Rings which have the property described in the lemma above are called Noetherian
rings.

Proof. Let I1 ⊆ I2 ⊆ I3 ⊆ . . . be a chain of ideals as described above. Let I = ∪∞k=1Ik;
note that I � R. As R is a PID, there exists an a ∈ R such that I = 〈a〉. This means
a ∈ I, and so by definition there exists a k ∈ N such that a ∈ Ik. Then I = 〈a〉 ⊆ Ik; we
clearly have Ik ⊆ I, and so I = Ik. This shows

Ik = Ik+1 = Ik+2 = · · · = I,

so our chain terminates. �

Theorem 3.47. Every PID is a UFD.

Proof. Let a ∈ R, where a 6= 0 and a is not a unit. If a is irreducible, we are done; so
assume that a is not irreducible, with a = a1b1 where a1, b1 are not units and are non-zero.
We claim a must contain an irreducible factor. If a1 is irreducible, we are done- so assume
not. Then a1 = a2b2, where a2, b2 are nonzero and not units. If a2 is irreducible, we are
done (as a2 is a factor of a). Else, we continue inductively where we obtain a sequence of
elements a, a1, a2, a3, . . . such that an = an+1bn+1 where bn+1 is nonzero and not a unit
for all n ∈ N. We note that 〈an〉 ⊂ 〈an+1〉 for each n (as if 〈an〉 ⊆ 〈an+1〉, this implies
they may differ by a unit, which is impossible). Then by our previous lemma, we know
this chain terminates eventually- so there exists some ak which is irreducible, with

〈a〉 ⊂ 〈a1〉 ⊆ . . . ⊂ 〈ak〉.
This means ak is an irreducible factor of a.

We next claim that a has an irreducible factorization. By our initial claim, a = r1b1 for
some irreducible r1. If b1 is irreducible, we are done. So assume not- then b1 = r2b2 where
r2 is irreducible. As before, if we continue inductively we obtain a sequence r1, r2, r3, . . .
such that

〈a〉 ⊆ 〈r1〉 ⊆ 〈r2〉 ⊆ . . .
Again, by the lemma this chain is finite, and so there exists a bk which is irreducible.
Therefore, a = r1r2r3 · · · rkbk is an irreducible factorization of a.

Finally, we wish to prove that this factorization is unique. Suppose

a = p1 · · · pk = q1 · · · qn,
where pi, qj are irreducible. We’ll prove uniqueness by induction on k. It is clear that if
k = 1, then p1 = q1 · · · qn is impossible if n 6= 1. Next, assume the statement is true up
to k − 1 factors. As R is a PID, any irreducible element is prime- as p1 is irreducible, it
must be prime. Furthermore, we have p1

∣∣ q1 · · · qn- so without loss of generality, assume

p1

∣∣ q1. Then q1 = p1u; as q1 is irreducible, this forces u to be a unit. This means

p1p2 · · · pk = p1uq2 · · · qn ⇒ p2 · · · pk = (uq2) · · · qn.
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By our inductive hypothesis, this factorization is unique (as we now have k − 1 factors).
Therefore, the case holds for k factors, and so it holds in general as k was arbitrary. As
a ∈ R was arbitrary, this completes the proof. �

4. Field theory

4.1. Polynomial rings and field extensions.

Proposition 4.1. For a field F , then F [x] is a PID. The units of F [x] are the non-zero
constant polynomials.

Note: In a polynomial ring, for f, g ∈ F [x] we have deg(fg) = deg(f)+ deg(g). We recall
that if f is a unit in F [x], there must exist some g ∈ F [x] such that fg = 1 (as the identity
in F [x] is the constant polynomial 1).

Aim: In broad strokes, in algebra we wish to answer questions like: can I find the roots of
a polynomial f ∈ F [x], and where?

Theorem 4.2. Let F be a field and p(x) ∈ F [x]. Then 〈p(x)〉 is a maximal ideal of F [x]
if and only if p(x) is irreducible.

Proof. Suppose first that 〈p(x)〉 is a maximal ideal in F [x]. Clearly, p(x) 6= 0 and is not
a unit as neither {0} nor F [x] are maximal ideals. If p(x) = g(x)h(x) is a factorization of
p(x) over F , then 〈p(x)〉 ⊆ 〈g(x)〉 ⊆ F [x]. Then 〈p(x)〉 = 〈g(x)〉 or F [x] = 〈g(x)〉. If the
first case, we have deg(p) = deg(g). In the second case, we must have deg(g) = 0, and so
deg(h) = deg(p). Then p(x) cannot be written as a product of two polynomials in F [x] of
lower degree. This means p(x) is irreducible.

Next, suppose p(x) is irreducible over F . Let I be any ideal of F [x] such that 〈p(x)〉 ⊆
I ⊆ F [x]. As F [x] is a PID we know that I = 〈g(x)〉 for some g(x) ∈ F [x]. Then
p(x) ∈ 〈g(x)〉, and so p(x) = g(x)h(x) for h(x) ∈ F [x]. As p(x) is irreducible over F , then
either g(x) is constant or h(x) is constant. In the former case, this means I = F [x]; in the
latter case, this means I = 〈p(x)〉 = 〈g(x)〉. In either case, this shows 〈p(x)〉 is maximal,
which completes the proof. �

Corollary 4.3. Let p ∈ F [x]; then p is irreducible if and only if F [x]�〈p〉 is a field.

