On the existence of Pappus configurations in projective planes

Vladislav Taranchuk

University of Delaware

April 24, 2021

Projective Planes

Definition

A projective plane $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ is an incidence structure whose elements are the set of points \mathcal{P} and the set of lines \mathcal{L} together with an incidence relation \mathcal{I} satisfying the following three axioms:

- **()** Given any two points there exists a unique line containing them.
- Any two lines intersect at exactly one point.
- Solution There exist four points, no three of which are collinear.

Definition

A projective plane $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ is an incidence structure whose elements are the set of points \mathcal{P} and the set of lines \mathcal{L} together with an incidence relation \mathcal{I} satisfying the following three axioms:

- **(**) Given any two points there exists a unique line containing them.
- Any two lines intersect at exactly one point.
- Solution There exist four points, no three of which are collinear.

Facts:

- If Π is finite, then every lines has n + 1 points (for some n) and we call n the order of Π .
- If Π is finite, then every point lies on n+1 lines.
- If Π is finite, then Π has $n^2 + n + 1$ points and $n^2 + n + 1$ lines.

Classical Projective Planes

Let \mathbb{F} be a field and \mathbb{F}^3 be the three dimensional vector space over \mathbb{F} . Define the projective plane Π to have \mathcal{P} be the set of all 1-dimensional subspaces of \mathbb{F}^3 and the \mathcal{L} be the set of all 2-dimensional subspaces of \mathbb{F}^3 , where \mathcal{I} is defined naturally via subset containment. Over \mathbb{R} , a geometric interpretation of the above gives \mathcal{P} to be the set of all lines through the origin, and \mathcal{L} as all planes through the origin.

Finite Projective Planes

Question

For which positive integers n does there exist a projective plane of order n?

Question

For which positive integers n does there exist a projective plane of order n?

Theorem (Bruck-Ryser)

Let Π be a finite projective plane of order n. If $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$, then there cannot exist a projective plane of order n unless n can be expressed as the sum of two square integers.

Question

For which positive integers n does there exist a projective plane of order n?

Theorem (Bruck-Ryser)

Let Π be a finite projective plane of order n. If $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$, then there cannot exist a projective plane of order n unless n can be expressed as the sum of two square integers.

Conjecture

Suppose Π is a finite projective plane of order n, then $n = p^e$ where p is prime and e is a positive integer.

Question

For which positive integers n does there exist a projective plane of order n?

Theorem (Bruck-Ryser)

Let Π be a finite projective plane of order n. If $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$, then there cannot exist a projective plane of order n unless n can be expressed as the sum of two square integers.

Conjecture

Suppose Π is a finite projective plane of order n, then $n = p^e$ where p is prime and e is a positive integer.

Conjecture

Any finite projective plane of prime order is classical.

Configurations

Definition

In a projective plane Π , a *configuration* is a finite collection of points and lines.

Figure: Desargues Configuration

Configurations

Definition

In a projective plane Π , a *configuration* is a finite collection of points and lines.

Figure: Desargues Configuration

Figure: Fano Configuration

Theorem (Ostrom (1957))

Every finite projective plane contains a Desarguesian Configuration (many in fact).

Theorem (Ostrom (1957))

Every finite projective plane contains a Desarguesian Configuration (many in fact).

Theorem (Glynn (1988), Kaplan. et. al. (2017))

Determined the number of k-arcs in finite projective planes for $k \le 9$. For $k \le 6$, this number only depends on the order of the plane.

Theorem (Ostrom (1957))

Every finite projective plane contains a Desarguesian Configuration (many in fact).

Theorem (Glynn (1988), Kaplan. et. al. (2017))

Determined the number of k-arcs in finite projective planes for $k \le 9$. For $k \le 6$, this number only depends on the order of the plane.

Theorem (Tait (2015))

Any projective plane Π that admits an orthogonal polarity contains a Fano configuration.

Theorem (Ostrom (1957))

Every finite projective plane contains a Desarguesian Configuration (many in fact).

Theorem (Glynn (1988), Kaplan. et. al. (2017))

Determined the number of k-arcs in finite projective planes for $k \le 9$. For $k \le 6$, this number only depends on the order of the plane.

Theorem (Tait (2015))

Any projective plane Π that admits an orthogonal polarity contains a Fano configuration.

Question

Does every finite projective plane contain a Pappus Configuration?

Pappus Configuration

In a projective plane Π , let ℓ and m be lines and A_1, A_2, A_3 lie on ℓ and B_1, B_2, B_3 lie on m. Obtain the points C_1, C_2, C_3 as in the picture above. If C_1, C_2, C_3 are collinear, then we call this configuration of points and lines a Pappus configuration.

Pappus Configuration

In a projective plane Π , let ℓ and m be lines and A_1, A_2, A_3 lie on ℓ and B_1, B_2, B_3 lie on m. Obtain the points C_1, C_2, C_3 as in the picture above. If C_1, C_2, C_3 are collinear, then we call this configuration of points and lines a Pappus configuration.

