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ABSTRACT

Electromyographic (EMG) processing is a vital step towards
converting noisy muscle activation signals into robust features
that can be decoded and applied to applications such as pros-
thetics, exoskeletons, and human-machine interfaces. Current
state of the art processing methods involve collecting a dense set
of features which are sensitive to many of the intra- and inter-
subject variability ubiquitous in EMG signals. As a result, state
of the art decoding methods have been unable to obtain subject
independence. This paper presents a novel multiresolution mus-
cle synergy (MRMS) feature extraction technique which repre-
sents a set of EMG signals in a sparse domain robust to the in-
herent variability of EMG signals. The robust features, which
can be extracted in real time, are used to train a neural network
and demonstrate a highly accurate and user-independent clas-
sifier. Leave-one-out validation testing achieves mean accuracy
of 81.9£3.9% and area under the receiver operating character-
istic curve (AUC), a measure of overall classifier performance
over all possible thresholds, of 92.4£8.9%. The results show the
ability of sparse MRMS features to achieve subject independence
in decoders, providing opportunities for large-scale studies and
more robust EMG-driven applications.

INTRODUCTION

Over the last three decades, quantifying and interpreting
muscular activity has become a vital step in the advancement
of prosthetics and exoskeletons [1,2], and recently in new appli-
cations of teleoperation [3] and human-machine interfaces [4].
Electromyography (EMG) has emerged as the frontrunner for
detecting this activity due to its ability to collect signals non-

invasively from the surface of the skin. Despite recent advances
in EMG technology to eliminate electromagnetic noise from ex-
ternal sources, EMG signal processing presents many challenges
due to both intra- and inter-user variability. Intra-subject vari-
ability is caused by factors such as muscle (motor unit) density
changes, EMG sensor placement, fatigue, and joint orientation.
Inter-subject variability is caused by factors such as age, mus-
cle density, scar tissue, and different muscle synergies across
users [5]. These challenges have so far contributed to state of the
art EMG processing and decoding methods designed around a
small select group of subjects to eliminate the influence of many
of these factors. As a result, a majority of applications involving
EMG processing are individualized to specific users and require
intense training phases before they can be used effectively [1].
In order for EMG-based applications to become more ac-
cessible for larger studies and use, robust and user-independent
EMG processing techniques must be developed. A typical de-
coding sequence in state of the art methods consists of four steps:

1. Preprocessing to de-noise and normalize the EMG signal.
2. Extracting information, or features, from the signal.

3. Training the decoder with a machine learning technique.
4. Testing the decoder in a real-time application.

EMG Feature Exraction

The extraction step is vital to the success of the decoder, as
it must convert the raw signal into a descriptive input that allows
the machine learning algorithm to distinguish robust patterns for
decoding. Many such inputs have been considered in the litera-
ture, most of which can be classified into three categories: statis-
tical moment, time domain, and frequency domain features [6].
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Statistical moments, such as variance, skewness, and kurto-
sis, provide information about the general structure of the EMG
signal. These have shown to be effective descriptors to descrim-
inate in cases of constant, isometric movements, but far less re-
liable in dynamic environments, where EMG signal structures
are constantly changing with motion [6]. A few other statistical
measures have been proposed based on information theory, such
as various entropy measures. These have shown to be reliable
descriptors for classifying motions within a single user’s motion
patterns, but they are also reliant on periods of time invariance
and their computational complexity prevents them from being
applied in real time [7].

Time domain features, such as mean absolute value and root
mean square are based on signal amplitudes. While these fea-
tures have shown to be effective representations for the relation-
ship between EMG and force, they are hindered by their inher-
ent inter-subject variance [6]. Using amplitude-based features
typically requires a normalization step to measure muscular con-
traction levels with respect to the maximum voluntary contrac-
tion [8], making the resulting decoder very sensitive to changes
in muscle mass or other factors which would effect the activa-
tion levels of muscles. In addition, the amount of information a
single amplitude signal provides is dependent on the amount of
smoothing used to obtain stable features. More smoothing (i.e. a
lowpass filter with a smaller cutoff frequency) gives more robust
features, but at the expense of less time resolution, greater delay
and often no real time capabilities [9].