Example 4.4. The polynomial x2 + 1 is irreducible in R[x]. We have R[x]�〈x2 + 1〉
∼= C.

(We adjoin an element to R (i.e. a root of x2 + 1)).

Definition 4.5. A root of f ∈ F [x] in F is an element ζ ∈ F such that f(ζ) = 0.

Note: f(x) ∈ F [x], but f(ζ) ∈ F .

Definition 4.6. A field E is called an extension of a field F if F ⊆ E and the operations
on F are the restriction of the operations on E.

Examples:

(i) R ⊆ C is a field extension.
(ii) Q ⊆ R is an extension.
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Theorem 4.7 (Fundamental Theorem of Field Theory (Kronecker, 1887)). Let F be a
field and f(x) ∈ F [x] be a non-constant polynomial. Then F has an extension E in which
f(x) has a zero.

Proof. It suffices to consider the case where f is irreducible in F [x]. If f is not irreducible,
we can write it as a product of irreducible polynomials of smaller degree; as every zero
of our factors is a zero of f , this allows us to focus solely on when f is irreducible. Let

E = F [x]�〈f〉. Since f is irreducible, E is a field. We also note F ⊆ E; recall- if F1, F2 are

fields with φ : F1 → F2, then if φ is a monomorphism {φ(a) : a ∈ F1} ⊆ F2 is a subfield.
Then as F1

∼= {φ(a) : a ∈ F1}, we have F1 ⊆ F2 (in the sense of field isomorphism).
Equivalently, F2 is an extension of F1. Based on the previous comments, the map

ψ : F → E, ψ(a) = a+ 〈f〉

is a monomorphism. Therefore, E is an extension of F . Consider ζ = x+〈f〉 ∈ F [x]�〈f〉 =

E. We note that f(ζ) = f(x) + 〈f〉 = 0 in E. Therefore, ζ is a root of f in the extension
E. This completes the proof. �

Notation: Let F ⊆ E be a field extension. The field F (a1, . . . , an) where a1, . . . , an ∈ E
is the smallest subfield of E containing both a1, . . . , an and F .

Examples:

(i) Q ⊆ R, with Q(
√

2) = {a+ b
√

2 : a, b ∈ Q} is an extension;
(ii) Q ⊆ C, with Q(i) = {a+ bi : a, b ∈ Q} is a field extension.

Definition 4.8. Let f ∈ F [x], where F is a field. Furthermore, let E be an extension of
F . We say f splits over E if there exist a1, . . . , an ∈ E such that

f(x) = a(x− a1)(x− a2) · · · (x− an).

Example: Let f(x) = x2 − 2. Then f(x) splits over Q(
√

2).

Definition 4.9. We say that E (as an extension of F where f splits) is a splitting field
for f if, in addition, E = F (a1, . . . , an).

Examples:

(i) Q(
√

2) is the splitting field of x2 − 2 over Q;
(ii) Q(i) is the splitting field of x2 + 1 over Q;

(iii) For x4−x2−2 = (x2−2)(x2+1), the splitting field isQ(
√

2, i) = {a+b
√

2+ci+di
√

2 :
a, b, c, d ∈ Q}.

Note: We can consider field extensions as linear spaces over the base field.

Theorem 4.10 (Existence of splitting fields). Let F be a field and f ∈ F [x] where the
degree of f is at least 1. Then there exists a splitting field for f over F .

Proof. We will prove this by induction on the degree of f . If degf = 1, then f(x) = x− a
where a ∈ F ; this means F is the splitting field for f . So assume the statement is true
for all polynomials of degree less than n, where n ≥ 2. Let degf = n. By Kronecker’s
Theorem, there exists an extension E of F and ζ ∈ E such that f(x) = (x− ζ)g(x), where
g(x) ∈ E[x]. We note that degg = n − 1; so by the inductive hypothesis, there exists an
extension E ⊆ K where g splits in K. Then

g(x) = b0(x− b1) · · · (x− bn−1)



32 G.H.

for bi ∈ K. Then

f(x) = b0(x− ζ)(x− b1) · · · (x− bn−1)

in K, and so K splits f . Then F (ζ, b1, . . . , bn−1) is the splitting field of f . �

Theorem 4.11. Let F be a field and p ∈ F [x] be irreducible over F . Let a be a zero of p
in some extension E, where F ⊆ E. Then

F (a) ∼= F [x]�〈p〉.

Furthermore, if degp = n, then every element ζ ∈ F (a) has a unique representation of the
form

ζ = cn−1a
n−1 + · · ·+ c1a+ a0,

where c0, . . . , cn−1 ∈ F .

Proof. Consider the following map

φ : F [x]→ E,

φ(f) = f(a).

