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Introduction

Definition

A simple graph Γ = Γ(V ,E ) is a pair, where V is the set of
vertices, and E ⊂

(V
2

)
is the set of edges. We denote the fact that

a vertex x is adjacent to a vertex y by x ∼ y . Since Γ is simple,
the above definition removes the possibility of multiple edges,
directed edges, and loops. In this talk, every graph mentioned will
be a simple graph.

Definition

Let Γ be a graph. An automorphism of Γ is a function ϕ : V → V
such that ϕ is a bijection and ϕ(x) ∼ ϕ(y) iff x ∼ y .

Definition

Let Γ be a graph containing at least one cycle. The girth of Γ is
the length of the shortest cycle in Γ.
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Introduction

Definition (Algebraically Defined Graphs)

Let P = L = Fm
q be two copies of the m-dimensional vector space

over Fq with q = pe . Call the set P points and L lines, with the
distinction in notation by (a) ∈ P and [a] ∈ L. Define
Γq = Γq(f2, f3, . . . , fm) to be the bipartite graph with parts P and L
and with edge relation defined between them as follows: If
(p) = (p1, . . . , pm) ∈ P and [ℓ] = [ℓ1, . . . , ℓm], then (p) ∼ [l ] if and
only if

ℓ2 + p2 = f2(ℓ1, p1)

ℓ3 + p3 = f3(ℓ1, p1, ℓ2, p2)

...

ℓm + pm = fm(ℓ1, p1, . . . , ℓm−1, pm−1)
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Properties of algebraically defined graphs

Some general facts about algebraically defined graphs are as
follows. Let Γq = Γq(f2, f3, . . . , fm):

Each point (or line) in Γq has exactly one neighbor whose first
coordinate is x , for every x ∈ Fq. Fix a line ℓ = [ℓ1, ℓ2, . . . , ℓm]
and choose any x ∈ Fq setting p1 = x , then:

ℓ2 + p2 = f2(ℓ1, x)

ℓ3 + p3 = f3(ℓ1, p1, ℓ2, p2)

...

ℓm + pm = fm(ℓ1, p1, . . . , ℓm−1, pm−1)
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So [ℓ1, ℓ2, . . . , ℓm] ∼ (x , p2, . . . , pm)
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Properties of algebraically defined graphs

Γq is q-regular with |V | = n = 2qm and

|E | = qm+1 =
(n
2

)m+1
m

For each b ∈ Fq, there exists an automorphism tb ∈ Aut(Γq)
given by

tb[ℓ1, ℓ2, . . . , ℓm] = [ℓ1, ℓ2, . . . , ℓm + b]

tb(p1, p2, . . . , pm) = (p1, p2, . . . , pm − b).
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Why are these graphs interesting?

Let ex(n,F ) denote the largest number of edges in n-vertex graph
that does not contain copy of F as a subgraph.

It has been shown that ex(n,C2k) ≤ ckn
1+1/k for a constant

dependent on k . Bondy and Simonovits showed ck = 100k
works, and over time this constant has been improved several
times, first by Verstraëte, then Pikhurko, and most recently by
Bukh and Jiang who showed ck = 80

√
k log k .

Lazebnik, Ustimenko, and Woldar used algebraically defined
graphs to show that for infinitely many n,
c ′kn

1+2/(3k+3+ϵ) ≤ ex(n,C2k) where ϵ = 1 when k is odd and
ϵ = 0 otherwise.

Vladislav Taranchuk (joint work with Felix Lazebnik)
Algebraically Defined Graphs and Generalized Quadrangles
10 / 18



Why are these graphs interesting?

Let ex(n,F ) denote the largest number of edges in n-vertex graph
that does not contain copy of F as a subgraph.

It has been shown that ex(n,C2k) ≤ ckn
1+1/k for a constant

dependent on k . Bondy and Simonovits showed ck = 100k
works, and over time this constant has been improved several
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Why are these graphs interesting?

Algebraically defined graphs have a strong connection to finite
geometry.

Definition

A generalized n-gon of order q ≥ 1 is a (q + 1)-regular bipartite
graph with diameter n ≥ 2 and girth 2n.

q = 1, n ≥ 2: C2n n = 2, q ≥ 1: K(q+1),(q+1)

Theorem (Tits 1959)

For n = 3, 4, 6, there exists a generalized n-gon of order q for every
prime power q.