Frequency domain features, such as zero crossings, slope
sign changes, and waveform length, provide information about
the rate of motor unit action potentials. While these have shown
to be useful descriptors for predicting motion from time vary-
ing EMG signals [3], they suffer from an inherent inability to
consider time as part of the descriptor. A workaround for this
limitation is to use a sliding window to calculate frequency do-
main features in a given interval of time. This incorporates both
time and frequency in the descriptor, but also adds limitations to
both the time and frequency resolutions dependent on the size
of the window [10]. Small windows will give better resolution
in time, meaning changes in frequency can be better associated
with a specific time interval, but are limited in distinguishing low
frequency information. The opposite is true for larger windows,
which achieve better resolution in frequency at the expense of
determining the moment in time a given frequency exists. This
complexity has kept time domain features the most popular in
current literature, and contributed to the high amount of subject-
dependent decoders despite several attempts at achieving user-
independence [2, 11, 12]. The apparent but rather unexplored so-
lution to achieving robust and descriptive EMG features may lie
in the wavelet transform.

Wavelet Transform

The wavelet transform provides means to extract descrip-
tive frequency information while maintaining good resolution in

both time and frequency. Moreover, this information is provided
in a sparse domain which makes the features more robust against
EMG variability than the dense sets of features listed above. Us-
ing a multiresolution approach [13], the wavelet transform pro-
vides features at varying resolutions in time, with inversely pro-
portionate frequency resolution at each level. This approach has
been used extensively in both image and audio processing for
applications in recognition, de-noising and compression [14,15],
but it has not yet met its potential in the EMG processing field.

A few recent studies have incorporated wavelets into EMG
processing. Ahsan et. al. [16] utilize wavelets to effectively de-
noise EMG signals for further processing. Other works have
incorporated wavelet features as inputs for a classifier. Liu et.
al. [17] use multiresolution analysis along single EMG channels
and extract the singular value decomposition as input to support
vector machines. A similar approach is used in [18], where the
wavelets are used to create autoregressive models and trained in
a neural network. Xiao et. al. [19] extract entropy measures
from wavelet transforms to directly distinguish between prona-
tion and supination motions. In [20], wavelet coefficients from
multiple EMG channels were thresholded to distinguish between
sitting and standing motions. Wavelets were also used with prin-
cipal component analysis and sequential forward selection for
dimensionality reduction to train a neural network and Bayesian
classifier to control a computer mouse from EMG signals [4].

All of the above approaches yield great user-dependent clas-
sification results, but none of them encapsulate the full power of
wavelets. The wavelet transform, as with the fourier transform,
is separable when applied across multiple dimensions [13]. This
separation makes wavelets well-suited for 2D processing, and
also enables wavelets to provide an even more robust measure-
ment of EMG signals: through a 2D multiresolution analysis
of multiple EMG signals. Such an analysis is able to capture
changes in muscle synergies at multiple time resolutions, mak-
ing it well suited for detecting the sparse sets of robust muscle
synergies common across the general population, as suggested
in [5].

Contribution

The contribution of this paper is twofold. Firstly, it intro-
duces a novel multiresolution muscle synergy (MRMS) feature
extraction method that represents EMG synergies across muscles
in a sparse domain. These features are extracted using wavelet
multiresolution analysis across two dimensions—time and mus-
cles—in order to robustly represent the synergies of muscles at
multiple resolutions. To the best of the authors’ knowledge, no
other paper has considered using multiresolution analysis to ob-
tain feature descriptors which capture information about muscle
synergy. The second contribution of this paper is the demonstra-
tion of subject-independent decoders using traditional machine
learning techniques based on the robust features provided by
the multiresolution muscle synergies. The analysis naturally en-
capsulates the traditional first pre-processing step, removing any
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subject-dependency on MVC or delays caused by instense de-
noising. As a result, the features can be extracted from a signal
in real time and across subjects without modifying any parame-
ters. To date, no known EMG decoder has been able to achieve
both real-time capabilities and consistent results when tested on
users who were not involved in the training process.