Then

(i) φ is a homomorphism (which is straightforward to see);
(ii) kerφ = 〈p〉;

Proof. We see φ(p) = p(a) = 0, and so p ∈ kerφ. This implies 〈p〉 ⊆ kerφ. As p
is irreducible, 〈p〉 is a maximal ideal. Since 1 6∈ kerφ, then kerφ 6= F [x]. By the
maximality of 〈p〉, this forces kerφ = 〈p〉. �

(iii) imφ = {φ(f) : f ∈ F [x]} = {f(a) : f ∈ F [x]} = F (a).

Then by the First Isomorphism Theorem, we see

F (a) ∼= F [x]�〈p〉.

For the second part of the theorem- homework exercise! (As a hint: we want to show

that for all h ∈ F [x]�〈p〉, there are unique c0, . . . , cn−1 ∈ F such that h = c0 + c1x+ · · ·+
cn−1x

n−1. The representation and uniqueness of ζ ∈ F (a) follows from the statement
after the use of φ). �

Corollary 4.12. Let p ∈ F [x] be irreducible, and let a be a root of p in extension F ⊆ E.
Furthermore, let a′ be a root of p in extension F ⊆ E′. Then F (a) ∼= F (a′).

Proof. Both F (a) and F (a′) are isomorphic to F [x]�〈p〉 by the previous theorem, and so

F (a) ∼= F (a′). �

Theorem 4.13. The splitting field of f ∈ F [x] is unique up to isomorphism.

General plan for the rest of the class

• Algebraic extensions of a field
• Solvability in radicals (indication only)
• Structure of finite fields

Definition 4.14. A zero a of f ∈ F [x] has multiplicity k if (x−a)k
∣∣ f , but (x−a)k+1 - f .

Definition 4.15. A zero a of f is a multiple root of f if its multiplicity is greater than 1.
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Definition 4.16. Let f = anx
n + · · · + a1x + a0 be a polynomial with coefficients in F .

The derivative f ′ of f is the element

f ′ = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1

in F [x].

Note: No analysis is used here to define the derivative- it is purely symbolic, and remains
in the same ring.

Proposition 4.17. For f, g ∈ F [x] we have

(i) (f + g)′ = f ′ + g′;
(ii) For a ∈ F , we have (af)′ = af ′;

(iii) (fg)′ = f ′g + fg′.

Proof. Left as an exercise! (Fairly clear through direct computation). �

Theorem 4.18. A root a ∈ E of f ∈ F [x] (where E is a field extension of F ), is multiple
if and only if f and f ′ have a common factor of degree at least 1 in F [x].

Proof. First, suppose a is a multiple root; then f = (x−a)2g(x). Using Leibniz’s Rule, we

have f ′ = (x−a)

(
(x−a)g′(x) + 2g(x)

)
. So (x−a) is (clearly) a common factor of f and

f ′. Suppose gcd(f, f ′) is the non-zero constant polynomial. Then there exists g, h ∈ F [x]
such that 1 = fg + f ′h (by Bezout’s Lemma). Consider 1 = fg + f ′h as an expression in
E[x]; if we evaluate this expression at a, we see

1 = f(a)g(a) + f ′(a)h(a) = 0.

However, 1 6= 0- so we have reached a contradiction. Therefore, gcd(f, f ′) cannot be a
constant, and so it must have degree greater than 0 in F [x].

Conversely, assume f and f ′ have a common factor of degree at least one. Let a be
a root of this common factor in some extension E of F . Then f(a) = f ′(a) = 0. Write
f(x) = (x− a)g(x), for some g ∈ E[x]. Then f ′ = g + (x− a)g′. Evaluating at a, we see

f ′(a) = g(a) + (0)g′(a) = g(a) = 0.

Therefore, g has a as a root, and so there exists an extension K of E such that g = (x−a)h,
for h ∈ K[x] (Note: we can just take K = E, as a ∈ E. It is also possible to go to a
higher extension if we want to split g completely). Therefore, f = (x− a)2h, and so a is
a multiple root. �

Definition 4.19. Let F be a field. Consider

N = {n ∈ N : 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0}.

If N = ∅, define char(F ) = 0. If N 6= ∅, let char(F ) = minN .

Examples:

(i) char(R) = char(Q) = char(C) = 0;
(ii) Let p be a prime. Fp = {0, 1, . . . , p − 1} equipped with addition and multiplica-

tion modulo p is a field, with char(Fp) = p. It is a field, as we can always find
multiplicative and additive inverses (use Bezout’s Lemma).

Note: If char(F ) > 0, then char(F ) must be prime.
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Proof. Let n = char(F ), where n ≥ 1. Take n = pq, where p, q ∈ N and p, q > 1. We then
see we would have

0 = (pq)(1) = (p(1))(q(1)).

As F is a field, there are no zero divisors, which forces either (p(1)) = 0 or (q(1)) = 0;
this contradicts the minimality of n. Therefore, n must be prime. �

Note: If F is a finite field, then char(F ) > 0.

Proof. Consider the elements {n · 1 : n ∈ N} ⊆ F . Since F is finite, there exist n,m such
that n(1) = m(1) with n < m. Therefore, (m−n)(1) = 0, which forces char(F ) ≥ m−n >
0. �

Theorem 4.20. Let f ∈ F [x] be irreducible, and assume char(F ) = 0. Then f does not
have multiple roots.

