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Abstract— Multirotor vehicles, quadrotors specifically, have
formed a fast-growing field in robotics, with the range of
applications spanning from surveillance and reconnaissance
to agriculture and large area mapping. Although in most
applications, a single quadrotors is used, there is an increasing
interest in architectures controlling multiple quadrotors execut-
ing a collaborative task. This paper introduces a new concept
of control involving more than one quadrotors, according to
which two quadrotors can be physically coupled in mid-flight.
This concept equips the quadrotors with new capabilities, e.g.
increased payload or pursuit and capturing of other quadrotors.
A comprehensive analysis of the approach is presented for the
system of two coupled quadrotors. The dynamics and modeling
of the coupled system is presented together with a discussion
regarding the coupling mechanism and the overall control ar-
chitecture. Controller gains were found using Linear Quadratic
Control (LQR) techniques combined with Proportional Integral
Derivative (PID) gain scheduling to account for the change in
system dynamics to ensure stability and satisfactory response
characteristics in actual experiments. Finally, the proposed
methods are evaluated through an experiment that involved
physical coupling and coupled flight of a pair of quadrotors.

I. INTRODUCTION

In recent years, quadrotors have received much attention
thanks to their versatility in both academic research and
commercial applications. Examples of these applications are
surveillance, agricultural data collection, search and rescue,
crowd control, domestic security, as well as assisting in
various military operations [1], [2].

Considering their popularity, much research has been done
in modeling the dynamics and control of quadrotors. The
scope and application of the research recently completed
is also very diverse. In some cases, authors will focus
attention to the dynamical details of the quadrotor in all
aspects of flight; from the hover state and motor modeling
to aerodynamic blade flapping [3]. In other publications, the
concentration is found at aggressive maneuvering, trajectory
generation and controller design for multiple stages or phases
of flight [4]. This information has been further synthesized
and advanced in a number of ways in [5]. In [5], the
concept of trajectory generation, quadrotor control is applied
in various stages of flight to both the single air vehicle case,
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as well as team lift applications. In these applications, mul-
tiple quadrotors are controlled to move designated objects
together and various types of controllers are tuned in order to
provide desirable system response characteristics throughout
the flight envelope and intended purpose.

The present paper presents a new approach: modeling the
coupling dynamics and control of two quadrotors. This new
approach presents a host of new issues, which include cou-
pling mechanics and methods, influences of one quadrotor
on the other during flight, as well as designing controllers
for the new system. We will step through a systematic way of
mathematically modeling impact forces, quadrotor equations
of motion in both the single and coupled states as well
as discuss some other complications that may be important
to consider in practical implementation. A magnet-based
method of mechanically coupling the quadrotors is proposed.
The proposed methods are evaluated through an experiment
that involved physical coupling and coupled flight of a pair
of quadrotors. The experimental results are presented with
a discussion regarding controller gain tuning and system
performance characteristics.

The idea of coupled quadrotors presents a new path for
many current applications to be extended. It also opens up
new avenues that previously have not been considered, such
as the pursuit and capture of enemy quadrotors. Also, this
idea may extend and improve team lift operations allowing
both vehicles to lift a single standard object at the center of
gravity, simultaneously improving the inherent stability of
the system – a concept that may become more important as
the quadrotor begins to be considered as a package delivery
platform [6].

The rest of the paper is organized as follows: Section II
describes the quadrotors platform and the coupling mecha-
nism. Section III presents the modeling and system dynamics
approach of the total system as well as the control architec-
ture for the aforementioned coupling scenarios. Section IV
demonstrates the efficiency of the proposed approach though
the experimental results. Section V concludes the paper and
discusses future work.