Collineations and Perspectivities

Definition

A collineation of a projective(or affine) plane Π is a bijection $\sigma : \mathcal{P} \to \mathcal{P}$ that maps lines to lines. That is, if $\ell \in \mathcal{L}$ where $\ell = \{P_1, P_2, \dots\}$, then $\sigma(\ell) := \{\sigma(P_1), \sigma(P_2), \dots\} \in \mathcal{L}.$

Collineations and Perspectivities

Definition

A collineation of a projective(or affine) plane Π is a bijection $\sigma : \mathcal{P} \to \mathcal{P}$ that maps lines to lines. That is, if $\ell \in \mathcal{L}$ where $\ell = \{P_1, P_2, ...\}$, then $\sigma(\ell) := \{\sigma(P_1), \sigma(P_2), ...\} \in \mathcal{L}.$

Definition

Let σ be a collineation of a projective plane Π . We say σ fixes a point P if $\sigma(P) = P$, likewise, we say σ fixes a line ℓ if $\sigma(\ell) = \ell$. We say σ fixes a line ℓ pointwise if for every $P \in \ell$, $\sigma(P) = P$. We say σ fixes a point P linewise if for every line ℓ through P, σ fixes ℓ .

Collineations and Perspectivities

Definition

A collineation of a projective(or affine) plane Π is a bijection $\sigma : \mathcal{P} \to \mathcal{P}$ that maps lines to lines. That is, if $\ell \in \mathcal{L}$ where $\ell = \{P_1, P_2, ...\}$, then $\sigma(\ell) := \{\sigma(P_1), \sigma(P_2), ...\} \in \mathcal{L}$.

Definition

Let σ be a collineation of a projective plane Π . We say σ fixes a point P if $\sigma(P) = P$, likewise, we say σ fixes a line ℓ if $\sigma(\ell) = \ell$. We say σ fixes a line ℓ pointwise if for every $P \in \ell$, $\sigma(P) = P$. We say σ fixes a point P linewise if for every line ℓ through P, σ fixes ℓ .

Definition

Let σ be a collineation of a projective plane Π . If there exists a line ℓ and a point V (not necessarily on ℓ) such that σ fixes ℓ pointwise, and fixes V linewise, then σ is called a (V, ℓ) -perspectivity.

Theorem (T. 2020)

Let Π be a projective plane whose collineation group admits at least one (V, ℓ) -perspectivity, then Π has a Pappus configuration. (Many, in fact)

Theorem (T. 2020)

Let Π be a projective plane whose collineation group admits at least one (V, ℓ) -perspectivity, then Π has a Pappus configuration. (Many, in fact)

Corollary (T. 2020)

Let Π be a finite projective plane of non-square order whose collineation group admits a collineation of order 2. Then Π has a Pappus configuration. All known finite planes have collineation groups of even order, implying the existence of a collineation of order 2.

Theorem (T. 2020)

Let Π be a projective plane whose collineation group admits at least one (V, ℓ) -perspectivity, then Π has a Pappus configuration. (Many, in fact)

Corollary (T. 2020)

Let Π be a finite projective plane of non-square order whose collineation group admits a collineation of order 2. Then Π has a Pappus configuration. All known finite planes have collineation groups of even order, implying the existence of a collineation of order 2.

Theorem (T. 2020)

Let Π be a projective plane whose collineation group admits a quasiperspectivity of order 3, then Π has a Pappus configuration.

Proof Outline

Suppose Π is a projective plane containing σ a (V, ℓ) -perspectivity whose order is not 2. Consider the affine plane \mathcal{A} obtained by removing ℓ and note that σ induces a collineation on \mathcal{A} . If $\sigma(A_1) = A_2$ and $\sigma(A_2) = A_3$, and likewise $\sigma(B_3) = B_2$ and $\sigma(B_2) = B_1$, then we may build a the above Pappus configuration. Since for any $\ell \in \mathcal{A}$, $\sigma(\ell)$ is parallel to ℓ , we have our result.

Conjectures and Questions

Conjectures and Questions

Lemma (Hughes and Piper)

Every collineation of order 2 is a quasiperspectivity.

Lemma (Hughes and Piper)

Every collineation of order 2 is a quasiperspectivity.

Conjecture

Every projective plane Π whose collineation group admits a quasiperspectivity contains a Pappus configuration.

Lemma (Hughes and Piper)

Every collineation of order 2 is a quasiperspectivity.

Conjecture

Every projective plane Π whose collineation group admits a quasiperspectivity contains a Pappus configuration.

Question

Do there exist two non-isomorphic projective planes with the same number of Pappus configuraitons?

References

- E. Artin, *Geometric Algebra*, New York, NY, Interscience Publishers, (1957).
- D. R. Hughes, F. C. Piper, *Projective Planes* Springer-Verlag New York, (1973)
- D. G. Glynn, *Rings of Geometries II*, Journal of Combinatorial Theory, Series A, 49(1), (1988), 26–66.
- N. Kaplan, S. Kimport, R. Lawrence, L. Peilen and M. Weinreich, *Counting arcs in projective planes via Glynn's algorithm*, Journal of Geometry, 108, (2017), 1013–1029.
- T. G. Ostrom, *Transitivites in Projective Planes* Canadian Journal of Mathematics, 9, (1957), 389–399.
- M. Tait, *On a problem of Neumann*, Discrete Mathematics, 243, (2019), 2843–2845.

Thanks!