Algebraically Defined Graphs and Generalized Quadrangles

Vladislav Taranchuk (joint work with Felix Lazebnik)

29th British Combinatorial Conference

July 11, 2022

Definition

A simple graph $\Gamma = \Gamma(V, E)$ is a pair, where V is the set of vertices, and $E \subset \binom{V}{2}$ is the set of edges. We denote the fact that a vertex x is **adjacent** to a vertex y by $x \sim y$. Since Γ is simple, the above definition removes the possibility of multiple edges, directed edges, and loops. In this talk, every graph mentioned will be a simple graph.

Definition

A simple graph $\Gamma = \Gamma(V, E)$ is a pair, where V is the set of vertices, and $E \subset \binom{V}{2}$ is the set of edges. We denote the fact that a vertex x is **adjacent** to a vertex y by $x \sim y$. Since Γ is simple, the above definition removes the possibility of multiple edges, directed edges, and loops. In this talk, every graph mentioned will be a simple graph.

Definition |

Let Γ be a graph. An **automorphism** of Γ is a function $\phi: V \to V$ such that ϕ is a bijection and $\phi(x) \sim \phi(y)$ iff $x \sim y$.

Definition

A **simple graph** $\Gamma = \Gamma(V, E)$ is a pair, where V is the set of vertices, and $E \subset \binom{V}{2}$ is the set of edges. We denote the fact that a vertex x is **adjacent** to a vertex y by $x \sim y$. Since Γ is simple, the above definition removes the possibility of multiple edges, directed edges, and loops. In this talk, every graph mentioned will be a simple graph.

Definition

Let Γ be a graph. An **automorphism** of Γ is a function $\phi: V \to V$ such that ϕ is a bijection and $\phi(x) \sim \phi(y)$ iff $x \sim y$.

Definition

Let Γ be a graph containing at least one cycle. The **girth** of Γ is the length of the shortest cycle in Γ .

Definition (Algebraically Defined Graphs)

Let $P=L=\mathbb{F}_q^m$ be two copies of the m-dimensional vector space over \mathbb{F}_q with $q=p^e$. Call the set P points and L lines, with the distinction in notation by $(a)\in P$ and $[a]\in L$. Define $\Gamma_q=\Gamma_q(f_2,f_3,\ldots,f_m)$ to be the bipartite graph with parts P and L and with edge relation defined between them as follows: If $(p)=(p_1,\ldots,p_m)\in P$ and $[\ell]=[\ell_1,\ldots,\ell_m]$, then $(p)\sim [I]$ if and only if

$$\ell_2 + p_2 = f_2(\ell_1, p_1)$$

$$\ell_3 + p_3 = f_3(\ell_1, p_1, \ell_2, p_2)$$

$$\vdots$$

$$\ell_m + p_m = f_m(\ell_1, p_1, \dots, \ell_{m-1}, p_{m-1})$$

Some general facts about algebraically defined graphs are as follows. Let $\Gamma_q = \Gamma_q(f_2, f_3, \dots, f_m)$:

Some general facts about algebraically defined graphs are as follows. Let $\Gamma_q = \Gamma_q(f_2, f_3, \dots, f_m)$:

• Each point (or line) in Γ_q has exactly one neighbor whose first coordinate is x, for every $x \in \mathbb{F}_q$.

Some general facts about algebraically defined graphs are as follows. Let $\Gamma_q = \Gamma_q(f_2, f_3, \dots, f_m)$:

Some general facts about algebraically defined graphs are as follows. Let $\Gamma_q = \Gamma_q(f_2, f_3, \dots, f_m)$:

$$\ell_{2} + p_{2} = f_{2}(\ell_{1}, \mathbf{x})$$

$$\ell_{3} + p_{3} = f_{3}(\ell_{1}, p_{1}, \ell_{2}, p_{2})$$

$$\vdots$$

$$\ell_{m} + p_{m} = f_{m}(\ell_{1}, p_{1}, \dots, \ell_{m-1}, p_{m-1})$$

Some general facts about algebraically defined graphs are as follows. Let $\Gamma_q = \Gamma_q(f_2, f_3, \dots, f_m)$:

$$\ell_{2} + p_{2} = f_{2}(\ell_{1}, x)$$

$$\ell_{3} + p_{3} = f_{3}(\ell_{1}, x, \ell_{2}, p_{2})$$

$$\vdots$$

$$\ell_{m} + p_{m} = f_{m}(\ell_{1}, p_{1}, \dots, \ell_{m-1}, p_{m-1})$$

Some general facts about algebraically defined graphs are as follows. Let $\Gamma_q = \Gamma_q(f_2, f_3, \dots, f_m)$:

$$\ell_{2} + p_{2} = f_{2}(\ell_{1}, x)$$

$$\ell_{3} + p_{3} = f_{3}(\ell_{1}, x, \ell_{2}, p_{2})$$

$$\vdots$$

$$\ell_{m} + p_{m} = f_{m}(\ell_{1}, p_{1}, \dots, \ell_{m-1}, p_{m-1})$$

Some general facts about algebraically defined graphs are as follows. Let $\Gamma_q = \Gamma_q(f_2, f_3, \dots, f_m)$:

$$\ell_{2} + p_{2} = f_{2}(\ell_{1}, x)$$

$$\ell_{3} + p_{3} = f_{3}(\ell_{1}, x, \ell_{2}, p_{2})$$

$$\vdots$$

$$\ell_{m} + p_{m} = f_{m}(\ell_{1}, x, \dots, \ell_{m-1}, p_{m-1})$$

Some general facts about algebraically defined graphs are as follows. Let $\Gamma_q = \Gamma_q(f_2, f_3, \dots, f_m)$:

$$\ell_{2} + p_{2} = f_{2}(\ell_{1}, x)$$

$$\ell_{3} + p_{3} = f_{3}(\ell_{1}, x, \ell_{2}, p_{2})$$

$$\vdots$$

$$\ell_{m} + p_{m} = f_{m}(\ell_{1}, x, \dots, \ell_{m-1}, p_{m-1})$$

So
$$[\ell_1, \ell_2, ..., \ell_m] \sim (x, p_2, ..., p_m)$$

ullet Γ_q is q-regular with $|V|=n=2q^m$ and

$$|E|=q^{m+1}=\left(\frac{n}{2}\right)^{\frac{m+1}{m}}$$

• Γ_q is q-regular with $|V| = n = 2q^m$ and

$$|E|=q^{m+1}=\left(\frac{n}{2}\right)^{\frac{m+1}{m}}$$

• For each $b \in \mathbb{F}_q$, there exists an automorphism $t_b \in \operatorname{Aut}(\Gamma_q)$ given by

$$t_b[\ell_1, \ell_2, \dots, \ell_m] = [\ell_1, \ell_2, \dots, \ell_m + b]$$

 $t_b(p_1, p_2, \dots, p_m) = (p_1, p_2, \dots, p_m - b).$

Let ex(n, F) denote the largest number of edges in n-vertex graph that does not contain copy of F as a subgraph.

Let ex(n, F) denote the largest number of edges in n-vertex graph that does not contain copy of F as a subgraph.

• It has been shown that $\operatorname{ex}(n,C_{2k}) \leq c_k n^{1+1/k}$ for a constant dependent on k. Bondy and Simonovits showed $c_k = 100k$ works, and over time this constant has been improved several times, first by Verstraëte, then Pikhurko, and most recently by Bukh and Jiang who showed $c_k = 80\sqrt{k \log k}$.

Let ex(n, F) denote the largest number of edges in n-vertex graph that does not contain copy of F as a subgraph.

- It has been shown that $\operatorname{ex}(n,C_{2k}) \leq c_k n^{1+1/k}$ for a constant dependent on k. Bondy and Simonovits showed $c_k = 100k$ works, and over time this constant has been improved several times, first by Verstraëte, then Pikhurko, and most recently by Bukh and Jiang who showed $c_k = 80\sqrt{k \log k}$.
- Lazebnik, Ustimenko, and Woldar used algebraically defined graphs to show that for infinitely many n, $c_k' n^{1+2/(3k+3+\epsilon)} \leq \exp(n, C_{2k})$ where $\epsilon = 1$ when k is odd and $\epsilon = 0$ otherwise.

Algebraically defined graphs have a strong connection to finite geometry.

Algebraically defined graphs have a strong connection to finite geometry.

Definition

A **generalized** n-**gon** of order $q \ge 1$ is a (q+1)-regular bipartite graph with diameter $n \ge 2$ and girth 2n.

•
$$q = 1$$
, $n \ge 2$: C_{2n}

•
$$n = 2, q \ge 1$$
: $K_{(q+1),(q+1)}$

Algebraically defined graphs have a strong connection to finite geometry.