II. QUADROTORS AND COUPLING MECHANISM

Figure 1 shows the quadrotors and the coupling mech-
anism in our platform. The quadrotor is constructed from
lightweight plastic frame with diameter, i.e. the distance
between two opposite motors, of 0.25m , and the total weight
is approximately 0.55kg. The flight controller is composed
of an Ardupilot Mega APM 2.6 controller board1, electronic

1http://www.ardupilot.co.uk/
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Fig. 1: Quadrotors shown in coupled configuration with
coupling mechanism visible.

speed controllers (ESCs), lithium polymer battery and brush-
less motors with 5 inch(0.127m) diameter propellers. The
APM 2.6+ autopilot features a 6 degree of freedom (DOF)
inertial measurement unit (IMU) which provides the on-
board controllers with vehicle attitude feedback. The autopi-
lot module is connected to the ESCs to control the motor.
The quadrotors position are captured via a Vicon motion
capture system and sent to the flight vehicles wirelessly via
bluetooth from a ground station.

The coupling mechanism is composed of three main com-
ponents. Referencing Fig. 1, these components are numbered
with (1) and (2) being part of the adaptable structure and
mounting while (3) shows the location of the magnets. These
magnets are approximately 32mm in diameter by 1.6mm
thick in size, circular and have a max pull force of approx-
imately 31N [7]. Each quadrotor is outfitted with a single
such magnet, mounted directly above (or below) the vehicle
center of gravity. This mechanism allows for the quadrotors
to couple at arbitrary yaw angles and includes a platform for
additional reflective markers to aid in experimentation.

III. MODELING AND SYSTEM DYNAMICS
A. Single Quadrotor Model

Although the dynamics of the quadrotors may be relatively
well studied in isolation [3]–[5], a few important distinctions
for the case of a coupled system are vital for modeling
and designing controller. To facilitate the modeling of a
coupled system, we first summarize the dynamics of a single
quadrotors in this section.
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Fig. 2: Free body diagram for the single quadrotor.

Considering the special orthogonal group in three space
SO(3), and the free body diagram of the quadrotors shown
in Fig. 2, let F be a vector, e.g. force, position, velocity, in
three dimensional space, and Fi = [Fx, Fy, Fz]

i and Fb =
[Fx, Fy, Fz]

b be its coordinate in the inertial frame and the
body frame respectively. The set of coordinates are related
by:

Fi = Ri
bF

b, (1)

where Ri
b is the rotation matrix:

Ri
b(ω) =

!

"
cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

#

$

(2)
where ω = [φ, θ, ψ] are the angular coordinate containing
the roll, pitch and yaw angles along x, y, z axes, respectively
while the shorthand notation cos(x) = cx and sin(x) = sx
is used. Applying Newton’s law to obtain the dynamics in
translational motion we have:

mr̈i = −Pi +Ri
b(ω)F

b
T (3)

Here, r = [x, y, z] is the translation coordinate, Pi =
[0, 0,mg] is the gravity with the mass m of the quadrotor,

FT = [0, 0,
4%

n=1
Tn], where Tn is the thrust of motor n. The

thrust forces also induce the following moments along the
quadrotor body x, y, z axes:

M =

!

"
Mx

My

Mz

#

$
b

=

!

"
l(T2 − T4)
l(T3 − T1)

τ2 + τ4 − τ1 − τ3

#

$
b

(4)

where l is the distance from the center of gravity to the center
of any motor. τn represents the equal and opposite moment
applied to the quadrotors due to the torque induced to the
propeller shaft. This torque is dependent on the rotational
direction of the shaft and is here shown to be consistent
with that shown in the free body diagram in Fig. 2.
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This moment in turn induces the dynamics in angular
motion [4] as

Ibν̇b + νb × Ibνb = M (5)

In the above equation, Ib is the (approximately) diagonal
body-frame inertia tensor matrix, νb = [νx, νy, νz] are the
angular velocities about the body-frame x, y, z axes. For the
specified order of rotations, the corresponding differential
equation can be written as [8]:

!

"
νx
νy
νz

#

$ =

!

"
1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

#

$

!

