

TORONTO

Cortical Plasticity of Sentence Processing after Classroom-Based Language Training Experience

Zhenghan Qi¹, Michelle Han¹, Jennifer Minas¹, Amy S. Finn^{1, 2}, John D. E. Gabrieli¹ ¹ Massachusetts Institute of Technology, ² University of Toronto

RESULTS

INTRODUCTION

- » Prior lab-based research mostly focuses on training a single aspect of language.
- » It is poorly understood how naturalistic training experiences affect the neural organization of sentence processing in early learners of a foreign language.
- » Only one fMRI study (Barbeau et al., 2016) has investigated functional plasticity in realworld language learners. However, the sentence reading task simply relies on decoding, rather than comprehension.
- » The current study investigates the functional plasticity of auditory sentence comprehension after a one-month classroom-based Mandarin course.

METHODS

Participants

Twenty-four native speakers of American English (8 females and 16 males; mean age = 23.2, SD = 3.68; mean IQ = 118, SD = 12.34). One participant was removed from the analysis due to excessive motion during the fMRI scan.

Language Training

- 3.5 hours per day, 5 days per week and 4 weeks of classroom-based Mandarin course (mean total time in the classroom: 62.3 hours)
- 11 assignments (2.7 hours per assignment), 10 quizzes, one midterm exam, and one final exam.
- Standardized proficiency test (HSK Level 1) was administered immediately after the course and again 3 months later.

Proficiency	# Subjects	Mean (SD)
Immediate Attainment	24	70.06 (10.78)
90-day Retention	19	54.76 (19.49)

fMRI Method

Matching Task

- Fixation = 1.5sbetween blocks **Sentence-Picture**
- Fifteen 6-trial blocks in one of the 3 languages in 2 runs
- English
- Mandarin
- Miniature Artificial Language (MAL)
- TR = 2000ms, TE = 30ms, flip angle = 90°, voxel resolution = $3.2 \times 3.2 \times 3.2$ mm, 191 volumes, 12.5 min.
- FSL v5.0.6; Freesurfer v5.3.0; Nipype v0.8; Motion < 1 mm; Intensity Z < 3

Behavioral Results

- ◆ Significant Main Effect of Language
- F (2,46) = 520.1, p < .001
- ◆ Significant Main Effect of Session F(1,23) = 14.94, p < .001
- ◆ Significant interaction between Language and Session F (2,46) = 5.46, p < .01
- ◆ Significantly greater increase in accuracy in Mandarin than in English or in MAL

English Mandarin MAL

 \bullet Fs (1,23) > 6.8, p's < .02

English Mandarin MAL

fMRI Results

Voxel-level cluster-forming threshold p < 0.001 (two-sided); FWE-corrected cluster-level threshold p < 0.05.

English Mandarin MAL

English Mandarin MAL

Pre-training Post-training Brain-Proficiency Correlation

RESULTS

Voxel-level cluster-forming threshold p < 0.005; FWEcorrected cluster-level threshold p < 0.05.

SUMMARY

A. Functional Plasticity of L2 Sentence Processing

- 1. After training, compared to English and MAL, the Mandarin condition elicited greater increases in
 - the activation in <u>left IFG</u>, <u>left pSTG</u>, and <u>SMA</u>;
 - the activation in the <u>frontal-parietal network</u>;
 - the deactivation of <u>DMN</u> and bilateral <u>hippocampi</u>.
- 2. These changes represent effortful sentence processing in early learners:
 - extra recruitment of the prefrontal and speech-motor networks;
- deficient activation in <u>left STS</u>.

B. Initial left IFG activation in response to Mandarin is associated with future learning success: both immediate attainment and long-term retention 3 months later, consistent with prior studies in structural MRI and resting-state fMRI (Flöel et al., 2009; Ventura-Campos et al., 2013; Chai et al., 2016).

C. Mandarin elicited greater activation in the right STG compared to either English or MAL, which also follows the phonotactic rules of English.

D. Future directions:

- Are these neural signatures of language learning specific to Mandarin?
- What are the computational differences between fluent L1 sentence processing and effortful but erroneous L2 sentence processing?

Acknowledgment

Athinoula A. Martinos Imaging Center at McGovern Institute for Brain Research, Massachusetts Institute of Technology

Contact: zqi@mit.edu