Atypical Development of Dorsal-posterior Insula Network in Clinical High-risk Patients of Schizophrenia in Shanghai

Zhenghan Qi, Yingying Tang, Tianhong Zhang, Huiru Cui, Kristen Woodberry, Robert McCarley, Martha Shenton, Huijun Li, William Stone, Matcheri Keshavan, Jijun Wang, Larry Seidman, Susan Whitfield-Gabrieli

INTRODUCTION

- The onset of psychotic symptoms occurs during young adulthood.
- CHR patients show language dysfunction (e.g., verbal communication and auditory hallucinations).
- Insula serves as a critical hub in speech and language (Price, 2010; Ardila et al., 2014; Oh et al., 2014)

Goals

- Is abnormal dorsal-posterior insula network a biomarker that emerges at the earliest stage of psychosis development or a pathological change after years of struggling and medication treatment?
- How does the alteration of the posterior insula network contribute to symptomatology development?

SEED SELECTION

Seed-to-voxel Analyses

Left pSTG Right pSTG

Rational for seed selection:

- pSTG is functionally connected with posterior insula, as well as premotor cortex, SMA, PreCG, and PCC (Cauda et al., Neuroimage, 2011)
- Arcuate fasciculus travels from pSTG and pass through posterior insula (Denni et al., 2014; Catani et al., 2005)

<table>
<thead>
<tr>
<th></th>
<th>Clinical High Risk (CHR)</th>
<th>Healthy Controls (HC)</th>
<th>Statistical Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td># of participants</td>
<td>158</td>
<td>93</td>
<td>-</td>
</tr>
<tr>
<td>Gender (female/male)</td>
<td>78/80</td>
<td>43/50</td>
<td>χ²(1) = 0.12, p=0.72</td>
</tr>
<tr>
<td>Age (years)</td>
<td>18.81 ± 4.92</td>
<td>18.56 ± 4.26</td>
<td>t(249)=-0.41, p=0.68</td>
</tr>
<tr>
<td>Education (years)</td>
<td>10.51 ± 2.76</td>
<td>10.80 ± 2.28</td>
<td>t(249)=0.83, p=0.40</td>
</tr>
<tr>
<td>IQ</td>
<td>98.89 ± 12.83</td>
<td>104.0 ± 11.19</td>
<td>t(217)=3.01, p = 0.002</td>
</tr>
<tr>
<td>Hopkin’s Verbal Learning</td>
<td>46.98 ± 9.79</td>
<td>52.58 ± 6.45</td>
<td>t(210)=4.60, p < 0.001</td>
</tr>
<tr>
<td>SIPS-positive</td>
<td>10.07 ± 3.60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SIPS-negative</td>
<td>11.65 ± 6.12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SIPS-disorganization</td>
<td>6.56 ± 3.20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SIPS-general</td>
<td>9.08 ± 3.22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SIPS-total</td>
<td>37.36 ± 10.82</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Medicine</td>
<td>29 CHR patients started taking psychotropic medication before the scan.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SIPS: Structural Interview for Prodromal Syndromes of Schizophrenia
- Within CHR, age was not significantly correlated with SIPS measures.
- Within HC, age was not significantly correlated with IQ or verbal learning.

ACKNOWLEDGMENT

- National Institutes of Health Grant No: MH101052, MH074794, MH102377, MH108574
- National Nature Science Foundation of China Grant No: 81361120403

Contact: Zhenghan Qi; qzg@udel.edu

IMAGING ACQUISITION AND ANALYSIS

- Acquisition
 Resting-state functional MRI: Siemens Trio 3T MRI scanner, 32-channel head coil; 37 interleaved oblique, 3.5 mm axial slices covering the entire brain. TR = 2500 ms, TE = 30 ms, FOV 224x224mm with 3.5 mm isotropic voxels, flip angle 90°. Participants were instructed “Keep your eyes open and think nothing in particular”.

- Analysis
 - Functional connectivity data were analyzed with CONN v17d and SPM12b. Sources of non-neurophysiological noise were identified through an anatomical component based approach (aCompCor).
 - Motion outlier criteria: composite movement (relative to the previous time point) > 1mm, global signal intensity > 3SD.
 - Motion outliers were regressed out in the first-level GLM.
 - Seed-to-voxel whole-brain analyses: Voxel-level p <0.001 (one-sided) and cluster-level FDR-corrected p < 0.05.

IMAGING RESULTS

- Significant Group x Age Interaction

- Within CHR: significant increase of connectivity with age

- Within HC: significant decrease of connectivity with age

- Better IQ and better verbal learning ability in HC are significantly associated with lower connectivity

CONCLUSION

- Abnormal developmental trajectory (increasing with age) of the dorsal-posterior insula network in CHR patients.
- Altered wiring of the auditory/speech network might underlie the mild cognitive impairment emerged earlier in CHR patients.