"
φ̇

θ̇

ψ̇

#

$ (6)

The system dynamics are obtained by concatenating the
differential equations in (2) - (6).

B. Dual Quadrotor Coupling Modeling

When the quadrotors are coupled, the dynamics of the
system are changed. We assume that the location of the
coupled (lower) quadrotor is known with respect to the
upper, the coupling mechanism is rigid, and the total system
behaves as a rigid body. We also assume that, in the event
that the quadrotors were to be coupled at different yaw
angles, the relative offset in yaw between the two vehicles
is known. In the present study, both flight vehicles are
identical, although the analysis is generally formulated and
applied to any rigidly connected structure. Considering the
free body diagram for the coupled system shown in Fig. 3,
the equations of translational motion is similar to (3)

mr̈i = −Pi +Ri
b(ω)F

b
T (7)

Here, Pi = [0, 0,mT g] is the gravity with the total mass
mT = m1 + m2 of the coupled quadrotors, and FT =

[0, 0,
8%

n=1
Tn].

In (7), to compute Ri
b(ω), we can assume that both

quadrotors share the same values for roll and pitch angles
with a constant offset in yaw angle. This assumption works
fine in our simulation. However, as we found in the exper-
iment, this assumption is often violated, as the geometry
of the coupling system is not perfectly symmetric, e.g. the
centers of gravity of the two quadrotors are not aligned after
coupling, and the offset yaw angle slowly drifts. Hence,
using roll, pitch, yaw values returned from sensors of either
each quadrotors as the representative values for the coupled
system will quickly magnify the error in the measured states.
These errors will lead to inappropriate control signals, which
consequently will cause a severe vibration after coupling and
compromise the system’s stability.

To overcome this problem, in this preliminary study, we
model the system as an inverse pendulum, where each
quadrotor is controlled independently similar to the single
system described previously, but it also induces an external
mass to its counterpart. Thus, the moment applied to the
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Fig. 3: Free body diagram for the coupled quadrotor system.

upper quadrotor due to the mass of the second can be
mathematically expressed using equation (8):

M2 = rcg
b × Fcg

b (8)

In the above representation, rcgb is the location of the center
of mass of the lower quadrotor expressed in the body frame
of the upper. Accordingly, Fcg

b is the weight vector applied
by the lower quadrotor on the upper, in the body frame of
the upper. With this in mind, Fcg

b is defined as:

Fcg
b = (Ri

b)
TFcg

i, (9)

where Fcg
i = [0, 0,−m2g]. Consolidating equations (8) -

(9) can be done by utilizing skew-symmetric matrices. In
doing so, the following is obtained:

M2 = [rcg
b×](Ri

b)
TFcg

i, (10)

Modifying the moment of inertia and accounting for the
added motor thrusts, we obtain the complete set of equations
describing the rotational dynamics of the coupled system as
follows:

M1 =

!

"
l1(T2 − T4) + l2(T6 − T8)
l1(T3 − T1) + l2(T7 − T5)

τ2 + τ4 + τ6 + τ8 − τ1 − τ3 − τ5 − τ7

#

$
b

(11)

where M1 is used to denote the applied moment due to
differential thrust and l1 and l2 are the moment arms of
quadrotors one and two, respectively. Then, with Ib2 being
the body frame moment of inertia of the coupled system, we
obtain the final equation below. Equation (12) describes the
rotational dynamics of the coupled system:

Ib2ν
b + νb × Ib2ν

b = M1 +M2 (12)

Equations (7) - (12) constitute another set of twelve equations
describing the nonlinear dynamics of the coupled system.
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C. Controller Methodology - Static Coupling

In this work, we implement a linear quadratic control
(LQR) controller [9] combined with PID gain scheduling, as
this is a simple, robust and optimal control for under-actuated
MIMO systems. Following this approach, we assume that
the angles ω = [φ, θ,ψ] stay in a small region centering
at the hover position, ω0 = [0, 0,ψ0], i.e. |ω − ω0| ≤
[10, 10, 10] deg. Hence, the nonlinear model of the coupled
system can be approximated by a linear model at the oper-
ating point ω0 as follows

!

