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Whole-brain voxel-wise analysisBackground and Research Question
• Neural plasticity, the brain’s ability to change and adapt based on 

inputs and stimulation, continues on into adulthood.

• Still, language learning is increasingly difficult in adulthood1.
• Existing adult language learning studies do not include control 

groups to separate language-specific training effects from general 
training effects2.

• During early development, certain brain regions become highly 
specialized to language processing1.

• Research Question: Is adult second language learning associated 
with changes within or beyond the existing language network?

Methods
• Participants: The three groups did not differ significantly based on 

age, IQ, or gender ratio. 

• Language Training: Introductory	Modern	Standard	Mandarin	for	
3.5	hours	for	5	days/week	over	4	weeks.

• Active Control: Multiple	Object	Tracking	(MOT),	a	visual-spatial	
task3,	for	30-60	minutes	for	5	days/week	over	4	weeks.	

• Passive Control: No training was completed between scans.

• Imaging: T1-weighted anatomical and diffusion-weighted images 
were acquired on a 3T Siemens Tim Trio scanner before and 
after training to measure fractional anisotropy (FA), axial 
diffusivity (AD), radial diffusivity (RD).

Analysis
• Pre-Processing:  All images were corrected for eddy currents and 

motion; registered to the subject’s T1 and MNI; and used to 
generate maps of FA, AD, and RD using the longitudinal streams 
on Freesurfer4 and TRACULA5. 

• 1) Whole-brain voxel-wise analyses6 of diffusion measures to 
study interaction between session (pre vs. post) and group 
(language-training vs. active control and vs. passive control). 

• 2) Post-hoc cluster analyses of the white-matter areas common 
to both comparisons, the forceps minor (fminor) and left inferior 
longitudinal fasciculus (ILF).

Results
• Figure 1: The	language-training	group	showed	a	significantly	
greater	 increase	in	FA	after	training	than	both	the	active	control	
group	(Figure	1A)	and	the	passive	control	group	(Figure	1).

• Figure 2: The	language-training	group	showed	a	significantly	
greater	 decrease	in	RD	after	training	than	both	the	active	control	
group	(Figure	2A)	and	the	passive	control	group	(Figure	2B).

• Figure 3: Wilcox	rank-sum	tests	showed	a	significant	training-
induced	increase	of	FA	in	the	language-training	group,	but	no	
significant	change	in	either	the	active	control	group	or	the	
passive	control	group	in	both	fminor	(Figure	3B)	and	left	ILF	
(Figure	3C).

• Figure	4:	Wilcox	rank-sum	tests	showed	a	significant	training-
induced	decrease	of	RD	in	the	language-training	group,	but	no	
significant	change	in	either	the	active	control	group	or	the	
passive	control	group	in	both	fminor	(Figure	4B)	and	left	ILF	
(Figure	4C).

Conclusion and Discussion
• Overall: Intensive second language acquisition in adults is 

associated with inter-hemispheric white matter tracts as well as 
left-hemisphere language related tracts.

• Results replicate 9-month Mandarin-learning study7, which shows 
results are specific to language but not visual-spatial skill training.

• Increased white-matter connectivity both between hemispheres 
and within the left hemisphere may reflect structural adaptation 
for novel phonetic and orthographical categories in Mandarin8.

• Enhanced left ILF shows may reflect the syntactic-semantic 
integration associated with language learning9.

• The involvement of frontal areas may reflect increasing cognitive 
demand for code-switching between languages.
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Figure 2: TBSS analysis comparing the inter-scan RD difference in the language learning group to the inter-scan 
RD dif ference in the active control group (Figure 1A) and in the the passive control group (Figure 1B).

Post-hoc cluster analysis

Figure 1: TBSS analysis comparing the inter-scan FA dif ference in the language learning group to the inter-scan FA 
dif ference in the active control group (Figure 1A) and in the the passive control group (Figure 1B).

Figure 3B:
FA in fminor in 
language (p=0.007); 
active control 
(p=0.89); passive 
control (p=0.27).
Figure 3C: 
FA in left ILF in 
language (p=0.004); 
active control 
(p=0.52); passive 
control (p=0.54).

Age IQ M:F
Language	Training (14) 22.3	(2.5) 113.2 (11.1) 6:8
Active	Control	(14) 21.3 (2.3) 115.6	(13.0) 5:9
Passive	Control (19) 22.7	(3.0) 112.9	(9,1) 8:11

B. FA, Language Training vs. Passive Control
0.05                    0 .001                    

P-values

B. RD, Language Training vs. Passive Control

A. FA, Language Training vs. Active Control

A. RD, Language Training vs. Active Control

Figure 4B:
RD in fminor in 
language (p=0.002); 
active control 
(p=0.80); passive 
control (p=0.38).
Figure 4C: 
RD in left ILF in 
language (p=0.014); 
active control 
(p=0.67); passive 
control (p=0.99).
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