Proof. Assume f has a multiple root. By the previous theorem, f and f ′ have a common
factor of degree at least 1 (Note that “a is a root of f” makes sense without mentioning
which field a belongs to). As f is irreducible, then f is the only factor of f with degree
at least 1. This means f

∣∣ f ′; however, as degf ′ < degf , this means f ′ = 0. If f =

anx
n + · · · + a1x + a0 and n ≥ 1, then f ′ = nanx

n−1 + · · · + a1. We want to show that
f must be constant. As char(F ) = 0, nan 6= 0. But then this means f ′ 6= 0, which is a
contradiction. Therefore, degf = 0, and so f is either a unit or f is 0. This contradicts
the fact that f is irreducible- and so we conclude that f cannot have multiple roots. �

Proposition 4.21. If char(F ) = p > 0 and x, y ∈ F , then

(x+ y)p = xp + yp.

Proof. As F is a commutative ring (as a field), we see

(x+ y)p = xp +

(
p

1

)
xp−1y + · · ·+

(
p

p− 1

)
xyp−1 + yp.

As p
∣∣ (p

k

)
for all k ∈ {1, . . . , p − 1} (as we are using divisors which are strictly smaller

than p in
(
p
k

)
, leaving a factor of p in the numerator) then

(
p
k

)
xp−kyk = 0. This means

(x+ y)p = xp + yp. �

Note: We know p must be prime in the previous proposition.

Proposition 4.22. Let F be a finite field of char(F ) = p > 0. Then |F | = pn for some
n ∈ N.

Proof. Consider {0, 1, 2 ·1, 3 ·1, . . . , (p−1) ·1} in F , and call it F0. We note that F0
∼= Fp.

Now, consider F as a vector space over F0. Let n = dimF0 F (dimension as a vector
space). By previous comments, for any element in F we have p total elements to pick
from in n total places, which implies |F | = pn. �

Definition 4.23. A monic polynomial is a polynomial with leading coefficient of 1.

Definition 4.24. Let F ⊆ E be a field extension. An element a ∈ E is called algebraic
over F if there exists an f ∈ F [x] such that f(a) = 0. The element is transcendental if a
is not algebraic.

Definition 4.25. The extension F ⊆ E is algebraic if every a ∈ E is algebraic over F ,
and transcendental if it is not algebraic.



35 G.H.

Definition 4.26. Extension F ⊆ E is simple if E = F (a) for some a ∈ E.

Examples:

(i) n
√

2 ∈ R is algebraic over Q, as f(x) = xn − 2 (where f ∈ Q[x]) has root n
√

2.

(ii)
√

3 +
√

5 ∈ R is algebraic over Q.
Note: A real number ζ is called algebraic if ζ is algebraic over Q in the extension
Q ⊆ R.

(iii) e, π are transcendental (Lindemann proved this for π in 1882). Q(π) is simple and
transcendental.
Note: The algebraic numbers are countable, even though the reals are not- this
implies the transcendental numbers vastly “outweigh” the algebraic numbers.

Definition 4.27 (Field of quotients). Consider

F (x) =

{
f(x)

g(x)
: f, g ∈ F [x], g 6= 0

}
.

We can think of these as “rational functions” for field F . If we equip F (x) with the natural
operations of addition and multiplication, then F (x) becomes a field- this is called the field
of quotients.

Definition 4.28. For an algebraic element a ∈ E where F ⊆ E is a field extension, we
say f ∈ F [x] is the minimal polynomial for a if f(a) = 0 and the degree of f is minimal.

Theorem 4.29. Let F ⊆ E be a field extension and a ∈ E. Then

(i) If a is transcendental, then F (a) ∼= F (x);

(ii) If a is algebraic, then F [x]�〈p〉 ∼= F (a), where p is the minimal polynomial for a

over F .

Proof.
(i) Let φ : F [x] → E, where φ(f) = f(a) for each f ∈ F [x]. As a is transcendental,

kerφ = {0}. If we extend φ to a map φ̃ : F (x) → F (a), where φ̃( f
g

) = f(a)
g(a)

. Note that

there is no polynomial g ∈ F [x] such that g(a) = 0, as a is transcendental; this means

the map is well defined. Then φ̃ is a map between fields which is clearly surjective and
injective, with trivial kernel. Therefore, by the First Isomorphism Theorem we see φ̃ is
an isomorphism. This shows F (x) ∼= F (a).

(ii) (Sketch) Let p be the minimal polynomial for a. If we use the same map φ as in
(i), we have kerφ = 〈p〉. It is fairly clear from here that by applying the First Isomor-
phism Theorem that

F [x]�〈p〉 ∼= F (a)

as rings. �

Definition 4.30. Let F ⊆ E be an extension. The degree of F ⊆ E is denoted by [E : F ],
and defined by dimF E. We say F ⊆ E is finite if [E : F ] <∞, and infinite if [E : F ] =∞.

Examples:

(i) [C : R] = 2;

(ii) [Q( n
√

2) : Q] = n.
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Proposition 4.31. Let p ∈ F [x], and a be some zero of p in E (where F ⊆ E is a field
extension). Furthermore, suppose p is irreducible. Then [F (a) : F ] = deg(p).

