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ABSTRACT
Electromyographic (EMG) processing is an important re-

search area with direct applications to prosthetics, exoskeletons
and human-machine interaction. Current state of the art decod-
ing methods require intensive training on a single user before
it can be utilized, and have been unable to achieve both user-
independence and real-time performance. This paper presents
a real-time EMG classification method which generalizes across
users without requiring an additional training phase. An EMG-
embedded sleeve quickly positions and records from EMG sur-
face electrodes on six forearm muscles. An optimized decision
tree classifies signals from these sensors into five distinct move-
ments for any given user using EMG energy synergies between
muscles. This method was tested on 10 healthy subjects us-
ing leave-one-out validation, resulting in an overall accuracy of
79± 6.6%, with sensitivity and specificity averaging 66% and
97.6%, respectively, over all classified motions. The high speci-
ficity values demonstrate the ability to generalize across users,
presenting opportunities for large-scale studies and broader ac-
cessibility to EMG-driven applications.

INTRODUCTION
Electromyography (EMG) has been studied extensively in

the past three decades due to its ability to non-invasively mea-
sure muscle activation. These signals have been used to decode
intended joint motions with direct applications to prosthetics [1],
exoskeletons [2], robot teleoperation [3–7] and even new meth-
ods for human-machine interfaces [8]. Despite rapid advances
in these applications over the last decade, EMG signal process-
ing contains many challenges. Among these challenges are sig-

nal changes with respect to muscle (motor unit) density, EMG
sensor placement, age, fatigue, joint orientation and different
muscle synergies across users [9]. These challenges have so far
contributed to user-dependent state of the art decoding methods,
limiting both their accessibility to the general population and the
ability for researchers to perform large-scale studies on these ap-
plications.

In order for EMG-based applications to be more broadly ac-
cessible and researchers to perform larger studies, the applica-
tions must be generalizable and appealing to the entire popula-
tion. Intense training phases and large learning curves for achiev-
ing optimal decoding are often overwhelming and restrictive for
users whom prefer simpler, more user-friendly designs [10]. Pre-
trained classifiers have been mentioned as a solution to reduce
the learning curve for users using these applications [1]. Despite
the well-documented inter-user variability that has prevented de-
coders from performing well across users [1, 11, 12], Ajiboye et
al. [9] suggest that a sparse set of muscle synergies are user in-
dependent and form a low-level basis for muscle control. Their
results imply that EMG signals can be used to decode basic non-
precision movements with a user-independent classifier.

Many previous works have explored hand motion classifi-
cations with varied potential for user-independent performance.
Hand motion decoding algorithms commonly use user-specific
neural networks [13] or support vector machines (SVM) [11] to
train a classifier. In [11], the authors use support vector machines
to classify opening and closing of fingers. Although this method
achieved session independence (i.e. a single user can use the
classifier over multiple sessions without re-training), the authors
were unable to achieve user independence. Despite the popular-
ity of neural networks and SVM in the current field, [14] demon-
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strates the use of Random Forests to map EMG signals to dis-
crete tasks. The results suggest this decision tree-type classifier
is more well-suited than the commonly used SVM for multi-class
problems, such as hand motion classification.

A few works have addressed inter-user variability through
real-time neural network training algorithms [15, 16]. However,
the intensive training phase requires complex interactions from
the user, and there is no upper bound on the number of times this
training will need to be refined as the user continues to use the
model. An attempt to remove this intensive training phase was
presented in [12] by adapting new models in real time to a set of
pre-trained SVM models. The results of the study are promising
but inconsistent. Each pre-trained model was developed from
only a single user, where the potential for over-fitting to user-
dependent synergies reduces the probability that the SVM sep-
arates the data along the sparse criteria that may be well-suited
for a general population, as suggested in [9]. The authors in [1]
also explore the idea of training on one user and testing on an-
other using SVM to classify different grasps, but were unable to
obtain consistent results.

Hand motion classification was also considered in [17],
where the root mean square of EMG signals were classified with
Twin SVM. It is unclear whether the robust performance could
be extended across users, but the method suffers from limited real
time application. The root mean square input is calculated over
the entire motion and the SVM is trained on only one sample per
consecutive motion.

