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Abstract— A learning scheme based on Random Forests is
used to decode the EMG activity of 16 muscles of the human
arm-hand system to a continuous representation of kinemat-
ics in reach-to-grasp movements in 3D space. Classification
methods are used to discriminate between significantly different
reach to grasp strategies, formulating a switching mechanism
that may trigger the use of position and object-specific decoding
models (task-specificity). These task-specific models can achieve
better estimation results than the general models for the
kinematics of different reach-to-grasp movements. The efficacy
of the proposed methodology is assessed through a strict
validation procedure, based on everyday life reach-to-grasp
scenarios and data not previously seen during training. Finally,
for demonstration purposes, the authors teleoperate an arm-
hand model in the OpenRave simulation environment using
the estimated from the EMG signals human motion.

Index Terms: ElectroMyoGraphy (EMG), EMG-Based Tele-
operation, Robotic Arm-Hand System, Learning Scheme, Model
Switching, Random Forests

I. INTRODUCTION

Over the last decades the field of EMG-based teleoperation
of robotic systems has received increased attention. The
interest is motivated by the large variety of applications,
in remote or dangerous environments, in robotics assisted
rehabilitation, as well as in prosthetics by the amputees hope
to regain dexterity using the next generation of prosthetic
limbs. Most of the previous studies in this field have focused
on the EMG-based teleoperation of robotic arms in two-
dimensional (2D) and three-dimensional (3D) spaces, using
the musculoskeletal model approach or other methods such
as State-Space models and Neural Networks.

EMG signals have been used in several studies in the
past in order to build a control interface for robotic devices.
One of the main difficulties that the researchers faced is the
highly nonlinear relationship between the EMG signals and
human kinematics [1]. Thus in most cases, researchers chose
to focus on binary control, such as the directional control of
a robotic wrist [2] or the control of multifingered robotic
hands to a series of discrete postures [3] - [8].
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The usage of finite postures for the control of a robotic
system may cause problems such as the lack of motion
smoothness. Moreover in teleoperation studies where the
execution of everyday life tasks is of critical importance, the
suggested methodology must address the issues of contin-
uous and smooth control, decoding a continuous represen-
tation of human kinematics from the captured myoelectric
activity. Another type of continuous model that has been
proposed in order to decode arm motion from EMG signals
is the Hill-based musculoskeletal model [9], which is one of
the most frequently used methods in the related literature
[1], [10] and [11]. However in these studies only a few
degrees of freedom (DoFs) are analyzed (i.e. 1 or 2) due
to the nonlinearity of the model equations and the large
number of unknown parameters per muscle that make the
overall analysis rather difficult. Similar studies that used
musculoskeletal models, focusing on a limited number of
muscles and actuated DoFs, are [12] and [13].

Furthermore an artificial neural network has been used by
[14] in order to estimate the continuous motion of the fingers,
using the myoelectric activity from muscles of the forearm.
However in this paper only one degree of freedom (DoF)
per finger was decoded. Another study that uses a neural
network-based model in order to decode arm motion using
EMG signals, restricting though the analyzed movements to
single-joints isometric motions, is [15]. Similarly in [16],
a one DoF robot arm was controlled using EMG signals
through neural networks.

Artemiadis et al. in [17] used a state-space model in order
to successfully estimate human arm kinematics from the
myoelectric activity produced from certain muscle groups.
Emphasis was given to the non-stationary characteristics of
the EMG signals and the evolution of signal quality over
time (i.e. due to muscle fatigue etc). Finally the authors in
[18] and [19] propose a novel metholodology for mapping
between the muscles activation and the arm motion in a low
dimensional space using a state space model.

A recent study that focuses on the teleoperation and
manipulation of the DLR LWR-III (Arm-Hand system) [20],
presents an interesting methodology for decoding human arm
kinematics in 3D space, based on support vector machines
(SVM). Although the approach is interesting, the studied
DoFs are seven (7), six for the arm and one (1) DoF for
the human grasp, which limits its applicability to every-day
life tasks, where independent finger motion is of paramount
importance. Moreover, the method requires smooth and quite
slow movements, which are far from realistic reach-to-grasp
movements.