Proof.
(Sketch) We consider 1, a, a2, . . . , an−1 as a basis for F (a) over F . As p(a) = 0, this
implies an = λ0 + λ1a+ · · ·+ λn−1a

n−1 for some λi ∈ F ; use this to generate any power
of a using elements from the basis, and proceed inductively. �

Proposition 4.32. Let F ⊆ E be a finite extension. Then F ⊆ E is algebraic.

Proof. Let n = [E : F ], and let a ∈ E. Then 1, a, . . . , an ∈ E. As dimF E = n, then
our n+ 1 elements 1, a, . . . , an must be linearly dependent over F . Therefore, there exist

λi ∈ F (not all zero) such that
n∑
i=0

λia
i = 0. Letting f(x) = λ0 +λ1x+ · · ·+λnx

n, we see

that f has a root at a, and f ∈ F [x]. �

Note: The converse of the previous statement is not true: for

Q(
√

2,
3
√

2,
4
√

2, . . .) ⊆ R,
the extension

Q ⊆ Q(
√

2,
3
√

2, . . .)

is algebraic but not finite.

Theorem 4.33 (Tower formula). Let F ⊆ E, and E ⊆ K be finite extensions. Then
F ⊆ K is a finite extension, with

[K : F ] = [K : E][E : F ].

Proof. Let X = {x1, . . . , xn} be a basis for E over F , and let Y = {y1, . . . , ym} be a basis
for K over E. We claim the set

XY = {xiyj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
is a basis for K over F . To show linear independence, first assume there exist λij ∈ F
such that

∑
i,j

λijxiyj = 0. We see

∑
i,j

λijxiyj =

m∑
j=1

( n∑
i=1

λijxi

)
yj = 0.

As
n∑
i=1

λijxi ∈ E and the y′js are linearly independent, this forces
n∑
i=1

λijxi = 0 for 1 ≤ j ≤

m. Then as the x′is are linearly independent over F , this forces λij = 0 for 1 ≤ i ≤ n and
1 ≤ j ≤ m. Therefore, XY is a linearly independent set. To show that XY is a spanning
set, we first note that any element k ∈ K can be expressed as a linear combination

k =
m∑
j=1

cjyj ; then as each cj is expressible as a linear combination cj =
n∑
i=1

bixi for bi ∈ F ,

we see

k =

m∑
j=1

cjyj =

m∑
j=1

( n∑
i=1

bixi

)
yj =

m∑
j=1

n∑
i=1

bixiyj .

Therefore, K ⊆ spanXY , and spanXY ⊆ K. This shows XY is a spanning set, and thus
a basis. Therefore, F ⊆ K is a finite extension with

[K : F ] = [K : E][E : F ].

�
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Example: We claim [Q( 3
√

2, 4
√

3) : Q] = 12. We can create the field extension above in

two ways:

• Q ⊆ Q( 3
√

2) ⊆ Q( 3
√

2, 4
√

3), or

• Q ⊆ Q( 4
√

3) ⊆ Q( 3
√

2, 4
√

3).

Let E = Q( 3
√

2, 4
√

3). By the previous theorem (Tower formula), for the first point we get

[E : Q] = [E : Q(
3
√

2)][Q(
3
√

2) : Q].

By the second point, we get

[E : Q] = [E : Q(
4
√

3)][Q(
4
√

3) : Q].

This tells us 3
∣∣ [E : Q] and 4

∣∣ [E : Q]; as gcd(3, 4) = 1, this means 12
∣∣ [E : Q] as well.

Therefore, [E : Q] ≥ 12.

Focusing on [E : Q( 3
√

2)], we first claim that [Q( 3
√

2, 4
√

3) : Q( 3
√

2)] ≤ 4. We have

[Q(
3
√

2,
4
√

3) : Q(
3
√

2)] = [Q(
3
√

2)(
4
√

3) : Q(
3
√

2)].

Note that x4−3 ∈ Q[x] ⊆ Q( 3
√

2)[x]; as 4
√

3 is a root of x4−3, this means [E : Q( 3
√

2)] ≤ 4.
Therefore, [E : Q] ≤ 12, and so [E : Q] = 12.

Example: We claim Q(
√

3,
√

5) = Q(
√

3 +
√

5), and so this extension is simple. It

is clear that Q(
√

3 +
√

5) ⊆ Q(
√

3,
√

5). As Q(
√

3 +
√

5) is a field extension, then

(
√

3 +
√

5)−1 ∈ Q(
√

3 +
√

5). As

(
√

3 +
√

5)−1 =
1√

3 +
√

5
=

√
5−
√

3

2
=

1

2
(
√

5−
√

3),

then
√

5 =
1

2
(
√

3 +
√

5) + (
√

3 +
√

5)−1 ∈ Q(
√

3 +
√

5).

Similarly,
√

3 ∈ Q(
√

3 +
√

5). So Q(
√

3,
√

5) ⊆ Q(
√

3 +
√

5), and so we have equality.

Theorem 4.34 (Steinitz, 1910’s). Suppose F is a field with char(F ) = 0, and a, b ∈ E
are algebraic over F . Then there exists a c ∈ E such that F (a, b) = F (c).