Definition

A **generalized** n-**gon** of order $q \ge 1$ is a (q+1)-regular bipartite graph with diameter $n \ge 2$ and girth 2n.

•
$$q = 1$$
, $n \ge 2$: C_{2n}

•
$$n = 2$$
, $q \ge 1$: $K_{(q+1),(q+1)}$

Theorem (Tits 1959)

For n = 3, 4, 6, there exists a generalized n-gon of order q for every prime power q.

Algebraically defined graphs have a strong connection to finite geometry.

Definition

A **generalized** n-**gon** of order $q \ge 1$ is a (q+1)-regular bipartite graph with diameter $n \ge 2$ and girth 2n.

•
$$q = 1$$
, $n \ge 2$: C_{2n}

•
$$n = 2$$
, $q \ge 1$: $K_{(q+1),(q+1)}$

Theorem (Tits 1959)

For n = 3, 4, 6, there exists a generalized n-gon of order q for every prime power q.

Theorem (Feit and Higman 1964)

There do no exist any generalized n-gons of any order q when $n \notin \{2,3,4,6,8\}$.

A generalized 3-gon is called a **projective plane**. Let $f_2=f_2(p_1,\ell_1)$ and consider $\Gamma_q=\Gamma_q(f_2)$. Recall $(p_1,p_2)\sim [\ell_1,\ell_2]$ iff $p_2+\ell_2=f_2(p_1,\ell_1)$. If Γ_q has girth 6, there is a unique way to obtain a projective plane from Γ_q .

A generalized 3-gon is called a **projective plane**. Let $f_2=f_2(p_1,\ell_1)$ and consider $\Gamma_q=\Gamma_q(f_2)$. Recall $(p_1,p_2)\sim [\ell_1,\ell_2]$ iff $p_2+\ell_2=f_2(p_1,\ell_1)$. If Γ_q has girth 6, there is a unique way to obtain a projective plane from Γ_q .

• The classical projective plane can be obtained using $f_2(p_1, \ell_1) = p_1 \ell_1$.

A generalized 3-gon is called a **projective plane**. Let $f_2 = f_2(p_1, \ell_1)$ and consider $\Gamma_q = \Gamma_q(f_2)$. Recall $(p_1, p_2) \sim [\ell_1, \ell_2]$ iff $p_2 + \ell_2 = f_2(p_1, \ell_1)$. If Γ_q has girth 6, there is a unique way to obtain a projective plane from Γ_q .

- The classical projective plane can be obtained using $f_2(p_1, \ell_1) = p_1 \ell_1$.
- All translation planes can be represented this way by using $f_2(p_1,\ell_1)=p_1\star\ell_1$ where \star is the multiplication used in any particular quasifield. Translation planes account for many non-isomorphic classes of projective planes.

A generalized 3-gon is called a **projective plane**. Let $f_2=f_2(p_1,\ell_1)$ and consider $\Gamma_q=\Gamma_q(f_2)$. Recall $(p_1,p_2)\sim [\ell_1,\ell_2]$ iff $p_2+\ell_2=f_2(p_1,\ell_1)$. If Γ_q has girth 6, there is a unique way to obtain a projective plane from Γ_q .

- The classical projective plane can be obtained using $f_2(p_1, \ell_1) = p_1 \ell_1$.
- All translation planes can be represented this way by using $f_2(p_1,\ell_1)=p_1\star\ell_1$ where \star is the multiplication used in any particular quasifield. Translation planes account for many non-isomorphic classes of projective planes.

Question

Can we construct generalized quadrangles this way too?

Yes we can! Algebraically defined graphs of the form $\Gamma_q(f_2, f_3)$ give a method for constructing a generalized quadrangle (4-gon).

Yes we can! Algebraically defined graphs of the form $\Gamma_q(f_2, f_3)$ give a method for constructing a generalized quadrangle (4-gon).

• For all prime powers q, one can attach a tree to $\Gamma_q(p_1\ell_1,p_1\ell_2)$ to obtain the classical generalized quadrangle.

Yes we can! Algebraically defined graphs of the form $\Gamma_q(f_2, f_3)$ give a method for constructing a generalized quadrangle (4-gon).

• For all prime powers q, one can attach a tree to $\Gamma_q(p_1\ell_1, p_1\ell_2)$ to obtain the classical generalized quadrangle.