The most closely related work to this paper is presented
in [10]. A simple classifier distinguishes commands based on the
activation levels of the flexor and extensor carpi-radialis. These
commands are used for higher level grasping functions where
the commands provide transitions between grasping states. Due
to the simplicity of the classifier, it could be implemented in
real time and applied across users with the only required cali-
bration being an initial maximum voluntary contraction (MVC)
measurement to determine appropriate levels of contraction for
each state. Although the method showed good results, the clas-
sifier considers each muscle activation independently, making it
difficult to extend to motion classification with only two oppos-
ing muscles considered.

This paper presents a novel user-independent classifier con-
sisting of an optimized decision tree to classify a discrete set of
hand and wrist movements in real time on users without requir-
ing a training phase. Rather than considering muscle activations
independently to classify commands as in [10], synergies from
multiple muscles are used to classify activation into a discrete set
of common movements. The classifier model is made to be sim-
plistic and robust to inter-user variability by capturing the sparse
set of synergies common across the general population. Six fore-
arm muscles are identified as having consistent synergies across
users for a set of five common hand motions: grasping, wrist ex-
tension, wrist flexion, index finger pointing, and pronation. A
skeleton decision tree is created using biological principles of
muscle activations for each motion, and the thresholds on each

tree node are optimized based on a training database. By training
on multiple users, the classifier is robust to inter-user variabil-
ity, and can perform decoding in real time on previously unseen
users with only a quick calibration needed to record MVC mea-
surements on the muscles.

METHODS
Initially, the set of muscles to be recorded was decided. This

selection was based on anatomical figures and information on the
role of individual muscles to hand motions [18]. In a prelimi-
nary experiment, EMG signals were recorded from a small set of
subjects A = {a1, . . . ,aM},M = 4, and closely examined for the
different hand motions. After pre-processing the raw data and ex-
amining the nature of the signals, reliable muscles and motions
were selected as a basis for the EMG-based classifier. These ob-
servations were used to construct the skeleton decision tree for
the classifier, and decision-based parameters were optimized us-
ing a cost function via regularized gradient descent on a training
database B = {b1, . . . ,bN},N = 10, A∩B = /0.

EMG Preprocessing
Before any type of decoding or analysis takes place, the raw

EMG data undergoes a pre-processing stage that is commonly
used in the field of electromyography, in order to compute the
linear envelope of the signal [19]. The linear envelope performs
full-wave rectification of the raw signals and then passes them
through a low pass filter (2nd order Butterworth, cut-off fre-
quency of 8 Hz). This process allows the data to be more easily
interpreted, as well as makes the beginning and ending of each
motion more identifiable. After the linear envelope, the EMG
signals for each muscle are normalized with respect to each mus-
cle’s MVC level [18].

Decision Tree Skeleton
After analyzing the EMG data in A collected from several

forearm muscles during various hand motions, five unique mo-
tions were chosen to be the focus for the classifier: wrist exten-
sion, wrist flexion, grasping, pronation and index finger exten-
sion. The selection of the discrete motions is based on the fact
that they are very common across every-day life tasks, and there-
fore can be useful for future users, e.g. hand amputees.

The forearm muscles demonstrating the most promise for
accurate and robust ability to generalize were narrowed down
to six: the Extensor Digitorum (ED), Extensor Carpi Ulnaris
(ECU), Flexor Carpi Radialis (FCR), Flexor Carpi Ulnaris (FCU)
and the Pronator Teres (PT). The muscle signals were consistent
between subjects and noticeably significant during their expected
biological function, providing support for their anatomical place-
ment and reliability in the classifier. Table 1 shows the muscles
chosen and their known involvement in hand motions based on
research in kinesiology and biology [18].

A wearable sleeve with six wireless EMG electrodes (Trigno
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Table 1. SELECTED MUSCLES AND PRIMARY FUNCTIONS [18].

Muscle Primary Function

Extensor Digitorum Wrist\Finger Extension

Extensor Carpi Ulnaris Wrist Extension,
Ulnar Deviation

Flexor Carpi Ulnaris Wrist Flexion\Abduction,
Ulnar Deviation

Flexor Carpi Radialis Wrist Flexion,
Radial Deviation

Pronator Teres Forearm Pronation

Flexor Digitorum Superficialis Wrist\Finger Flexion

Figure 1. The sleeve that was developed allows for fast and precise
placement of six wireless EMG electrodes on the subject’s forearm.