"
ẍ
ÿ
z̈

#

$ =

!

"
g 0 0
0 g 0
0 0 1

mT

#

$

!

"
θ cos(ψ) + φ sin(ψ)
θ sin(ψ)− φ cos(ψ)%8

n=1 Tn −mT g

#

$ , (13a)

!

"
θ̈

φ̈

ψ̈

#

$ =

!

"
1
Ix

0 0

0 1
Iy

0

0 0 1
Iz

#

$ (M1 +M2) + δ(t). (13b)

where δ(t) represents any errors due to the linearization and
the disturbance due to the aerodynamic down-wash effect
created from the propellers of the top quadrotor acting on
the lower.

This system can be divided into two levels. The first level
described in (13a) is well modeled and can be controlled
easily by the LQR controller. The second level described in
(13b) contains all unknown parameters, such as δt, inertial
moments Ix, Iy, Iz , and the motor dynamics mapping the
control voltage v to the thrust force Tn. Thus, the PID gain
scheduling is implemented as a low level controller.

Specifically, by changing variables

Bh=

!

"
g 0 0
0 g 0
0 0 m−1

T

#

$ ,uh=

!

"
ux

uy

uz

#

$=

!

"
θ cos(ψ) + φ sin(ψ)
θ sin(ψ)− φ cos(ψ)%8

n=1 Tn −mT g

#

$,

the system (13a) can be rewritten as Ẋ = AX+Buh,

X =

&
r
ṙ

'
,A =

&
I3 03×3

03×3 03×3

'
,B =

&
03×3

Bh

'
,

The virtual control signal uh can be obtained by

uh = KLQReρ = KP er +KI

( T

0

erdt+KDeṙ

where er = rd − r, eṙ = ṙd − ṙ, and the LQR gain
KLQR = [KP ,KI ,KD] are obtained by minimizing the
following cost function

J =
1

2

( ∞

0

(e⊺ρQmeρ + u⊺Rmu)dt (14)

In equation (14), eρ = [er, eṙ,
) T

0
erdt] is the augmented

tracking error , u is the desired input and Qm and Rm are
weighing matrices. The optimal PID gains are obtained by
tuning matrices Qm and Rm to satisfy desired control per-
formance and authority, i.e. inside the small region centering
at the operation points ω0 and maximum thrust forces.

TABLE I: LQR gains for High Level controller

Gain kP kI kD
Kx 4.134 2.23 2.882
Ky 4.134 2.23 2.882
Kz 6.049 3.48 5.0

Gain kP kI kD
Kx 4.134 2.23 3.6
Ky 4.134 2.23 3.6
Kz 4.26 1.56 -0 3.6

LQR gains for single mode (left) and coupling mode (right). KIz =
1.56 for the first quadrotor, and KIz = 0 for the second.

TABLE II: PID gains for Low Level Controller

Gain kP kI kD
Kθ 0.4 0.02 0.001
Kφ 0.4 0.02 0.001
Kψ 0.7 0.04 0.02

Gain kP kI kD
Kθ 0.5 0.025 0.001
Kφ 0.5 0.025 0.001
Kψ 0.7 0.04 0.02

PID gains for single mode (left) and coupling mode (right)

Deriving the desired roll θd and pitch φd and total thrust
forces for the low level controller is straight forward as
&

θd
φd

'
=

&
cos(ψ) sin(ψ)
sin(ψ) − cos(ψ)

'−1 &
ux

uz

'
, (15a)

&
uT1

uT2

'
=

& %4
n=1 Tn%8
n=5 Tn

'
=

& m1

mT
(uz +mT g)

m2

mT
(uz +mT g)

'
, (15b)

The desired values θd and φd obtained above and the
desired yaw ψd set by user are then sent to the lower level
PID control for each quadrotor, to obtain the control signals

uω(t) = kP,ωeω + kI,ω

( t

0

eωdt+ kD,ω ėω,

where eω = ωd−ω is the error term, and ωd = {θd,φd,ψd}.
Combined with the thrust force obtained in (15b), the voltage
command signal sent to each motor is

!