Theorem (Feit and Higman 1964)

There do no exist any generalized n-gons of any order q when
n ̸∈ {2, 3, 4, 6, 8}.
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ADG’s and Projective Planes

A generalized 3-gon is called a projective plane. Let
f2 = f2(p1, ℓ1) and consider Γq = Γq(f2). Recall (p1, p2) ∼ [ℓ1, ℓ2]
iff p2 + ℓ2 = f2(p1, ℓ1). If Γq has girth 6, there is a unique way to
obtain a projective plane from Γq.

The classical projective plane can be obtained using
f2(p1, ℓ1) = p1ℓ1.

All translation planes can be represented this way by using
f2(p1, ℓ1) = p1 ⋆ ℓ1 where ⋆ is the multiplication used in any
particular quasifield. Translation planes account for many
non-isomorphic classes of projective planes.

Question

Can we construct generalized quadrangles this way too?
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ADG’s and Generalized Quadrangles

Yes we can! Algebraically defined graphs of the form Γq(f2, f3) give
a method for constructing a generalized quadrangle (4-gon).

For all prime powers q, one can attach a tree to
Γq(p1ℓ1, p1ℓ2) to obtain the classical generalized quadrangle.

Question

Do there exist generalized quadrangles of odd order q that are not
isomorphic to the classical generalized quadrangle?

No other (non-isomorphic) generalized quadrangles of odd
order q are known.

Algebraically defined graphs provide one potential method for
answering this question. In large part, this question motivated
our research.
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Results and Methods

So far, we know:

For all prime powers q, Γq(p1ℓ1, p1ℓ2) ∼= Γq(p1ℓ1, p1ℓ
2
1).

Many graphs of the form Γq(p1ℓ1, f3(p1, ℓ1)) have been shown
to either be isomorphic to Γq(p1ℓ1, p1ℓ2) or have girth less
than 8, [1, 3].

There are no known graphs, Γq(f2, f3) with girth 8 that are
not isomorphic to Γq(p1ℓ1, p1ℓ

2
1).

One way to understand if there is still much viability in this
approach is to answer the following question.

Question

Given Γq(f2, f3) where f2 = f2(p1, ℓ1) and f3(p1, ℓ1, p2, ℓ2), does
there exist a function f ′3 = f ′3(p1, ℓ1) so that Γq(f2, f3) ∼= Γq(f2, f

′
3)?
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Results and methods

Observe that for any graph of the form Γq(f2(p1, ℓ1), f3(p1, ℓ1)).
Observe that since

p2 + ℓ2 = f2(p1, ℓ1)

p3 + ℓ3 = f3(p1, ℓ1)

then for all a, b ∈ Fq, the function ta,b where

ta,b[ℓ1, ℓ2, ℓ3] = [ℓ1, ℓ2 + a, ℓ3 + b]

ta,b(p1, p2, p3) = (p1, p2 − a, p3 − b)

is an automorphism of Γq. Meaning, q2 ≤ |Aut(Γq)|.
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Results and methods

Let Γ = Γq(p1ℓ1, p1ℓ1p2(p1 + p2 + p1p2)). This family of graphs
appeared in the thesis of Nassau 2021.

It was checked via
computer that for all odd prime powers q = pe < 43,
|Aut(Γ)| = qe, and hence, there do not exist functions f2, f3 of just
p1 and ℓ1 such that Γ ∼= Γq(f2, f3) for these values of q.

Theorem (Lazebnik and T. 2022)

Let p be an odd prime with p ≡ 1(mod 3). If Γ is defined over Fp,
then |Aut(Γ)| = p.

Corollary (Lazebnik and T. 2022)

Let p be an odd prime with p ≡ 1( mod 3). Let f2 = f2(p1, ℓ1) and
f3 = f3(p1, ℓ1) be functions of p1 and ℓ1. Then Γq(f2, f3) ̸∼= Γ.