Proof. Let p and q be the minimal polynomials for a and b (respectively). Let a = a1,
and a1, . . . , an be the roots for p; similarly, let b = b1, and b1, . . . , bm be the roots of q.
Consider ai−a

b−bj
for i ≥ 1, j ≥ 2. As F is infinite (as a field of characteristic zero), there

exists some d ∈ F such that d 6= ai−a
b−bj

for all i ≥ 1 and j ≥ 2. So ai 6= a + d(b − bj) for

i ≥ 1 and j ≥ 2. Let c = a + db, and r(x) = p(c − dx). It is clear that r ∈ F (c)[x]; we
claim b ∈ F (c). If the claim holds, this would imply a = c − db ∈ F (c) as well. Then
F (a, b) ⊆ F (c); as the other inclusion is trivial, our proof would be complete. Therefore,
we attempt to prove the previous claim. First note that q(b) = 0, and r(b) = p(a) = 0.
Let s be the minimal polynomial for b over F (c). As s is irreducible, s is a common factor
of both q and r. This means the roots of s are among the roots b1, . . . , bm of q. But all
roots of s are also roots of r; however, r(bj) = p(c − dbj), and c − dbj 6= ai for all i ≥ 1
and j ≥ 2 by our choice of d. This implies s can have only one root- namely, b- which
is potentially a multiple. Therefore, s(x) = (x − b)` for some ` ∈ N. We wish to show
that ` = 1. As s is irreducible (as the minimal polynomial) over a field of characteristic
zero, then it cannot have multiple roots. So s(x) = (x − b). Therefore, b ∈ F (c), and so
F (a, b) ⊆ F (c). This completes the proof. �

Recall: [F (a, b) : F ] = [F (a, b) : F (b)][F (b) : F ] = [F (c) : F ] (where the last equality
follows by the previous theorem).
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Theorem 4.35. Let F ⊆ E and E ⊆ K be algebraic extensions. Then F ⊆ K is an
algebraic extension.

Proof. We wish to show that any element of K is algebraic over F . Let a ∈ K. As K
is algebraic over E, there exists a polynomial f ∈ E[x] such that f(a) = 0. Suppose
f(x) = b0 + b1x + . . . + bnx

n, where bi ∈ E for i = 0, . . . , n. Let F1 = F (b0), F2 =
F1(b1), . . . , Fn = Fn−1(bn−1), Fn+1 = Fn(bn), and Fn+2 = Fn+1(a). We have

F ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn+1 ⊆ Fn+2.

As a ∈ Fn+2, by the Tower Formula we see

[Fn+2 : F ] = [Fn+2 : Fn+1][Fn+1 : Fn] · · · [F1 : F ].

As each field extension above is finite (as F ⊆ E is algebraic), then [Fk : Fk−1] is finite
as well. So a belongs to a finite extension of F . However, any finite extension of a field
is necessarily algebraic. Therefore, a is algebraic over F , and as a ∈ K was arbitrary this
shows F ⊆ K is an algebraic extension. �

Question: By extending inductively and finitely at every step, can we arrive at an ex-
tension that cannot be extended finitely anymore?

Answer: In short- yes. We will not go too much into the specifics.

Theorem 4.36. Let F ⊆ E be an extension. Let

F = {a ∈ E; a is algebraic over F}.

Then F is a subfield of E.

Proof. Let a, b ∈ F . We wish to show a + b, a − b, ab, and a
b
∈ F (provided b 6= 0 in the

last case). Note that, by definition, a± b, ab, and a
b
∈ F (a, b). We have

[F (a, b) : F ] = [F (a, b) : F (b)][F (b) : F ].

As a, b are algebraic over F and F ⊆ F (b), then both [F (b) : F ] and [F (a, b) : F (b)]
are finite. Therefore, F ⊆ F (a, b) is a finite, hence an algebraic extension. This shows

a± b, ab, and a
b

are in F as well, which completes the proof. �

Example: The set of all real numbers that are algebraic is a subfield of R.

Definition 4.37. A field F is called algebraically closed if F ⊆ E being finite implies
F = E.

Theorem 4.38. Every field F has a unique (up to isomorphism) minimal algebraically

closed extension F ⊆ F .

Definition 4.39. The extension from the previous theorem is called the algebraic closure
of F .

Theorem 4.40. A field F is algebraically closed if every f ∈ F [x] has a zero in F .

Example: C is algebraically closed- this is just a restatement of the Fundamental Theorem

of Algebra by Gauss (which we will not prove).
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4.2. Classification of finite fields.

Theorem 4.41. For every prime p and every n ∈ N, there exists a unique field Fpn with
pn elements.

Example: The field Fp = Zp for a prime p.

Recall: For every finite field F , there exists a prime p and n ∈ N such that |F | = pn.

Theorem 4.42. Let p be a prime. For every n ∈ N there exists a unique field of order
pn, denoted by Fpn .