**"

vol1
vol2
vol3
vol4

#

++$ =

!

**"

1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1

#

++$

!

**"

fmap(uT )
uθ

uφ

uψ

#

++$ ,

given the motor order specified in Fig. 2, where fmap is the
mapping from thrust force in Newton to the voltage obtained
empirically.

IV. RESULTS

The effectiveness of the proposed coupling mechanism
and controller is validated in our experiment, where two
quadrotors were autonomously coupled and flown in the new
configuration. In the discussion that follows, we refer to the
first quadrotor as the upper and the second as the lower.

Figure 4 depicts the progression of the experiment. In
phase (A), two quadrotors were initially separated in the
inertial space and the first quadrotor flew toward the second
one. In phase (B), the first quadrotor landed on the second
and they are autonomously coupled before being flown in the
coupled configuration depicted in the phase (C). A desired
trajectory is designed for both quadrotors before the coupling
(independent motion), and after the coupling (joint motion).
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Fig. 4: Experimental progression. (A) quadrotors in pre-
coupled configuration, (B) quadrotors during autonomous
coupling, and (C) the coupled structure during flight.

The controller gains for two operating modes are given
in Table I and II. Comparing between the two modes, we
increased the derivative gains in the coupling mode, which
corresponds to increase of the damping coefficients of the
second order system for x and y direction. Hence, the
change rate of the desired roll and pitch angles were also
reduced. Thus, each low level controller can transiently track
the desired signals, so that the difference of the yaw and
pitch angles between the two quadrotors remain small, and
the coupling mechanism is maintained. The integral gain
for tracking z position of the second quadrotor was also
decreased, as the integral term was used to correct any
constant offset error. Since the two quadrotors are attached,
we only need the first quadrotor to correct this error in
order to avoid any possible conflicts between two low level
controllers.

Fig. 5: Experimental results for the upper quadrotor.

Fig. 6: Experimental results for the lower quadrotor.

Experimental results are shown in Fig. 5 and Fig.
6 while a video of the experiment is available at
https://youtu.be/lZJj5ZGLCFU. It is seen that the coupled
configuration accurately tracks the reference trajectory pro-
vided by the ground station in all inertial directions. For the
data set presented in Figs. 5 - 6, the quadrotors were coupled
at a relative yaw angle of 45 degrees. This was done in order
to increase the effective lift of the lower quadrotor and to
reduce the aerodynamic disturbance acting on the system.
Position feedback obtained from the Vicon motion capture
system is used to compute reference attitude inputs to the
aerial vehicles. Then, it is the goal of the ground station
to appropriately distribute the information to the quadrotors.
Additionally, the ground station was also triggering events
such as gain scheduling in mid-flight. As shown in Fig. 5 and
6, the tracking error is bounded at 2− 3cm along each axis,
which verifies the high tracking accuracy of the proposed
approach.
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V. CONCLUSION
The analysis and evaluation of a coupled quadrotor system

opens new frontiers and the possibility of quadrotor rescue,
or enemy quadrotor chase and capture. This paper presents
the modeling and dynamics of a coupled quadrotor system as
well as an experimental results from implementation. Con-
troller gains were found using LQR combined with PID gain
scheduling to account for the change in system dynamics
to ensure stability and satisfactory response characteristics
in actual experiments. Future work will be directed towards
the consideration and design of a new coupling mechanism
to possibly implement the use of electromagnets or a ball
and socket joint in order enable the vehicles to decouple
during flight. Furthermore, adaptive control techniques can
be incorporated to handle the uncertainty and improve the
efficacy of the coupling systems.
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