The rest of this paper is organized as follows. The Method
Section describes the process of extracting the MRMS features,
as well as the neural network setup used to train a decoder. The
Results Section outlines the testing procedure and presents the
results of testing on unseen users. Finally, the Conclusion Sec-
tion summarizes and discusses the main findings of this study.

METHOD

Multiresolution muscle synergy analysis is performed us-
ing the discrete wavelet transform (DWT) and Mallat’s algo-
rithm [13] along two dimensions. With real time performance
in mind, a select set of features are extracted from each level
of the resulting wavelet coefficients to provide a set of features
describing only the most recent muscle synergies at each resolu-
tion. The resulting features are converted into a sparse vector for
each time sample to be used as input to a backpropagation neural
network. The neural network is then able to detect synergy pat-
terns associated with different motions across subjects to form a
robust EMG decoder.

Multiresolution Muscle Synergy Analysis

MRMS analysis consists of a specialized 2D DWT that runs
along the dimensions of time and muscles. If N EMG channels
are recorded for M time samples, the data can be arranged in a
MxN matrix Z representing EMG signal over time and across
channels. This matrix can in turn be transformed into multireso-
lution wavelet coefficients using the 2D DWT. The procedure for
1D DWT has been well documented, and the interested reader
can refer to [4, 13] for details. A general review is supplied here
for completeness.

The wavelet transform is a spectral estimation technique
similar to the fourier transform in that the signal is decomposed
into an infinite set of scaled functions [4]. The main difference
is that wavelets are finite in the time domain and scaleable, lead-
ing to a multi-scale decomposition. Multiresolution analysis can
be obtained by applying a signal x through two sets of filters at
level i. Filter g[n] is the discrete wavelet function, and acts as a
high-pass filter. Filter h[n], is traditionally the biorthogonal coun-
terpart to g, acting as a low-pass filter [4]. Convolving x with
h[n] = h|—n] and downsampling results in a level i + 1 subspace
of x, Vi11, with approximation coefficients a; ;. Vi1 has an or-
thogonal complement W, | that is the downsampled convolution
of x with g[n] = g[—n], producing level i + 1 detail coefficients
di+1. Repeating this process on V;;| results in V4, and its or-
thogonal complement W;,,. Thus W;,, is orthogonal to W,
and after infinite levels the original signal can be represented in
a sparse domain of detail coefficients from each level.
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Figure 1. The 1 Level 2D wavelet transform.

The 2D wavelet transform, as described in [13] is separa-
ble, meaning the process above can be applied to one dimension
(rows) and then the other (columns), as shown in Fig. 1. The
result is four distinct combinations of approximation and detail
coefficients along each dimension. In the case of matrix Z, the
decomposition along the rows represents information about sig-
nal structure, and decomposition along the columns represents
muscle synergies. Along the time domain, only the detail coef-
ficients are important, as they represent the frequency changes,
so the focus of the multiresolution muscle synergy features is on
obtaining a robust and sparse set of DA; and DD;. In accordance
with the literature, with EMG sampled at 2KHz, 7 levels of de-
composition are used along the rows to obtain detail coefficients
roughly in the range of the majority of the energy of EMG sig-
nals (6-500Hz) [21]. A buffer of the latest 1000 samples is kept
to perform the decomposition. The Daubechies wavelet with 4
vanishing moments (db4) is selected for the decomposition due
to its good resolution in both time and frequency. After decom-
position, only the most recent set of coefficients at each level
are kept as features for the latest sample. This process is shown
in Fig. 2 on a 6 level decomposition, where the grayed regions
indicate discarded coefficients for the current sample. The re-
gions that are kept correspond to the latest 4 coefficients at each
resolution, giving each datapoint a relative history ranging from
2ms-256ms at resolutions ranging from 2ms-64ms, with a denser
proportion of information provided at more recent time due to
the nature of the level resolutions. This time interval and den-
sity is also consistent with findings that indicate EMG signals
are activated 50-100ms before motion, depending on the muscle
in question [8]. Note that both the first decomposition and end
approximation coefficients are completely discarded to remove
noise and potential amplitude-dependent features, respectively.