Proof. Let f(x) = xp
n

− x, where f ∈ Fp[x]. Let Fp be the splitting field of f over Fp.
We claim f does not have multiple roots. To show this, we note f ′ = pnxp

n−1 − 1 ≡ −1,
as we are working over a field of characteristic p. Then gcd(f, f ′) = gcd(f,−1) = 1, so f
and f ′ share no common roots. Therefore, f does not have multiple roots over Fp. Let

Λ = {a ∈ Fp : ap
n

= a}. We claim Λ is closed under addition, subtraction, multiplication
and division. Suppose a, b ∈ Λ; as we are working over a field of characteristic p, we see

(a± b)p
n

= ap
n

± bp
n

= a± b.
So a ± b ∈ Λ, showing closure under addition and multiplication. Similarly, by commu-
tativity of Fpn it is clear ab, a

b
∈ Λ when a, b ∈ Λ (just raise both to the power of pn).

Therefore, Λ is a subfield of Fp, with
∣∣Λ∣∣ = pn. This proves the existence of a field of

order pn.
To show uniqueness, suppose K is a field with

∣∣K∣∣ = pn. We claim char(K) = p.

Suppose q = char(K). As Fq ⊆ K, by Lagrange’s Theorem we have
∣∣Fq∣∣ ∣∣∣∣ ∣∣K∣∣; so q

∣∣ pn.

As p is prime, this forces q = p which means char(K) = p. Consider the multiplicative

group K∗. We have |K∗| = pn − 1; this means for any ζ ∈ K∗, ζp
n−1 = 1. Therefore,

ζp
n

= ζ for all of K∗. As 0 satisfies this relation as well, this holds for all of K- so K
contains all roots of f . This means K must be the splitting field of f . �

Structure of Fpn
Additive structure:

Proposition 4.43. Fpn ∼= Zp × · · · × Zp︸ ︷︷ ︸
n times

as groups.

Proof. We know (Fpn ,+) is a finite abelian group by definition, with
∣∣Fpn ∣∣ = pn. By the

Fundamental Theorem of Finite Abelian Groups, we have

Fpn ∼= Zpk1 × Zpk2 × · · · × Zpkn .

As char(Fpn) = p, we must have k1 = k2 = · · · = kn = 1 (otherwise, there exists an
element in Fpn with order strictly greater than p). So

Fpn ∼= Zp × · · · × Zp︸ ︷︷ ︸
n times

.

�
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Multiplicative structure:

Proposition 4.44. F∗pn is cyclic.

Proof. Split F∗pn = Zn1 × · · · × Znr as a direct product of finite abelian groups (by the
Fundamental Theorem of Finite Abelian Groups). We know that if ni and nj are relatively
prime for all i 6= j, then

Zn1 × · · · × Znr = Zn1n2···nr ,

which is clearly cyclic. We wish to show this is the case. To that end, assume towards
contradiction that there exists a d > 1 and i, j with i 6= j such that d | ni and d | nj .
The groups Zni and Znj both have subgroups of order d; so there exist H ≤ Zni and
K ≤ Znj such that |H| = |K| = d, with H ∩K = {e}. Take any h ∈ H; considering h

as an element of F∗pn where multiplication is the operation, we have hd = 1. Similarly,

kd = 1 for any k ∈ K. Consider the polynomial xd−1. We note that xd−1 has at most d
zeros. However, we have just shown that there are a total of 2d− 1 zeros coming from H
and K combined. Therefore, as we have reached a contradiction, we conclude that d = 1,
and so F∗pn ∼= Zn1n2···nr is a cyclic group. �

Theorem 4.45. Let p be prime and n ∈ N. For every m | n, there exists a unique subfield
of Fpn of order pm. Furthermore, these are all subfields of Fpn .

Note: Uniqueness here is up to subset, not just isomorphism- a stronger condition.

Proof. Let m | n, for m,n ∈ N. Then pm− 1
∣∣ pn− 1; this means there exists a t ∈ N such

that pn − 1 = (pm − 1)t. Let

K = {a ∈ Fpn : ap
m

= a}.

We first note that |K| ≤ pm, as the polynomial xp
m

− x cannot have more than pm zeros.
We also note that K is a subfield of Fpn (by similar reasoning as in previous proofs from
this section). We know F∗pn is a cyclic group- so let a be a generator, with 〈a〉 = F∗pn .

Consider the element at- we have

(at)p
m−1 = ap

n−1 = 1,

and so at = K. We also know |at| = pm − 1, as an element of K. Therefore, |K| ≥ pm,
which forces |K| = pm. This proves existence.

To show uniqueness, suppose K and L are distinct subfields of Fpn of order pm. We

note that xp
m

−x has all elements of K and all elements of L as roots; as K,L are distinct
this means we have at least pm + 1 roots. However, the polynomial can clearly have at
most pm roots- a contradiction. Therefore, we conclude that there are no such distinct
subfields, and so any subfield of this order is unique.

Finally, to prove exhaustiveness let K be a subfield of Fpn . We know char(K) = p; this
implies |K| = pm for some m ∈ N. We note that

Fp ⊆ K ⊆ Fpn

where we consider these inclusions as field extensions. Then by the Tower Formula, we
have

[Fpn : Fp] = [Fpn : K][K : Fp] = [Fpn : K][Fpm : Fp].

