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Introduction

Definition

A simple graph I =T(V, E) is a pair, where V is the set of
vertices, and E C (‘2/) is the set of edges. We denote the fact that
a vertex x is adjacent to a vertex y by x ~ y. Since I is simple,
the above definition removes the possibility of multiple edges,
directed edges, and loops. In this talk, every graph mentioned will
be a simple graph.
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Introduction

Definition

A simple graph I =T(V, E) is a pair, where V is the set of
vertices, and E C (‘2/) is the set of edges. We denote the fact that
a vertex x is adjacent to a vertex y by x ~ y. Since I is simple,
the above definition removes the possibility of multiple edges,
directed edges, and loops. In this talk, every graph mentioned will
be a simple graph.

Definition
Let ' be a graph. An automorphism of I is a function ¢ : V — V
such that ¢ is a bijection and ¢(x) ~ ¢(y) iff x ~ y.

Definition
Let I be a graph containing at least one cycle. The girth of I is
the length of the shortest cycle in I
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Introduction

Definition (Algebraically Defined Graphs)

Let P = L =g be two copies of the m-dimensional vector space
over Fgq with g = p®. Call the set P points and L lines, with the
distinction in notation by (a) € P and [a] € L. Define
Fq=T4(f,f,...,fm) to be the bipartite graph with parts P and L
and with edge relation defined between them as follows: If

(p) = (p1,---,Pm) € P and [{] = [¢1,...,¢m], then (p) ~ [/] if and
only if

Uy + pp = h(l1, p1)
{3 + p3 = f3(1, p1, 42, p2)

em + Pm - fm(gla p17 e 7£m—17pm—1)
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Properties of algebraically defined graphs

Some general facts about algebraically defined graphs are as
follows. Let [y =T4(f2, f3,..., fm):
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e Each point (or line) in [y has exactly one neighbor whose first
coordinate is x, for every x € Fg.
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Properties of algebraically defined graphs

Some general facts about algebraically defined graphs are as
follows. Let [y =T4(f2, f3,..., fm):
e Each point (or line) in [y has exactly one neighbor whose first
coordinate is x, for every x € Fy. Fix aline £ = [(1,02,...,¢p)
and choose any x € [ setting p; = x, then:
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Properties of algebraically defined graphs

Some general facts about algebraically defined graphs are as
follows. Let [y =T4(f,f3,. .., fm):

@ Each point (or line) in [y has exactly one neighbor whose first
coordinate is x, for every x € F,. Fixaline £ = [{1,02, ..., 0]
and choose any x € F setting p1 = x, then:

Uy 4 p2 = f(l1,x)
£3 + pP3 = @(617X7627p2)

Em + Pm — fm(g:l’pla e 7£m*17pm71)
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Properties of algebraically defined graphs

Some general facts about algebraically defined graphs are as
follows. Let 'y =T4(f2, f3,. .., fm):

e Each point (or line) in [y has exactly one neighbor whose first
coordinate is x, for every x € Fy. Fix a line £ = [(1,02,...,¢p)
and choose any x € [ setting p; = x, then:

Uy + po = h(l1,x)
(34 p3 = (01, x, 42, p2)

gm + Pm = fm(glvxa e 7€m—17Pm71)

So [51,82,...,5,7,] ~ (X,pg,...,pm)
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Properties of algebraically defined graphs

e 4 is g-regular with |V| = n=2q9" and
m+1

|El=q 5
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Properties of algebraically defined graphs

e 4 is g-regular with |V| = n=2q9" and
m+1

|El=q 5

@ For each b € Fg, there exists an automorphism t;, € Aut(ly)
given by

tb[fl,fg,. .. ,fm] = [El,fg,. coslm + b]
tb(P17P2a .. 'aPm) = (P17P27 ce sy Pm — b)
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Why are these graphs interesting?