Question

Do there exist generalized quadrangles of odd order q that are not isomorphic to the classical generalized quadrangle?

Yes we can! Algebraically defined graphs of the form $\Gamma_a(f_2, f_3)$ give a method for constructing a generalized quadrangle (4-gon).

• For all prime powers q, one can attach a tree to $\Gamma_a(p_1\ell_1,p_1\ell_2)$ to obtain the classical generalized quadrangle.

Question

Do there exist generalized quadrangles of odd order q that are not isomorphic to the classical generalized quadrangle?

 No other (non-isomorphic) generalized quadrangles of odd order q are known.

13 / 18

Yes we can! Algebraically defined graphs of the form $\Gamma_q(f_2, f_3)$ give a method for constructing a generalized quadrangle (4-gon).

• For all prime powers q, one can attach a tree to $\Gamma_q(p_1\ell_1, p_1\ell_2)$ to obtain the classical generalized quadrangle.

Question

Do there exist generalized quadrangles of odd order q that are not isomorphic to the classical generalized quadrangle?

- No other (non-isomorphic) generalized quadrangles of odd order q are known.
- Algebraically defined graphs provide one potential method for answering this question. In large part, this question motivated our research.

So far, we know:

So far, we know:

ullet For all prime powers q, $\Gamma_q(p_1\ell_1,p_1\ell_2)\cong \Gamma_q(p_1\ell_1,p_1\ell_1^2)$.

So far, we know:

- For all prime powers q, $\Gamma_q(p_1\ell_1,p_1\ell_2)\cong \Gamma_q(p_1\ell_1,p_1\ell_1^2)$.
- Many graphs of the form $\Gamma_q(p_1\ell_1, f_3(p_1, \ell_1))$ have been shown to either be isomorphic to $\Gamma_q(p_1\ell_1, p_1\ell_2)$ or have girth less than 8, [1, 3].

So far, we know:

- For all prime powers q, $\Gamma_q(p_1\ell_1,p_1\ell_2)\cong\Gamma_q(p_1\ell_1,p_1\ell_1^2)$.
- Many graphs of the form $\Gamma_q(p_1\ell_1, f_3(p_1, \ell_1))$ have been shown to either be isomorphic to $\Gamma_q(p_1\ell_1, p_1\ell_2)$ or have girth less than 8, [1, 3].
- There are no known graphs, $\Gamma_q(f_2, f_3)$ with girth 8 that are not isomorphic to $\Gamma_q(p_1\ell_1, p_1\ell_1^2)$.

So far, we know:

- For all prime powers q, $\Gamma_q(p_1\ell_1,p_1\ell_2)\cong \Gamma_q(p_1\ell_1,p_1\ell_1^2)$.
- Many graphs of the form $\Gamma_q(p_1\ell_1, f_3(p_1, \ell_1))$ have been shown to either be isomorphic to $\Gamma_q(p_1\ell_1, p_1\ell_2)$ or have girth less than 8, [1, 3].
- There are no known graphs, $\Gamma_q(f_2, f_3)$ with girth 8 that are not isomorphic to $\Gamma_q(p_1\ell_1, p_1\ell_1^2)$.

One way to understand if there is still much viability in this approach is to answer the following question.

So far, we know:

- For all prime powers q, $\Gamma_q(p_1\ell_1,p_1\ell_2)\cong \Gamma_q(p_1\ell_1,p_1\ell_1^2)$.
- Many graphs of the form $\Gamma_q(p_1\ell_1, f_3(p_1, \ell_1))$ have been shown to either be isomorphic to $\Gamma_q(p_1\ell_1, p_1\ell_2)$ or have girth less than 8, [1, 3].
- There are no known graphs, $\Gamma_q(f_2, f_3)$ with girth 8 that are not isomorphic to $\Gamma_q(p_1\ell_1, p_1\ell_1^2)$.

One way to understand if there is still much viability in this approach is to answer the following question.

Question

Given $\Gamma_q(f_2, f_3)$ where $f_2 = f_2(p_1, \ell_1)$ and $f_3(p_1, \ell_1, p_2, \ell_2)$, does there exist a function $f_3' = f_3'(p_1, \ell_1)$ so that $\Gamma_q(f_2, f_3) \cong \Gamma_q(f_2, f_3')$?