In this paper, we propose a novel methodology based
on emerging techniques (Random Forests classification and
regression) for controlling an anthropomorphic robotic arm-
hand system in reach-to-grasp movements using surface my-
oelectric recordings (sEMG) from muscles of the upper-arm
and the forearm. More specifically we use a learning scheme,
that help us discriminate the execution of different reach-to-
grasp strategies and consequently select different decoding
models for different reach to grasp tasks. The system is
composed by a training and real-time operation phase. In the
training phase, the user was instructed to perform reach to
grasp and grasp movements towards different objects placed
in different positions in 3D space, while EMG recordings
were taken.

The principal component analysis (PCA) was used in
order to represent in lower dimensional manifolds the EMG
recordings as well as the kinematic recordings (extracted
from the position tracking system). The low dimensional
embeddings of the arm-hand kinematics and the low dimen-
sional embeddings of the EMG signals captured from the
selected muscles, were used to train different models for
different reach to grasp tasks in order to form the switching
mechanism that we introduce. The estimated output of the
trained models can be then transformed back in the high
dimensional space in order to give an estimate of the arm-
hand kinematics in 3D space.

The proposed learning scheme incorporates in the control
loop a switching variable that depends on the classification
decision that helps us to discriminate between different
reach-to-grasp strategies, based on muscular co-activation
patterns. Then, once the decoder outputs the desired motion
in the low-dimensional space, a projection to the original
high-dimensional space is performed.

The efficacy of the proposed scheme was assessed through
a strict validation procedure involving a large number of
experiments as well as using a simulated paradigm for
the EMG-based teleoperation of a robotic arm-hand system
model (the five fingered 15-DoF robotic hand DLR-HIT
Hand 2, and the 7-DoF anthropomorphic robotic arm Mit-
subishi PA-10) in the OpenRAVE simulation environment.
More details regarding the OpenRAVE simulation environ-
ment can be found in [21] as well as in [22].

The rest of the paper is organized as follows: Section
II analyzes the proposed system architecture, reports the
methods that were used as well as the verification procedures,
Section III focuses on results presentation (classification -
motion decoding), comparison of different decoding methods
and simulation, while Section IV concludes the paper.

II. METHODS

A. Background and problem definition

1) Data Acquisition and Processing: The motion of the
upper limb in the 3-D space was analyzed. More precisely
three rotational DoFs were used to model the shoulder joint,
one rotational DoF for the elbow joint, one rotational joint
for pronation-supination, two rotational joints for the wrist
and 20 rotational joints for the fingers (3 rotational joints

for each finger’s flexion-extension and 1 rotational joint
for abduction-adduction). For the training of the proposed
system the motion of the upper limb was recorded and the
joint trajectories were extracted.

In order to record the motion and then to extract the joint
angles of the 27 modeled DoFs, a magnetic position tracking
system and a dataglove were used. The position tracking
system was equipped with two position tracking sensors and
a reference system, with respect to which the 3-D position
of the tracking sensors was provided. To compute the first
five joint angles (3 DoFs for the shoulder, elbow flexion-
extension and pronation-supination), one position tracking
sensor was placed at the user’s elbow and the other one at
the wrist joint. The reference system was placed on the user’s
shoulder. Details on the computation of arm kinematics are
included in [23]. To compute the rest 22 DoFs a dataglove
measuring finger angles and the wrist flexion-extension and
abduction-adduction was used.

EMG signals were recorded from sixteen (16) different
muscles, 8 muscles of the upper arm and 8 muscles of the
forearm. More specifically the selected muscles are the fol-
lowing: flexor pollicis longus, flexor digitorum superficialis,
flexor carpi ulnaris, flexor carpi radialis, extensor pollicis
longus, extensor indicis, extensor carpi ulnaris, extensor carpi
radialis, deltoid anterior, deltoid posterior, deltoid middle,
trapezius, teres major, brachioradialis, biceps brachii and
triceps brachii. The selection of the chosen muscle groups,
as well as the placement of the electrodes, was based on the
related literature [7], [24].

For the myoelectric activity of the muscles to be captured
surface bipolar active EMG electrodes were used following
the directions given in [11]. As far as the EMG signals are
concerned they were band-pass filtered (20-450 Hz), sampled
at 1 kHz, full-wave rectified and at last low-pass filtered
(Butterworth, fourth order, 8 Hz). The position tracking
system provided the position measurements at the frequency
of 30 Hz. Using an antialiasing finite-impulse-response filter
(low pass, order: 24, cutofff frequency: 100 Hz), these
measurements were resampled at a frequency of 1 kHz to
be consistent with the muscle activation sampling frequency.

