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ABSTRACT
As robots are increasingly used in human-cluttered environ-

ments, the requirement of human-likeness in their movements be-
comes essential. Although robots perform a wide variety of de-
manding tasks around the world in factories, remote sites and
dangerous environments, they are still lacking the ability to co-
ordinate with humans in simple, every-day life bi-manual tasks,
e.g. removing a jar lid. This paper focuses on the introduction
of bio-inspired control schemes for robot arms that coordinate
with human arms in bi-manual manipulation tasks. Using data
captured from human subjects performing a variety of every-day
bi-manual life tasks, we propose a bio-inspired controller for a
robot arm, that is able to learn human inter- and intra-arm coor-
dination during those tasks. We embed human arm coordination
in low-dimension manifolds, and build potential fields that at-
tract the robot to human-like configurations using the probability
distributions of the recorded human data. The method is tested
using a simulated robot arm that is identical in structure to the
human arm. A preliminary evaluation of the approach is also
carried out using an anthropomorphic robot arm in bi-manual
manipulation task with a human subject.

INTRODUCTION
During the last decade, there has been an increasing demand

for robots that can interact, communicate and collaborate with
humans. Robots have moved inside human’s leaving and work-
ing environment, therefore their behavior must shift from purely
robotic to human-like. Application fields ranging from service
robotics (assistive devices, entertainment robots, augmentation
robots) to therapeutic devices (orthotics, prosthetics, rehabili-

tation robots) require human-likeness in robot movements and
efficient human-robot collaboration, in order to achieve seam-
less robot integration in the human environment. Robots have to
move and act in environments designed for humans, and more
importantly use tools for executing tasks designed for humans.

Robot manipulation is a well studied field that has seen re-
markable developments in the last 30 years [1–4]. Moreover,
dual-arm robot manipulation has been widely investigated in the
last decade [5–16]. Nevertheless, it still belongs to the most de-
manding challenges in robotics. Most importantly, this challenge
gains more interest if robots are to become useful in common
household settings which are tailored for human arms and hands.

Interaction and collaboration with humans requires human-
like behavior from the robot side. Such behavior will allow the
human subject to be able to understand robot’s intentions, cor-
relate characteristics (e.g. robot configuration) with task execu-
tion, and seamlessly collaborate with the robot. For this reason
past research has attempted to define laws for biomimetic trajec-
tory planning and robot inverse kinematics [17]. Approaches for
mimicking the human arm movements have been proposed [18]
for everyday life tasks (e.g. drawing, handwriting). There have
been also efforts to generate human-like motion by imitating hu-
man arm motion as closely as possible. In [19], a method to
convert the captured marker data of human arm motions to robot
motion using an optimization scheme is proposed. The position
and orientation of the human hand, along with the orientation of
the upper arm, were imitated by a humanoid robot arm. How-
ever, this method was not able to generate human like motions,
given a desired three dimensional (3D) position for the robot end-
effector. Similarly, most of the previous works on biomimetic
motion generation for robots are based on minimizing posture
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difference between the robot and the human arm, using a spe-
cific recorded data set [20]. Therefore, the robot configurations
are exclusively based on the recorded data set. In this way, the
method can not generate new human-like motion. The latter is
a major limitation for the kinematic control of anthropomorphic
robot arms and humanoids, because the range of possible config-
urations is limited to the ones recorded from humans.

In order to model motion principles of human arm move-
ments, cost functions have been also used in the past [21],
[22, 23]. Hidden Markov Models (HMM) have been used for
modeling arm motion towards robot imitation [24–28], as well as
other unsupervised learning techniques [29–31], however most
of the works are based on cost functions and optimization tech-
niques that drive the robots based on a finite recorded set, while
the models are unable to generalize. Finally, a partitioning of
the human-like motion generation problem has been proposed in
the past [32]. The upper arm joint values are first calculated for
positioning the robot elbow, and then using that, the rest of the
joints are evaluated. Such an approach can not be easily applied
to robots having a kinematic structure different from that of the
human upper limb though.

