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Projective Planes

Definition
A projective plane M = (P, L,Z) is an incidence structure whose elements
are the set of points P and the set of lines £ together with an incidence
relation Z satisfying the following three axioms:

@ Given any two points there exists a unique line containing them.

@ Any two lines intersect at exactly one point.

© There exist four points, no three of which are collinear.
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Projective Planes

Definition
A projective plane M = (P, L,Z) is an incidence structure whose elements
are the set of points P and the set of lines £ together with an incidence
relation Z satisfying the following three axioms:

@ Given any two points there exists a unique line containing them.

@ Any two lines intersect at exactly one point.

© There exist four points, no three of which are collinear.

Facts:

o If M is finite, then every lines has n+ 1 points (for some n) and we
call n the order of I1.

o If I is finite, then every point lies on n+ 1 lines.
e If M is finite, then M has n? + n+ 1 points and n? + n+ 1 lines.
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Classical Projective Planes

Let IF be a field and F3 be the three

dimensional vector space over F. 7.axiS
Define the projective plane I1 to have
P be the set of all 1-dimensional Ve
subspaces of F3 and the £ be the set '

of all 2-dimensional subspaces of 73, 17
where 7 is defined naturally via «
subset containment. Over R, a
geometric interpretation of the above
gives P to be the set of all lines y-ais
through the origin, and £ as all

planes through the origin.

+ X-axis
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Finite Projective Planes

Question
For which positive integers n does there exist a projective plane of order n?
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Finite Projective Planes

Question

For which positive integers n does there exist a projective plane of order n?

Theorem (Bruck-Ryser)

Let N be a finite projective plane of order n. If n = 1(mod 4) or
n = 2(mod 4), then there cannot exist a projective plane of order n unless
n can be expressed as the sum of two square integers.
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Finite Projective Planes

Question

For which positive integers n does there exist a projective plane of order n?

Theorem (Bruck-Ryser)

Let N be a finite projective plane of order n. If n = 1(mod 4) or
n = 2(mod 4), then there cannot exist a projective plane of order n unless
n can be expressed as the sum of two square integers.

Conjecture

Suppose 1 is a finite projective plane of order n, then n = p® where p is
prime and e is a positive integer.
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Finite Projective Planes

Question

For which positive integers n does there exist a projective plane of order n?

y

Theorem (Bruck-Ryser)

Let N be a finite projective plane of order n. If n = 1(mod 4) or
n = 2(mod 4), then there cannot exist a projective plane of order n unless
n can be expressed as the sum of two square integers.

Conjecture

Suppose 1 is a finite projective plane of order n, then n = p® where p is
prime and e is a positive integer.

Conjecture

Any finite projective plane of prime order is classical.

y
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Configurations

Definition
In a projective plane I, a configuration is a finite collection of points and
lines.

Figure: Desargues Configuration
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Configurations

Definition
In a projective plane I, a configuration is a finite collection of points and
lines.

Figure: Desargues Configuration Figure: Fano Configuration
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Results on Configurations

Theorem (Ostrom (1957))

Every finite projective plane contains a Desarguesian Configuration (many
in fact).
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Results on Configurations

Theorem (Ostrom (1957))

Every finite projective plane contains a Desarguesian Configuration (many
in fact).

Theorem (Glynn (1988), Kaplan. et. al. (2017))

Determined the number of k-arcs in finite projective planes for k < 9. For
k <6, this number only depends on the order of the plane.
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Results on Configurations

Theorem (Ostrom (1957))

Every finite projective plane contains a Desarguesian Configuration (many
in fact).

Theorem (Glynn (1988), Kaplan. et. al. (2017))

Determined the number of k-arcs in finite projective planes for k < 9. For
k <6, this number only depends on the order of the plane.

Theorem (Tait (2015))

Any projective plane 'l that admits an orthogonal polarity contains a Fano
configuration.

4
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Results on Configurations

Theorem (Ostrom (1957))

Every finite projective plane contains a Desarguesian Configuration (many
in fact).

Theorem (Glynn (1988), Kaplan. et. al. (2017))

Determined the number of k-arcs in finite projective planes for k < 9. For
k <6, this number only depends on the order of the plane.

Theorem (Tait (2015))

Any projective plane 'l that admits an orthogonal polarity contains a Fano
configuration.