2) System Requirements: Two aspects that each EMG-
based teleoperation method should have, are to decode a con-
tinuous representation of the motion to allow its application
at a robot control scheme and to be easily trainable to dif-
ferent users, since musculoskeletal and arm-hand dynamics
may vary significantly across subjects.

Moreover even within the same subject, repositioning
of the electrodes can require retraining, so the proposed
decoding architecture should be easy and fast enough in
terms of training. In order to achieve easy, portable and
fast to use training schemes several researchers have chosen
to place the EMG electrodes not in specific regions but in
random positions [20]. We believe that the next generation
of epidermal electronics [25] will make the electrode posi-
tioning faster and easier, thus in this paper we choose to take
advantage of the higher signal to noise ratio that the specific
electrode positions offer.



3) Experimental Protocol: Five healthy subjects (21, 24,
27, 28 and 40 years old) participated in the experiments.
The subjects gave informed consent and the procedures were
approved by the Institutional Review Board of the National
Technical University of Athens. During the training phase,
each subject performed with the dominant hand (the right
hand for all subjects), repeated reach to grasp movements
in 3D space, in order to reach and grasp three different
daily-life objects; a rectangular-shaped object, a marker and
a mug, placed in five (5) different positions. Adequate resting
time (1 min) was used in order for the users to be able to
rest between concecutive trials and each subject conducted
several trials (approximately 30), for each object and object
position. More precisely the three objects were placed on
three shelves with heights 105 cm, 135 cm and 165 cm
respectively. Two object positions were marked at the edges
of the 1st self (105cm) and the distance between them was
60cm. One object position was marked in the middle of the
2nd shelf (135cm) while the 3rd shelf (165cm) had also two
object positions marked at its edges like the first shelf. More
details regarding the experimental setup can be found in [26].

B. Random Forests Based Decoding Model

1) Dimensionality Reduction: In order to represent our
signals in a low-dimensional space, the principal components
analysis method (PCA) was used. It was found that for the
EMG signals a 4-D space could represent most of the original
high-dimensional data variance (more than 92%). As far as
the kinematics are concerned, the 27-DoF motion was found
that can be described also by a 4-D space that represents most
(94%) of the original data variance. We used the PCA as a
dimensionality reduction technique in order to take advantage
of the underlying covariance of our data representing the
same variability in a lower dimensional space without losing
any dimension of the original data. Moreover PCA has been
proposed as the easiest to implement and the most compu-
tationally effective method for dimensionality reduction and
data compression [27].

2) Decoding Model based on Random Forests: Random
Forests are an ensemble classification and regression al-
gorithm proposed by Tin Kam Ho of Bell Labs in 1995
[28] and Leo Breiman [29] in 1999. Random Forests are
quite easy to be implemented and trained, are very fast
in terms of time spent for training and prediction, can
be parallelized, can handle thousands of input variables,
are resistant to outliers, run efficiently on large databases,
have very good generalization properties and at last can
output more information than just class labels (e.g. sample
proximities, visualization of output decision trees e.t.c.).

Moreover, random forests consist of many decision trees
and trees can help us achieve highly non-linear mappings,
splitting the original problem into subproblems. These sub-
problems can then be solved with quite simple predictors.
As far as random forests generalization ability is concerned,
Breiman et al. [29] showed that despite the fact that stan-
dard decision trees suffer from overfitting, a collection of
randomly trained trees has significant generalization power.

Fig. 1: Boxplot Zones visualization of different muscular co-activation
patterns across sixteen (16) muscles of the upper arm and the forearm for one
(1) subject performing reach to grasp movements towards five (5) different
positions, to grasp a specific object (Rectanglular shaped object).

In this paper we use Random Forests for two different
purposes; as a classification technique to discriminate be-
tween different muscular co-activation patterns responsible
for different reach-to-grasp strategies, and as a regression
technique in order to map the non-linear relationship of the
myoelectric activity of the selected muscles to the human
arm-hand system kinematics.