Although some of the previous studies have investigated the
human arm motion during bi-manual tasks, inter-arm coordina-
tion has not been adequately understood. From the neurophysiol-
ogy point of view, there are many studies that provide evidence
that bi-manual tasks are governed by coordination patterns en-
coded in neural level [33–37]. However, a kinematic coordina-
tion model for bi-manual tasks is still to be defined.

In this paper we focus on the inter-arm (between the two
arms), as well as the intra-arm (within one arm) joint coordina-
tion during bi-manual tasks involving collaboration of the two
arms. More specifically, we model this coordination for a wide
variety of every-day life tasks. Then we use this model for
defining bio-inspired controllers for robots collaborating with
humans. Using data captured from human subjects perform-
ing a variety of every-day life tasks employing their two arms,
we propose a bio-inspired controller for a robot arm. This con-
troller is able to learn human inter- and intra-arm coordination
during those tasks. We embed human arm coordination in low-
dimension manifolds, and build potential fields that attract the
robot to human-like configurations. The method is tested using
a simulated robot arm that is identical in structure to the human
arm. A preliminary evaluation of the approach is also carried out
using an anthropomorphic robot arm in bi-manual manipulation
task with a human subject.

EXPERIMENTAL TOOLS AND TASKS
The experimental trials for this study involved analyzing hu-

man arm motion in bi-manual tasks. To accomplish this, an ac-
tive motion capture system (3D Investigator, Northern Digital
Inc) was utilized to conduct all experiments. A position sensor
suit was designed for individual components which were situated
on the subjects: shoulder, upper arm, forearm, and a hemisphere

Figure 1. Experimental suit equipped with markers on both arms. Trial
of removing cup from bottle is shown.

suit on the hand (situated over the metacarpals). The shoulder
component was designed to sit on the clavicle bone and create
the base reference system as shown in Fig. 1. This limited the
effect of the additional 2 degrees of freedom because of the clav-
icle bone motion. The components had different marker clusters
from one body part to the next but were symmetric from left to
right arm. In total 54 markers were used and considering one
arm: 3 markers on the shoulder, 8 markers on the upper arm, 6
on the forearm, and 10 on the hand (see Fig. 1).

The experimental trials initiated with a calibration phase
which is analyzed below. Then, the experiments to be used for
data analysis included every-day-life bimanual tasks: removing
the lid off a jar, constant contact washing of an object with a
sponge, tying shoelace in common knot, block stacking both
parallel and perpendicular, ripping tape off roll and placing on
surface, removing tape with one hand while manoeuvring with
other hand, dexterously lifting and placing spherical object with
two sticks, and cutting with knife and fork. These experiments
covered a broad range of motion of common daily life tasks.
The tasks performed attempted to maximize full arm movement
and having comparable arm joint motion and contribution. Five
healthy subjects participated in the experiments (4 male, 1 fe-
male, 20±3 years old, 4 right-handed and 1 left-handed).

DATA PROCESSING AND ANALYSIS
In order to track the motion of the upper limbs, we choose

to use the joint angles of the shoulder, elbow and wrist. For do-
ing so, we need to compute the center of rotation of those joints
(see Fig. 2). We compute the centers of rotation using markers
on the rigid bodies of upper arm, forearm and palm respectively.
However, there are cases where some of the markers placed on
those rigid bodies are obstructed from the camera’s view. To
combat this issue, a marker estimation process was created. It
relied on the fact that each element of the position suit created,
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Figure 2. Axes of modeled degrees of freedom and centers of rotations
of the two arms.

comprised of a rigid body, and the markers attached to this body
would not shift with respect to each other. Therefore by cap-
turing one or two frames from the data which had either all, or
through both frames, a combination of all markers of the rigid
body, we can build all the markers’ inter-relationships. These
relationships can be used to estimate a missing marker provided
other markers from the same body are visible.