Question

Does every finite projective plane contain a Pappus Configuration?
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Pappus Configuration

B B, Bs
A1 Az A3

In a projective plane I, let £ and m be lines and Az, Az, A3 lie on ¢ and
B1, B>, B3 lie on m. Obtain the points C;, (5, C3 as in the picture above.
If C1, Gy, G5 are collinear, then we call this configuration of points and
lines a Pappus configuration.
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Pappus Configuration

By B> B3

In a projective plane I, let £ and m be lines and Az, Az, A3 lie on ¢ and
B1, B>, B3 lie on m. Obtain the points C;, (5, C3 as in the picture above.
If C1, Gy, G5 are collinear, then we call this configuration of points and
lines a Pappus configuration.
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Collineations and Perspectivities

Definition
A collineation of a projective(or affine) plane I is a bijection o : P — P
that maps lines to lines. That is, if £ € £ where ¢ = {P1, Py, ...}, then

O'(E) = {J(Pl),U(PQ), .. } eL.
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Collineations and Perspectivities

Definition

A collineation of a projective(or affine) plane I is a bijection o : P — P
that maps lines to lines. That is, if £ € £ where ¢ = {P1, Py, ...}, then
O'(E) = {J(Pl), U(PQ)7 .. } eL.

Definition

Let o be a collineation of a projective plane . We say o fixes a point P if
o(P) = P, likewise, we say o fixes a line ¢ if o(¢) = £. We say o fixes a
line ¢ pointwise if for every P € ¢, c(P) = P. We say o fixes a point P
linewise if for every line £ through P, o fixes /.
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Collineations and Perspectivities

Definition

A collineation of a projective(or affine) plane I is a bijection o : P — P
that maps lines to lines. That is, if £ € £ where ¢ = {P1, Py, ...}, then
O'(E) = {J(Pl), U(PQ)7 .. } eL.

Definition

Let o be a collineation of a projective plane . We say o fixes a point P if
o(P) = P, likewise, we say o fixes a line ¢ if o(¢) = £. We say o fixes a
line ¢ pointwise if for every P € ¢, c(P) = P. We say o fixes a point P
linewise if for every line £ through P, o fixes /.

Definition

Let o be a collineation of a projective plane I1. If there exists a line £ and
a point V (not necessarily on ¢) such that o fixes ¢ pointwise, and fixes V
linewise, then o is called a (V/, {)-perspectivity.
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My Research

Theorem (T. 2020)

Let 1 be a projective plane whose collineation group admits at least one
(V, £)-perspectivity, then 1 has a Pappus configuration. (Many, in fact)
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-
My Research

Theorem (T. 2020)

Let 1 be a projective plane whose collineation group admits at least one
(V, £)-perspectivity, then 1 has a Pappus configuration. (Many, in fact)

Corollary (T. 2020)

Let 1 be a finite projective plane of non-square order whose collineation
group admits a collineation of order 2. Then I has a Pappus
configuration. All known finite planes have collineation groups of even
order, implying the existence of a collineation of order 2.
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-
My Research

Theorem (T. 2020)

Let 1 be a projective plane whose collineation group admits at least one
(V, £)-perspectivity, then 1 has a Pappus configuration. (Many, in fact)

Corollary (T. 2020)

Let 1 be a finite projective plane of non-square order whose collineation
group admits a collineation of order 2. Then I has a Pappus
configuration. All known finite planes have collineation groups of even
order, implying the existence of a collineation of order 2.

Theorem (T. 2020)

Let 1 be a projective plane whose collineation group admits a
quasiperspectivity of order 3, then I has a Pappus configuration.
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N
Proof Outline

A1 Az Az

Suppose [ is a projective plane containing o a (V/, £)-perspectivity whose
order is not 2. Consider the affine plane 4 obtained by removing ¢ and
note that o induces a collineation on A. If 0(A1) = Az and o(Az) = As,
and likewise o(B3) = By and o(B;) = Bj, then we may build a the above
Pappus configuration. Since for any ¢ € A, o(¥) is parallel to ¢, we have
our result.
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Conjectures and Questions
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Conjectures and Questions

Lemma (Hughes and Piper)

Every collineation of order 2 is a quasiperspectivity.
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Conjectures and Questions

Lemma (Hughes and Piper)

Every collineation of order 2 is a quasiperspectivity.

Conjecture

Every projective plane Tl whose collineation group admits a
quasiperspectivity contains a Pappus configuration.
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Conjectures and Questions

Lemma (Hughes and Piper)

Every collineation of order 2 is a quasiperspectivity.

Conjecture

Every projective plane Tl whose collineation group admits a
quasiperspectivity contains a Pappus configuration.

Question

Do there exist two non-isomorphic projective planes with the same number
of Pappus configuraitons?

v
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Questions?

Thanks!
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