After obtaining the relevant detail coefficients along each
row, the transform is applied across the second dimension to en-
code muscle synergies at each resolution. The Haar wavelet is se-
lected for this part of the decomposition due to its derivative-like
behavior, and both approximation and detail coefficients are kept
to maximize the amount of information provided by the muscle
synergies at each resolution. The result is a (6 x4)N sparse fea-
ture vector X containing multiresolution muscle synergies which
can be calculated in 4 — 7ms.
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Figure 2. Example 1D 6 level DWT. The top plot shows the original sig-
nal, and each consecutive plot below shows the detail coefficients Dn
resulting from the wavelet transform at level n. The shaded region repre-
sents discarded coefficients when extracting features at time 1000ms.

Neural Network Classifier

A backpropagation neural network classifier is used to train
on X. The neural network is chosen because it is well suited for
multi-class problems and detecting patterns in sparse domains.
The two major critiques against neural networks, slow training
time and overfitting to training data [9], are made obsolete by
training the system to be subject-independent with the robust set
of MRMS features and adding large regularization parameters to
the logit backpropagation algorithm, respectively. A one hidden-
layer network is formed with 18 nodes in the hidden layer. Us-
ing one layer helps prevent the neural network from overfitting
to training data, making it more likely to detect the sparse set
of user-independent synergies suggested in [5]. The network
is trained using logit backpropagation with heavily regularized
nonlinear conjugate gradient descent (A = 10) [22] used to opti-
mize the weights connecting each node, resulting in an optimized
linear combination of weighted sums of sigmoids:
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where L = (6 x4)N is the size of X, G is the sigmoid function:

1
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each w is an optimized weight connecting nodes in the network,
k=1,...,K and K is the total number of outputs. An additional
benefit of the neural network is its computationally efficient pre-
diction time, which combined with the computation time of the
MRMS features allows predictions within 10ms of obtaining the
signal, leaving room for additional high-level controllers without
presenting a noticeable delay to the user.

Table 1. SELECTED MUSCLES AND PRIMARY FUNCTIONS [8].

Muscle Primary Function

Extensor Digitorum Wrist\Finger Extension

Extensor Carpi Ulnaris Wrist Extension,

Ulnar Deviation

Flexor Carpi Ulnaris Wrist Flexion\ Abduction,
Ulnar Deviation
Flexor Carpi Radialis Wrist Flexion,

Radial Deviation
Pronator Teres Forearm Pronation

Flexor Digitorum Superficialis ~ Wrist\Finger Flexion

RESULTS

The MRMS features are evaluated by their ability to pro-
vide robust features to develop a user-independent classifier. The
backpropagation neural network described in the previous sec-
tion is used as a decoder whose performance is tested with a pre-
existing database B = {by,...,by},N = 10 (7 males, 3 females,
age 22 + 3, 9 right-handed, 1 left-handed) associating EMG sig-
nals from six forearm muscles with five discrete hand motions
(grasping, wrist extension, wrist flexion, forearm pronation, and
index finger pointing). The muscles recorded by the EMG and
their primary functions are given in Table 1. During data col-
lection, subjects were instructed to alternate between resting and
each the five motions for 10 seconds per motion. EMG electrodes
(Trigno Wireless, Delsys Inc) recorded the EMG signals at 2KHz
during all motions. To evaluate user-independent performance,
leave-one-out validation was performed with B. For each b; € B,
the neural network is first trained on the set {b; € B, j # i} to in-
clude data from all subjects except b;. Then the trained network
is tested on data from b;. The metrics used to evaluate classifier
performance are discrete prediction accuracy and Area Under the
Curve (AUC) measurements for each subject [23].