C. Visualization of Muscular Co-Activation Patterns

We use our data in order to extract and visualize muscular
co-activation patterns, using the novel statistical representa-
tion method ”Boxplot Zones” that we introduced.

In order to acquire more information regarding the extrac-
tion of muscular co-activation patterns and boxplots zones
formation the reader should refer to [26]. Fig. 1 presents box-
plot zones for different reach-to-grasp strategies expressed
through different muscular co-activation patterns.
As it is shown in Fig. 1, the co-activations of muscles of
the upper arm and the forearm, are significantly different
between different reach-to-grasp movements (for different
positions), although the same fingers and joints of the arm
were involved (for different task).

In order to assess the statistical significance of muscu-
lar co-activation patterns differentiation between different
subjects and reach to grasp movements towards different
positions and objects placed in the same position, statistical
tests were conducted. More specifically the Kruskal-Wallis
and the Wilcoxon rank sum tests were performed proving
that there is indeed a significant differentiation of muscular
co-activation patterns between different strategies (subject,
object or position-specific). Details can be found in [26].

D. Classification of Reach-to-Grasp Strategies

Synergistic profiles depicted in Fig. 1 imply a significant
differentiation of muscular co-activation patterns between
different reach-to-grasp strategies. We use the definition
strategies to imply the selection of different movement
coordination patterns to execute reach-to-grasp movements
towards different objects or object positions, thus to exe-
cute different tasks. Furthermore human triggers different
muscular co-activation patterns not only for reach to grasp
movements towards different positions but also for different
objects placed in the same position.



Thus there is a significant differentiation of the patterns not
only in kinematics but also in the myoelectric activity cap-
tured from the selected muscles. In order to take advantage of
this characteristic, we apply classification techniques in our
dataset, in order to be able to discriminate these different
reach-to-grasp strategies.

Five types of classification techniques were compared
in [26], in terms of classification accuracy and training
time spent; Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), a k - Nearest Neighbours (k-
NN) classifier, a Support Vector Machines classifier, a Neural
Network classifier and a Random Forest classifier. Random
Forests classifier was proved to outperform all others in
classification accuracy and achieved very good results with
respect to speed of execution (better from ANN and SVM).

Furthermore we also take advantage of electromechanical
delay (EMD) of a muscle (onset of the EMG signal (electrical
event) precedes onset of muscle contraction (mechanical
event)) that ranges from 25 to 100 ms, in order to use the
majority vote criterion as described also in [26].

The majority vote criterion, classifies all the samples, of
a set of N samples, in the class that was the most common
between them, improving significantly the classification re-
sults. As shown in Table I and Table II, the classification
results were improved by using the majority vote criterion
in a sliding window of 50 samples.

Regarding the training procedure, we used the five-fold
cross-validation method to measure the accuracy of our clas-
sifiers. To reduce variability, five rounds of cross-validation
were performed using different partitions, and the validation
results were averaged over the rounds.

E. Experimental and verification procedures

As far as the experimental setup is concerned three Per-
sonal Computers (PCs) were used. One of the two Linux
OS based PCs had the simulated environment installed,
while the other acquired the EMG signals and the position
tracker measurements during the training phase. The third
Windows OS based PC was used to acquire the cyberglove
measurements. All PCs were connected through serial com-
munication (RS-232) interface for synchronization purposes.
EMG signals were recorded using single differential surface
EMG electrodes (DE-2.1, Delsys Inc.). The signals were
acquired and conditioned using an EMG system (Bagnoli-
16, Delsys Inc).
The digitization and acquisition was done using a signal
acquisition board (NI-DAQ 6036E, National Instruments).
The position tracking system (Isotrak II, Polhemus Inc.),
was connected with one of the Linux PCs through serial
communication (RS-232). The size of the position sensors is
2.83 (width) x 2.29 (length) x 1.51 (height) cm.

Since the robot and the user have links with different
lengths, the direct control in joint space would lead the
robot’s end-effector to a different position in 3D space than
the desired by the user. Consequently we use the forward
kinematics of the human arm to compute the user’s end
effector position from the estimated joint angles.

Fig. 2: Block diagram of the proposed learning scheme.