We claim [Fpn : Fp] = n; this follows from considering Fpn ∼= Fp × · · · × Fp as a vector
space over Fp with basis {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} consisting of n vectors. This shows
n = [Fpn : K]m, and so m | n. This completes the proof. �
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4.3. Solvability and Galois miscellany.

Definition 4.46. We say n
√
ζ is a radical, for ζ ∈ Z.

Our question: For any polynomial, can we express the roots of the polynomial in radi-
cals using only finitely many steps?

Definition 4.47. Let F ⊆ E be a field extension. We define

GalF (E) = {φ ∈ Aut(E) : φ(a) = a, for all a ∈ F}.

We say GalF (E) is a group under composition.

Galois duality: If G ≤ GalF (E), we can form

EG = {a ∈ E : φ(a) = a for all φ ∈ G}.
Then F ⊆ EG ⊆ E as field extensions.

Theorem 4.48 (Galois I). There exists a bijective correspondence between the extensions
F ⊆ K ⊆ E (i.e. field extensions sitting between F and E) and the subgroups of GalF (E).

Let f ∈ F [x]. Then f is solvable in radicals if: f has a splitting field F (a1, . . . , an) such

that ak11 ∈ F for some k1 ∈ N, ak22 ∈ F (a1) for some k2 ∈ N, . . . , aknn ∈ F (a1, . . . , an−1)
for some kn ∈ N.

Definition 4.49. A group G is called solvable if

G�G1 �G2 � · · ·� {e}

and Gi�Gi+1
is abelian.

Theorem 4.50 (Galois II). If f is solvable in radicals, then GalF (E) (where E is the
splitting field of f) is solvable.

5. Addendum

5.1. Addendum/examples.

Example: (Visualizing the field F16) We will use the fact that if a polynomial p is

irreducible in F [x], then F [x]�〈p〉 is a field. Let F = F2, and consider the polynomial

p(x) = x4 + x + 1. We note that p has no root in F2 (plug in 0 and 1 to test), and
cannot be factored into a product of two irreducible quadratic polynomials. Therefore, p

is irreducible. Looking at the field F2[x]�〈p〉, we use the relation x4 = −x − 1 = x + 1.

This implies

F2[x]�〈p〉 = {a+ bx+ cx2 + dx3 + 〈p〉 : a, b, c, d ∈ F2}.

The operations on our field are as follows: for addition, it is done coefficient-wise, and
always modulo 2; likewise, multiplication is done similarly while also using the reducing
relation x4 = x+ 1. We know that as an additive group that

F16 = Z2 × Z2 × Z2 × Z2,

while F∗16 is a cyclic group of order 15. We claim x+ 〈p〉 in F2[x]�〈p〉 is a generator for a

cyclic group of order 15, which establishes the connection between F16 and our field above.
As all elements in F∗16 must have order 1, 3, 5 or 15- since x3 = x3 (i.e. we cannot reduce
further) and x5 = x(x+ 1) = x2 +x, this means it does not have order 3 or 5. It is clearly
not the identity element in the cyclic group, so it must have order 15. This means x is a
generator.
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Theorem 5.1 (Eisenstein’s Criterion). Let f(x) = a0 + a1x+ · · ·+ anx
n, where f ∈ Z[x]

and an 6= 0. Suppose p is prime, where p | a0, . . . , an−1, but p - an and p2 - a0. Then f is
irreducible in Q[x].

Application: Let p be prime, and consider the polynomial

f(x) = xp−1 + xp−2 + · · ·+ x+ 1.

We claim f is irreducible over Q[x]. To show this, first note that

f(x) = xp−1 + xp−2 + · · ·+ x+ 1 =
xp − 1

x− 1
.

Consider Φ(x) = f(x+ 1). We see

Φ(x) = f(x+ 1) =
(x+ 1)p − 1

(x+ 1)− 1
=
xp +

(
p
1

)
xp−1 + · · ·+

(
p
p−1

)
x+ 1− 1

x+ 1− 1

= xp−1 +

(
p

1

)
xp−2 + · · ·+

(
p

p− 1

)
.

As we have shown before, we know p |
(
p
k

)
when 1 ≤ k ≤ p− 1. Then by Eisenstein’s Cri-

terion, the polynomial Φ(x) is irreducible in Q[x]. This therefore implies f is irreducible
in Q[x] as well.

Theorem 5.2 (Fermat’s Little Theorem). If p is prime and a ∈ Z with p - a, then
ap−1 ≡ 1 mod p. Equivalently- if p is prime and a ∈ Z, then ap ≡ a mod p.

Proof. Consider the field Fp. In F∗p, every element has order p− 1. The conclusions of the
theorem follow easily from this. �

Theorem 5.3 (Rational Root Theorem). Let f(x) = anx
n + · · ·+a1x+a0, where ai ∈ Z

and a0, an 6= 0. If p
q

is a rational root of f , where p and q are relatively prime (i.e. written

in lowest form) then we must have p | a0 and q | an.

Note: What the theorem above then tells us is if we look at all possible rationals which
satisfy those two constraints for a polynomial, and none of them are a zero for the poly-
nomial then f is irreducible over Q.
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