AUC measurements are a measure of overall classifier per-
formance when the output is probabilistic rather than determin-
istic, as in the case of the neural network. Detailed in [23],
a Receiver Operator Characteristic (ROC) plot depicts overall
classifier performance over all possible thresholds. To gener-
ate a ROC plot, a threshold is used to binarize the classifier
output for each class. The threshold iterates from O to 1 in n
steps, and at each iteration, a point on the plot is calculated
as (1 — specificity, sensitivity), where specificity = Infkinfp and
sensitivity = ; ptff —. In words, specificity is the number of cor-
rect negative classifications ¢n over the total number of negative
examples (tn+ fp), and sensitivity is the number of correct pos-
itive classifications ¢ p over the total number of positive examples
(tp+ fn). Thus, the ROC plot provides a visual reference how
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Figure 3. Example ROC plot and visualization of AUC measurements
during leave-one-out validation.

well the classifier can detect a condition when it is present ver-
sus how well it can detect the absense of a condition when it is
not present. AUC is the area under the ROC plot, with 1 a per-
fect score, 0.5 equivalent to random guessing, 0.85 a moderate
classifier, and 0.95 regarded as a highly effective classifier.

An example ROC plot from leave-one-out testing on sub-
ject 10 is shown in Fig. 3 for reference. This plot is selected to
demonstrate how the AUC measurement provides an informative
measure for classifier performance. In the plot, both grasping and
extension come closest to reaching perfect classification (i.e. al-
ways detecting the motion when it is present and never predicting
it when it is not, at a given threshold). Index pointing is the low-
est curve indicating a weaker performance with respect to other
motions (i.e. does not detect the motion as often and more regu-
larly detects the motion when it is not present). This is reflected
in the AUC for each motion, as grasping and extension are nearly
1, and index pointing receives the lowest AUC at 0.886, which is
a moderate performance classifier.

Table 2 shows the results of leave-one-out validation on all
10 subjects. The mean AUC over all subjects and all motions
is 92.4 £+ 8.9, verifying the effectiveness of the decoder on data
from unseen subjects. In 85% of the individual cases, the result-
ing classifier would be considered better than moderately effec-
tive. To provide a metric more commonly used in the literature,
accuracy is measured by thresholding the output of the classifier
on a random threshold between 0.1 and 0.5 for each subject and
each motion. The mean accuracy is 81.9 + 3.9, when evaluated
on every datapoint in the database. The high accuracy and low
standard deviation show the robustness of the MRMS features
across subjects. To consider the effectiveness of the classifier
only in cases when motion was present, a normalized confusion
matrix is shown in Fig. 4. The confusion matrix indicates that
flexion and index pointing are confused with pronation for some
subjects, but overall motions are detected between 65 —95% with
no confusion on the randomly selected threshold. These results,
and the real time capabilities of the extraction method, suggest

Normalized Confusion Matrix of Predictions for All Subjects

Grasp

Extension|

Flexion|

Real Motion

Pronation|

Index

Grasp Extension Flexion Pronation
Predicted Motion Above Binarv Threshold

Figure 4. Normalized confusion matrix for all subjects tested with leave-
one-out validation.

that a higher level controller and/or visual feedback could smooth
and correct any discontinuities when used in applications.

CONCLUSION

This paper introduces a method for robust EMG feature ex-
traction by mapping EMG signals to a sparse multiresolution
muscle synergy domain. The sparse features are less sensitive
to inter- and intra-subject variabilities, making them well-suited
for inputs to user-independent EMG to motion decoders. Addi-
tionally, the multiresolution analysis removes the need for pre-
processing, allowing the decoder to perform in real time with
less than 10ms delay. The robustness of the features are evalu-
ated on the performance of a backpropagation neural network on
a database of EMG signals mapped to a discrete set of hand and
wrist motions. Using leave-one-out validation to test on subjects
that were not included in the training phase of the neural network,
the decoder achieves mean accuracy of 81.9 +3.9% and AUC
92.4 £+ 8.9% over all motion classifications, validating its effec-
tiveness. These results demonstrate the robustness of the features
to extract meaningful and generalizable features from EMG sig-
nals, opening opportunities for the first user-independent EMG
driven applications.
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