In order for the robot to be able to position its end
effector at the same point in 3D space, we solve the inverse
kinematics for the robot arm to drive its end effector to the
same position as described in [23]. As far as the control of
the remaining two DoFs of the PA10 robot arm (two (2)
DoFs for the wrist) and the 15 DoFs of the robot hand is
concerned, we can directly use the estimated joint angles of
the human wrist and the human hand. More precisely, given
the fact that each finger of the robot hand has only three
DoFs (the last two joints of each robotic finger are coupled)
we only use the estimated values of the 2nd joint, overriding
the estimated 3rd joint values for each finger.

III. RESULTS

In this section we present the results of the learning
scheme. Random forests regression provided the best task-
specific motion-estimation models, outperforming in all
benchmarks the results of other previously used methods.

A. Classification results

In order to assess the classification methods accuracy, we
define the success rate as the percentage of EMG data points
classified to the correct reach-to-grasp strategy. It must be
noted that the classification is done for every acquired EMG
data point, allowing the system to be able to decide in real-
time the grasping task, and even switch between different
tasks online. Finally, we must note that classification
results presented are the average values over the 5 rounds of
the cross-validation method applied. Results of classification
accuracy across different reach to grasp strategies for a
specific position and different objects for Subject 1 are listed
in Table I while classification accuracy across different reach
to grasp strategies for a specific object and different object
positions again for Subject 1 is assessed in Table II. For
details regarding the classification results and how accuracy
evolves over time, the reader should refer to [26].

B. Comparison of different Decoding Methods

The regression problem that we had to solve was to
map using the PCA the low-d space (4 dimensions) of the
myoelectric activity (EMG signals) to the low-d space (4
dimensions) of the kinematics. Then the estimated low-d
kinematics were back-projected to the high-d space.



TABLE I: Classification accuracy across different reach to grasp strategies
for a specific position (Pos III) and different objects for Subject 1, using
Random Forests (RF) and Random Forests with Majority Vote Criterion
(RF with MVC)

Methods Objects
Mug Marker Rectangle

RF 89.92% 88.51% 86.26%
RF with MVC 100% 100% 100%

TABLE II: Classification accuracy across different reach to grasp strategies
for a specific object (Marker) and varying object position for Subject 1, using
Random Forests (RF) and Random Forests with Majority Vote Criterion (RF
with MVC)

Positions RF RF with MVC
Pos I 87.03% 100%
Pos II 91.61% 100%
Pos III 90.51% 100%
Pos IV 86.25% 100%
Pos V 92.61% 100%

More specifically we performed Multiple Linear Regres-
sion (MLR), we created a State-Space model as described
in [18], we performed SVM regression with RBF kernel and
we contructed a single hidden layer Neural Network with
ten (10) hidden units, trained with the Levenberg-Marquardt
backpropagation algorithm. Finally we used Random Forests
as a regression technique, growing ten (10) decision trees in
order to increase computational efficiency.

As far as the estimation accuracy is concerned we com-
pare the methods for estimating reach-to-grasp movements,
towards different positions and different objects placed at the
same position.
TABLE III: Comparison of different methods and estimation results, for
specific position (Pos III) and specific object (Marker), for Subject 1.
Average values for different validation set splittings.

Method Arm Joints Hand Joints
Similarity (%) Similarity (%)

MLR 81.60% 84.31%
State Space 82.74% 85.10%

ANN 85.10% 86.92%
SVM 86.01% 88.90%

Random Forests 86.93% 90.42%

As it can be seen in Table III random forests outperform
the performance of the most well-known regression tech-
niques such as the Support Vector Machines (SVM) and the
Artificial Neural Networks (ANN). In order to compare the
different classifiers a standard PC with an Intel(R) Core(TM)
I5 CPU 611 @3.33GHz was used, equipped with a 4GB
RAM (DDR3) Memory. The benchmark was performed
using the computing environment MATLAB (Mathworks).

As far as the training time is concerned, we also choose
to compare the aforementioned models in terms of time
required for training, applying the various methods to reach-
to-grasp movements included in a separate dataset, that
serves as a benchmark.

As it can be seen in table IV, Random Forests outperform
also most other techniques, in terms of speed of execution.

C. Combined Arm-Hand System Model Results

In this subsection we present the estimation results for
the Random Forests models that have been triggered by the
learning scheme.

TABLE IV: Time spend for the training procedure across different methods
for a specific dataset (10000 samples) that serves as a benchmark (Average
Values).