Wireless, Delsys Inc) was developed to allow for easy and pre-
cise placement of the electrodes across subjects. The sleeve is
shown in Fig. 1. The processed EMG signals are fed into a clas-
sifying decision tree that is based off of signal amplitude thresh-
olds and relationships. As one can see in Fig. 2, certain mus-
cles must be showing activation levels beyond a certain threshold
value θk, while other decision criteria involve relating the ampli-
tudes between muscles. These decision criteria evolved from the
observations of the EMG data across subjects in A, in which gen-
eralizable patterns of EMG for each hand motion were sought
out.

Optimization
The original threshold values θ0 were obtained through ob-

serving EMG patterns, as mentioned above; although, since these
threshold values vary slightly between subjects, regularized gra-
dient descent optimization with a nonlinear conjugate gradient
[20] was used to find the optimal threshold values θ̂. The op-
timization algorithm finds the set of parameters θ which mini-

Figure 2. Skeleton decision tree classifier using variable thresholds.

mizes a given cost function J. In the case of the decision tree,
the parameters to optimize are each θk in Fig. 2, and the cost
function to minimize should be a representation of the desired
performance of the decision tree classifier.

To obtain a robust, user-independent classifier, the decision
tree should favor primarily very high specificity, and secondarily
high sensitivity, where specificity is a measurement specifying
the likelihood of not predicting a given motion if the user is not
performing that motion, and sensitivity is a measurement speci-
fying the likelihood of predicting a given motion when the user
is actually performing that motion [21]. This can be achieved by
defining a penalty function φ:

φ(θ,X ,Y ) = M− t p+ f p−0.5tn+0.5 f n (1)

where X is the input vector of EMG amplitudes for all 6 muscles,
Y is the manually classified output, M is the total number of sam-
ples used in the optimization, t p is the number of true positives,
f p the number of false positives, tn the number of true negatives,
f n the number of false negatives formally defined by:

t p(θ,X ,Y ) = ∑i[ψ(θ,Xi) = Yi∧Yi /∈ /0]
f p(θ,X ,Y ) = ∑i[ψ(θ,Xi)¬Yi∧ψ(θ,Xi) /∈ /0]
tn(θ,X ,Y ) = ∑i[ψ(θ,Xi) = Yi∧Yi ∈ /0]
f n(θ,X ,Y ) = ∑i[ψ(θ,Xi)¬Yi∧ψ(θ,Xi) ∈ /0]

(2)

respectively, where ψ(θ,Xi) is the output of the decision tree
classifier on sample Xi with thresholds θ and /0 represents un-
classified motion.

This penalty function places a primary emphasis on reward-
ing correct motion predictions and penalizing incorrect motion
predictions, with a secondary emphasis on rewarding correct de-
tections of unclassified motions and penalizing incorrect predic-
tions of unclassified motions. As a result, higher penalties are
accrued when the classifier misclassifies motions as other mo-
tions rather than unclassified motions. This penalty function is
incorporated into the cost function along with a traditional regu-
larizing component to prevent the optimization from overfitting
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Figure 3. Example classifier output for entire data sequence.

to the training data, resulting in cost function J:

J(θ,X ,Y ) = 1
M φ(θ,X ,Y )+ λ

2M ∑k |θk−θ0k |2
∂

∂θk
J(θ,X ,Y ) = 1

M
∂

∂θk
φ(θ,X ,Y )+ λ

M |θk−θ0k |
(3)

where λ = 1 is the regularization parameter and ∂

∂θk
φ(θ,X ,Y ) is

estimated by evaluating the finite difference on small perturba-
tions of θk. Running nonlinear conjugate gradient descent on J
with inputs from training database B results in parameters tuned
for a classifier with very high specificity with robustness to gen-
eralize to unseen subjects, as desired.