Vladislav Taranchuk (joint work with Felix Lazebnik)
Algebraically Defined Graphs and Generalized Quadrangles
16 / 18



Results and methods

Let Γ = Γq(p1ℓ1, p1ℓ1p2(p1 + p2 + p1p2)). This family of graphs
appeared in the thesis of Nassau 2021. It was checked via
computer that for all odd prime powers q = pe < 43,
|Aut(Γ)| = qe, and hence, there do not exist functions f2, f3 of just
p1 and ℓ1 such that Γ ∼= Γq(f2, f3) for these values of q.

Theorem (Lazebnik and T. 2022)

Let p be an odd prime with p ≡ 1(mod 3). If Γ is defined over Fp,
then |Aut(Γ)| = p.

Corollary (Lazebnik and T. 2022)

Let p be an odd prime with p ≡ 1( mod 3). Let f2 = f2(p1, ℓ1) and
f3 = f3(p1, ℓ1) be functions of p1 and ℓ1. Then Γq(f2, f3) ̸∼= Γ.

Vladislav Taranchuk (joint work with Felix Lazebnik)
Algebraically Defined Graphs and Generalized Quadrangles
16 / 18



Results and methods

Let Γ = Γq(p1ℓ1, p1ℓ1p2(p1 + p2 + p1p2)). This family of graphs
appeared in the thesis of Nassau 2021. It was checked via
computer that for all odd prime powers q = pe < 43,
|Aut(Γ)| = qe, and hence, there do not exist functions f2, f3 of just
p1 and ℓ1 such that Γ ∼= Γq(f2, f3) for these values of q.

Theorem (Lazebnik and T. 2022)

Let p be an odd prime with p ≡ 1(mod 3). If Γ is defined over Fp,
then |Aut(Γ)| = p.

Corollary (Lazebnik and T. 2022)

Let p be an odd prime with p ≡ 1( mod 3). Let f2 = f2(p1, ℓ1) and
f3 = f3(p1, ℓ1) be functions of p1 and ℓ1. Then Γq(f2, f3) ̸∼= Γ.

Vladislav Taranchuk (joint work with Felix Lazebnik)
Algebraically Defined Graphs and Generalized Quadrangles
16 / 18



Results and methods

Let Γ = Γq(p1ℓ1, p1ℓ1p2(p1 + p2 + p1p2)). This family of graphs
appeared in the thesis of Nassau 2021. It was checked via
computer that for all odd prime powers q = pe < 43,
|Aut(Γ)| = qe, and hence, there do not exist functions f2, f3 of just
p1 and ℓ1 such that Γ ∼= Γq(f2, f3) for these values of q.

Theorem (Lazebnik and T. 2022)

Let p be an odd prime with p ≡ 1(mod 3). If Γ is defined over Fp,
then |Aut(Γ)| = p.

Corollary (Lazebnik and T. 2022)

Let p be an odd prime with p ≡ 1( mod 3). Let f2 = f2(p1, ℓ1) and
f3 = f3(p1, ℓ1) be functions of p1 and ℓ1. Then Γq(f2, f3) ̸∼= Γ.

Vladislav Taranchuk (joint work with Felix Lazebnik)
Algebraically Defined Graphs and Generalized Quadrangles
16 / 18



References

1 V. Dmytrenko, F. Lazebnik, and J. Williford, On monomial
graphs of girth eight, Finite Fields and Their Applications, 13,
(2007), 828–842.

2 X.-D. Hou, S. Lappano, F. Lazebnik, Proof of a conjecture on
monomial graphs, Finite Fields and Their Applications,
Volume 43 (2017), pp. 42–68. and its Applications

3 F. Lazebnik, S. Sun, and Y.Wang, Some families of graphs,
hypergraphs and digraphs defined by systems of equations: a
survey, Lecture Notes of Seminario Interdisciplinare di
Matematica , Vol. 14 (2017), pp. 105–142.

4 F. Lazebnik and V. Taranchuk, On a new family of
algebraically defined graphs with small automorphism group,
Electronic Journal of Combinatorics, 29(1)(2022), P1.43

5 B. Nassau, PhD Thesis, University of Delaware

Vladislav Taranchuk (joint work with Felix Lazebnik)
Algebraically Defined Graphs and Generalized Quadrangles
17 / 18



Questions?

Thanks!
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