Method Time in sec.
MLR 0.0054 sec

State Space 8.65 sec
ANN 28.83 sec
SVM 27.72 sec

Random Forests 5.89 sec

Results are presented in Table V, Table VI and Table VII,
where we can see that the models trained for each position
or object separately, outperformed the general models built
for all positions (for a marker) and all objects (placed in a
specific position). We can further notice that the estimation
results were usually better in the case of the human arm than
in the case of the human hand.

This is an interesting finding, which supports the ap-
plicability of our method, since precisely positioning the
end-effector is much more important than the placement
of the fingers, in teleoperation studies. Table VII compares
estimation accuracy of Random Forests for reach-to-grasp
movements towards a specific position and object across
all subjects. Fig. 3 compares the estimated user’s end-
effector position, versus the ground truth captured during
the experiments.

In order to compute the similarity between the estimated
and the captured human kinematics we use the criterion:
Similarity(%) = 100(1 − RMS(qc − qe)/RMS(qc))% where
RMS is defined by:

RMS(qc −qe) =

√
∑n

i=1 (qc −qe)
2

n

where qc are the captured joint values, qe are the estimated
joint values and n is the number of samples. The similarity
criterion is averaged among all different joints.

TABLE V: Estimation Results for the Random Forests based model for a
specific object (Marker) across all five (5) object positions, for Subject 1.

Position Arm Hand
Similarity (%) Similarity (%)

Pos I 83.78% ±4.01% 83.43% ±13.77%
Pos II 88.80% ±3.98% 86.60% ±15.02%
Pos III 86.93% ±3.95% 90.42% ±10.47%
Pos IV 89.47% ±6.25% 83.73% ±16.12%
Pos V 91.53% ±6.57% 89.04% ±10.09%
ALL 80.19% ±7.32% 81.15% ±16.24%

TABLE VI: Estimation Results for the Random Forests based model for a
specific position (Pos III) and all three (3) different objects, for Subject 1.

Object Arm Hand
Similarity (%) Similarity (%)

Marker 86.93% ±3.95% 90.42% ±10.47%
Rectangle 87.76% ±4.13% 82.33% ±12.31%

Mug 89.62% ±5.13% 83.52% ±13.57%
ALL 83.26% ±7.2% 80.47% ±11.72%

TABLE VII: Estimation Results for the Random Forests based model for
specific position (Pos III) and specific object (rectangle), for all Subjects.

Subject Arm Hand
Similarity (%) Similarity (%)

Subject 1 87.76% ±4.13% 82.33% ±10.47%
Subject 2 85.91% ±6.21% 81.59% ±11.78%
Subject 3 89.44% ±4.30% 84.93% ±14.93%
Subject 4 87.32% ±5.34% 85.28% ±10.16%
Subject 5 82.11% ±7.79% 80.54% ±16.32%
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Fig. 3: End effector position estimation. Straight lines represent the captured
axis values, while the dashed lines represent the estimated.

Fig. 4: Simulated paradigm of the EMG-based teleoperation.

D. Simulation
The method described above was used for the simulated

EMG-based teleoperation of a robotic arm hand system. The
model of the DLR HIT Hand II was used together with
the model of the Mitsubishi PA-10 robot arm in the Open
Robotics Automation Virtual Environment (OpenRAVE).

A real-time communication protocol supported by Matlab
was used for the control of the robot arm hand system
by EMG-recordings. Fig. 4 shows a comparison between
the human and the teleoperated robotic arm-hand system
performing reach-to-grasp movements towards a target.

IV. CONCLUSIONS AND DISCUSSION

In this paper, a learning scheme for the EMG-based
teleoperation of a robotic arm-hand system in reach-to-grasp
movements in 3D space, was proposed. EMG signals were
used for extracting kinematic variables (i.e. joint angles) to
control the anthropomorphic arm-hand system in real time.

The learning scheme helped us discriminate between dif-
ferent reach-to-grasp strategies while a switching mechanism
triggered a strategy-task specific decoding model in order to
achieve better estimation results for the discriminated task.

Following this approach we split the task-space and con-
front using task-specific models, the greatest problem that
derives from the non-linear relationship between the EMG
and the kinematics, the incompetence of general models to
describe sufficiently the aforementioned relationship.
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