RESULTS
The proposed method is evaluated on a set B (7 males, 3 fe-

males, age 22± 3, 9 right-handed, 1 left-handed). The subjects
were instructed to perform each one of the five aforementioned
hand motions for approximately ten seconds each. After the elec-
trode placement, the subjects were asked to go through MVC
testing for each muscle, according to directions found in the lit-
erature [18]. The collected data were pre-processed as described
above and then stored in B. To support the user-generalizability
sought after in this study, the evaluation was performed using
leave-one-out validation. For each bi ∈ B, the classifier is first
trained on the set {b j ∈ B, j 6= i} to include all subjects except bi.
Then the optimized classifier is tested on data from bi to measure
classifier performance and generalizability. An example predic-
tion sequence is shown in Fig. 3.

As shown in Table 2, the accuracy of the classifier with op-
timized threshold values averages around 79% with a standard
deviation of 6.6%. Using sensitivity = t p

f n+t p and speci f icity =
tn

tn+ f p as defined in [21], the mean sensitivity and specificity for
all motions and subjects is 66% and 97.6%, respectively. It’s ap-
parent in the metrics that there is significant variability within
motion sensitivity, demonstrating that the classifier predictions
for specific motions are far more accurate for some subjects.
While variability is high in motion sensitivity, there’s much less

Normalized Confusion Matrix of Predictions for All Subjects
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Figure 4. Normalized confusion matrix for all subjects tested with leave-
one-out validation.

Figure 5. Snapshot of the EMG-based real-time control of the virtual
hand.

variability within motion specificity, demonstrating the ability of
the classifier to avoid making incorrect motion prediction, as de-
sired. The confusion matrix for all predicted motions is shown
in Fig. 4, which demonstrates that grasping is often confused
with extension and flexion. This is most likely linked to the ten-
dency of a few subjects to slightly flex or extend the wrist while
grasping, but much of this classifier confusion can be avoided by
providing visual feedback in real time, as would occur in a real
application.

The system was also tested with a real-time control
of a simulated hand using the EMG signals and the classi-
fier. The setup is shown in Fig. 5. It is worth mentioning
that the performance of the system is far much better when
the subject has real-time visual feedback of the classi-
fier’s results, suggesting the positive effect of both the high
specificity and the cognitive embodiment of the system dy-
namics. A video of the real-time experiment can be found at
http://horc.engineering.asu.edu/HORC/Research files/EMG.mp4.
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Table 2. LEAVE ONE OUT VALIDATION RESULTS

Subject # 1 2 3 4 5 6 7 8 9 10 Mean SD

Overall Accuracy (%) 79 83 77 82 85 69 80 91 72 73 79 6.6

Grasp Sensitivity (%) 73 42 97 77 44 9 29 86 85 92 63 30.1

Grasp Specificity (%) 99 100 99 94 100 100 99 100 94 98 98 2.4

Extension Sensitivity (%) 94 80 93 36 99 0 36 98 9 90 63 39.0

Extension Specificity (%) 93 99 99 100 91 100 100 98 98 100 98 3.1

Flexion Sensitivity (%) 78 94 17 43 87 17 85 91 94 23 63 33.7

Flexion Specificity (%) 100 99 100 98 100 100 94 100 97 100 99 1.9

Pronation Sensitivity (%) 61 92 86 96 87 89 84 77 36 97 81 18.9

Pronation Specificity (%) 100 100 96 99 100 95 100 100 100 94 98 2.3

Index Sensitivity (%) 79 97 36 74 99 13 65 89 0 46 60 34.9

Index Specificity (%) 92 89 87 99 95 100 97 98 93 98 95 4.4

CONCLUSION
This paper introduced a method for classifying EMG signals

from several forearm muscles into five distinct hand motions.
The main novelty of the study lies on the fact that the classi-
fier generalizes across subjects, performing accurately without
any necessary individualized training phase for a particular sub-
ject. The classifier achieves an overall accuracy of 79± 6.6%,
with sensitivity and specificity averaging 66% and 97.6%, re-
spectively, over all classified motions when testing on subjects
that were not included in the training phase of the algorithm.
The high specificity and overall accuracy demonstrate the robust-
ness of the algorithm to generalize to a larger population. These
results present opportunities for large-scale studies with EMG
processing, leading to broader accessibility to EMG driven ap-
plications for the general population.
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