Let ex(n, F) denote the largest number of edges in n-vertex graph
that does not contain copy of F as a subgraph.
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Let ex(n, F) denote the largest number of edges in n-vertex graph
that does not contain copy of F as a subgraph.

@ It has been shown that ex(n, Co) < cxn* Tk for a constant
dependent on k. Bondy and Simonovits showed ¢, = 100k
works, and over time this constant has been improved several
times, first by Verstraéte, then Pikhurko, and most recently by
Bukh and Jiang who showed ¢, = 80+/k log k.

Vladislav Taranchuk (joint work with Felix Lazebnik) 10/ 18



Why are these graphs interesting?

Let ex(n, F) denote the largest number of edges in n-vertex graph
that does not contain copy of F as a subgraph.

@ It has been shown that ex(n, Co) < cxn* Tk for a constant
dependent on k. Bondy and Simonovits showed ¢, = 100k
works, and over time this constant has been improved several
times, first by Verstraéte, then Pikhurko, and most recently by
Bukh and Jiang who showed ¢, = 80+/k log k.

@ Lazebnik, Ustimenko, and Woldar used algebraically defined
graphs to show that for infinitely many n,
¢} nt+2/(3k+3+¢) < ex(n, Cox) where ¢ = 1 when k is odd and
€ = 0 otherwise.
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Why are these graphs interesting?

Algebraically defined graphs have a strong connection to finite
geometry.
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Theorem (Tits 1959)

For n = 3,4, 6, there exists a generalized n-gon of order q for every
prime power q.
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Why are these graphs interesting?

Algebraically defined graphs have a strong connection to finite
geometry.

Definition

A generalized n-gon of order g > 1 is a (g + 1)-regular bipartite
graph with diameter n > 2 and girth 2n.

e g=1n>2 G, en=2q>1 K(q+1),(q+1)

Theorem (Tits 1959)

For n = 3,4,6, there exists a generalized n-gon of order q for every
prime power q.

Theorem (Feit and Higman 1964)

There do no exist any generalized n-gons of any order g when
n¢{23,4,6,8}.
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ADG's and Projective Planes

A generalized 3-gon is called a projective plane. Let

fo = f(p1,¢1) and consider I'q = '4(£). Recall (p1, p2) ~ [¢1, £2]
iff pp 4+ €2 = fo(p1,¢1). If T4 has girth 6, there is a unique way to
obtain a projective plane from [.
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iff pp 4+ €2 = fo(p1,¢1). If T4 has girth 6, there is a unique way to
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@ The classical projective plane can be obtained using
f(p1,01) = p1é1.
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fo = f(p1,¢1) and consider I'q = '4(£). Recall (p1, p2) ~ [¢1, £2]
iff pp 4+ €2 = fo(p1,¢1). If T4 has girth 6, there is a unique way to
obtain a projective plane from [.

@ The classical projective plane can be obtained using
f(p1,01) = p1é1.

@ All translation planes can be represented this way by using
fa(p1,¢1) = p1 * 1 where x is the multiplication used in any
particular quasifield. Translation planes account for many
non-isomorphic classes of projective planes.
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ADG's and Projective Planes

A generalized 3-gon is called a projective plane. Let

fo = f(p1,¢1) and consider I'q = '4(£). Recall (p1, p2) ~ [¢1, £2]
iff pp 4+ €2 = fo(p1,¢1). If T4 has girth 6, there is a unique way to
obtain a projective plane from [.

@ The classical projective plane can be obtained using
f(p1,01) = p1é1.

@ All translation planes can be represented this way by using
fa(p1,¢1) = p1 * 1 where x is the multiplication used in any
particular quasifield. Translation planes account for many
non-isomorphic classes of projective planes.