Observe that for any graph of the form $\Gamma_q(f_2(p_1, \ell_1), f_3(p_1, \ell_1))$. Observe that since

$$p_2 + \ell_2 = f_2(p_1, \ell_1)$$

 $p_3 + \ell_3 = f_3(p_1, \ell_1)$

Observe that for any graph of the form $\Gamma_q(f_2(p_1, \ell_1), f_3(p_1, \ell_1))$. Observe that since

$$p_2 + \ell_2 = f_2(p_1, \ell_1)$$

 $p_3 + \ell_3 = f_3(p_1, \ell_1)$

then for all $a, b \in \mathbb{F}_q$, the function $t_{a,b}$ where

$$t_{a,b}[\ell_1, \ell_2, \ell_3] = [\ell_1, \ell_2 + a, \ell_3 + b]$$

 $t_{a,b}(p_1, p_2, p_3) = (p_1, p_2 - a, p_3 - b)$

is an automorphism of Γ_q . Meaning, $q^2 \leq |\operatorname{Aut}(\Gamma_q)|$.

Let $\Gamma = \Gamma_q(p_1\ell_1, p_1\ell_1p_2(p_1+p_2+p_1p_2))$. This family of graphs appeared in the thesis of Nassau 2021.

Let $\Gamma = \Gamma_q(p_1\ell_1, p_1\ell_1p_2(p_1+p_2+p_1p_2))$. This family of graphs appeared in the thesis of Nassau 2021. It was checked via computer that for all odd prime powers $q=p^e<43$, $|Aut(\Gamma)|=qe$, and hence, there do not exist functions f_2, f_3 of just p_1 and ℓ_1 such that $\Gamma \cong \Gamma_q(f_2, f_3)$ for these values of q.

Let $\Gamma = \Gamma_q(p_1\ell_1,p_1\ell_1p_2(p_1+p_2+p_1p_2))$. This family of graphs appeared in the thesis of Nassau 2021. It was checked via computer that for all odd prime powers $q=p^e<43$, $|Aut(\Gamma)|=qe$, and hence, there do not exist functions f_2,f_3 of just p_1 and ℓ_1 such that $\Gamma\cong\Gamma_q(f_2,f_3)$ for these values of q.

Theorem (Lazebnik and T. 2022)

Let p be an odd prime with $p \equiv 1 \pmod{3}$. If Γ is defined over \mathbb{F}_p , then $|Aut(\Gamma)| = p$.

Let $\Gamma = \Gamma_q(p_1\ell_1,p_1\ell_1p_2(p_1+p_2+p_1p_2))$. This family of graphs appeared in the thesis of Nassau 2021. It was checked via computer that for all odd prime powers $q=p^e<43$, $|Aut(\Gamma)|=qe$, and hence, there do not exist functions f_2,f_3 of just p_1 and ℓ_1 such that $\Gamma\cong\Gamma_q(f_2,f_3)$ for these values of q.

Theorem (Lazebnik and T. 2022)

Let p be an odd prime with $p \equiv 1 \pmod{3}$. If Γ is defined over \mathbb{F}_p , then $|Aut(\Gamma)| = p$.

Corollary (Lazebnik and T. 2022)

Let p be an odd prime with $p \equiv 1 \pmod{3}$. Let $f_2 = f_2(p_1, \ell_1)$ and $f_3 = f_3(p_1, \ell_1)$ be functions of p_1 and ℓ_1 . Then $\Gamma_q(f_2, f_3) \not\cong \Gamma$.

References

- V. Dmytrenko, F. Lazebnik, and J. Williford, *On monomial graphs of girth eight*, Finite Fields and Their Applications, 13, (2007), 828–842.
- X.-D. Hou, S. Lappano, F. Lazebnik, Proof of a conjecture on monomial graphs, Finite Fields and Their Applications, Volume 43 (2017), pp. 42–68. and its Applications
- § F. Lazebnik, S. Sun, and Y.Wang, Some families of graphs, hypergraphs and digraphs defined by systems of equations: a survey, Lecture Notes of Seminario Interdisciplinare di Matematica, Vol. 14 (2017), pp. 105–142.
- ◆ F. Lazebnik and V. Taranchuk, On a new family of algebraically defined graphs with small automorphism group, Electronic Journal of Combinatorics, 29(1)(2022), P1.43
- 6 B. Nassau, PhD Thesis, University of Delaware

Questions?

Thanks!