Can we construct generalized quadrangles this way too?
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ADG's and Generalized Quadrangles

Yes we can! Algebraically defined graphs of the form I'4(f, f3) give
a method for constructing a generalized quadrangle (4-gon).
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Do there exist generalized quadrangles of odd order q that are not
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ADG's and Generalized Quadrangles

Yes we can! Algebraically defined graphs of the form I'4(f, f3) give
a method for constructing a generalized quadrangle (4-gon).
@ For all prime powers g, one can attach a tree to
q(p1l1, p1¢2) to obtain the classical generalized quadrangle.

Question

Do there exist generalized quadrangles of odd order q that are not
isomorphic to the classical generalized quadrangle?

@ No other (non-isomorphic) generalized quadrangles of odd
order g are known.

@ Algebraically defined graphs provide one potential method for
answering this question. In large part, this question motivated
our research.
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Results and Methods

So far, we know:

Vladislav Taranchuk (joint work with Felix Lazebnik) 14/ 18




Results and Methods

So far, we know:

e For all prime powers q, [4(p1l1, p1f2) = Ty(p1l, prf3).

Vladislav Taranchuk (joint work with Felix Lazebnik) 14/ 18
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So far, we know:
e For all prime powers q, [4(p1l1, p1f2) = Ty(p1l, prf3).
e Many graphs of the form I'q(p1¢1, f3(p1,¢1)) have been shown
to either be isomorphic to 'q(p1l1, p1f2) or have girth less
than 8, [1, 3].
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e Many graphs of the form I'q(p1¢1, f3(p1,¢1)) have been shown
to either be isomorphic to 'q(p1l1, p1f2) or have girth less
than 8, [1, 3].

@ There are no known graphs, I4(f, f3) with girth 8 that are
not isomorphic to [4(p1f1, p1f3).
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So far, we know:

e For all prime powers q, [4(p1l1, p1f2) = Ty(p1l, prf3).

e Many graphs of the form I'q(p1¢1, f3(p1,¢1)) have been shown
to either be isomorphic to 'q(p1l1, p1f2) or have girth less
than 8, [1, 3].

@ There are no known graphs, I4(f, f3) with girth 8 that are
not isomorphic to [4(p1f1, p1f3).

One way to understand if there is still much viability in this
approach is to answer the following question.

Question

Given T 4(f, f3) where f, = f(p1, ¢1) and f3(p1, 41, p2,¢2), does
there exist a function f{ = f{(p1,¢1) so that [ 4(f>,3) = T4(f, 3)7
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Results and methods

Observe that for any graph of the form [4(f(p1, 41), 3(p1, £1)).
Observe that since

p2 + 4o = fa(p1,¢1)
p3 + {3 = f(p1,41)
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Results and methods

Observe that for any graph of the form [4(f(p1, 41), 3(p1, £1)).
Observe that since

p2 + 4o = fa(p1,¢1)
p3 + {3 = f(p1,41)

then for all a, b € [Fy, the function t, ;, where

tab[l1, 02, 03] = [l1,02 + a,{3 + b]
tab(P1, P2, p3) = (P1,p2 — a,p3 — b)

is an automorphism of ;. Meaning, g2 < |Aut(l,)|.
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Results and methods

Let I' = T4(p1l1, prlap2(p1 + p2 + p1p2)). This family of graphs
appeared in the thesis of Nassau 2021.
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Let I' = g(p1l1, prlip2(p1 + p2 + p1p2)). This family of graphs
appeared in the thesis of Nassau 2021. It was checked via
computer that for all odd prime powers g = p€ < 43,

|Aut(I)| = ge, and hence, there do not exist functions fp, f3 of just
p1 and ¢1 such that I = ['4(f, f3) for these values of q.

Theorem (Lazebnik and T. 2022)

Let p be an odd prime with p = 1(mod 3). If T is defined over IFp,
then |Aut(l')| = p.

Corollary (Lazebnik and T. 2022)

Let p be an odd prime with p = 1( mod 3). Let f, = f(p1,¢1) and
f3 = f3(p1,¢1) be functions of py and ¢1. Then I o(f,f3) 2 T.
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Thanks!
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