Biological Joint Centers and Calibration
The centers of rotation of the rigid bodies upper arm, fore-

arm and palm, coincide with the biological joint centers shoulder,
elbow and wrist respectively. We used a calibration experiment,
which required the human subject to attempt to move all joints
simultaneously while capturing the position sensor data from the
suit of markers. Then using a least squares method we were able
to estimate the position of the biological centers with respect to
the rigid body that precedes the kinematic chain of the arm. For
example, we were able to estimate the center of rotation of the
forearm (i.e. the elbow joint), with respect to the upper arm rigid
body. Once these points are computed, they are projected into the
base frame of reference located on the humans shoulder. Having
the 3-dimensional (3D) position of the wrist and elbow, as well
at the 3D position and orientation of the rigid body of the palm,
we are able to analytically give a unique solution to the inverse
kinematic problem, and therefore compute the 7 joint angles of
the upper limb [38]. The Denavit-Hartenberg (DH) parameters
of the kinematic model of the arm that we used are listed in Table
1, where L1, L2, L3 are the length of the upper arm, forearm and
palm respectively1.

METHODS AND PROCEDURES
The idea of cost function minimization has been prevalent

in robotic control since its inception. By penalizing the con-
troller for unwanted manipulated variable moves or controlled
variable locations, the designer may shape the profile and final
output. For the robotic kinematic structure in collaboration with
human users, the proposed solutions must satisfy two necessary
constraints: the desired end-effector position and orientation to

1Offsets in θi are used for having the arm at rest position (pointing down)
when qi = 0, i = 1, . . .7.

Table 1. Arm model D-H parameters

i αi ai di θi

1 90◦ 0 0 q1

2 90◦ 0 0 q2 +90◦

3 90◦ 0 L1 q3 +90◦

4 90◦ 0 0 q4 +180◦

5 90◦ 0 L2 q5 +180◦

6 90◦ 0 0 q6 +90◦

7 90◦ L3 0 q7 +180◦

interact, but also the mimicry of common human configuration.
Only when consideration for both is implemented in the solution
will the human counterpart understand both the interactive ap-
proach and intention of the robotic device. The initial constraint
can be solved easily through common manipulators with suffi-
cient degrees of freedom. The second presents the challenge of
quantifying an abstraction in anthropomorphism. The method
proposed here attempts to shape the common iterative inverse
kinematic solution through potential minimization. From exper-
imental observations, a data-driven probability distribution that
describes inter- and intra-arm joint coordination will be defined.
Then, the probability distribution will be transformed to a poten-
tial field that will drive the robot to anthropomorphic configura-
tions for bi-manual tasks.

Dimensionality Reduction and Inference
Experimental observation of the two arms during bi-manual

tasks represents challenges due to the high dimensionality of the
data. In viewing the kinematic description of both arms, 14 sepa-
rate joint angles should be observed, and inter-related. In order to
reduce the high-dimensionality of the data, we use the Principal
Component Analysis (PCA) [39]. Let

Q =
[
q1 q2 ... q14

]
(1)

represent the n×14 matrix for the data set for all n observations
of the 14 joint angles. After applying the PCA, we concluded that
4 dimensions were enough to represent most of the data variabil-
ity (81%). Therefore the new low-dimensional vector that repre-
sents the 14 joint angles of both arms is given by

σLR = WQ(i) (2)

where σLR is the 4-dimensional vector, W is the 4× 14 matrix
with columns the 4 principal eigenvectors computed through the
PCA and Q(i) a 14-dimensional vector of all joint angles at time
instance i. Similarly, the method was applied to one single arm,
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Figure 3. Correlation matrix across all joints of both arms. Data from
one representative subject are used.

Figure 4. Probability density function, projected in a two-dimensional
space defined by the two principal eigenvectors computed using the PCA
for single (inter-arm) coordination.

for describing inter-arm coordination. Three eigenvectors were
chosen, being able to explain 78% of original variance, and the
low-dimensional representation of the single-arm joint angles σR
is defined. For more details of the application of the PCA in
motion data the reader should refer to [40].

Characterization of inter- and intra-arm coordination
The correlation among joints of the same arm, as well as

across arms, is shown in the correlation matrix in Fig. 3. As
it can be seen, many joints are correlated with each other, and
correlations are evident across arms as well. This correlation is
then represented in low-dimensional spaces as analyzed above.
From this analysis we can build joint probabilities density func-
tions that relate the low-dimensional representation of joint an-
gles. In other words, we construct probability density functions
that model the inter- and intra- arm joint angles correlations. For
visual representation only, Fig. 4 shows the probability density
function (PDF) that describes the two-dimensional representa-
tion of intra-arm coordination across all performed tasks in one
of the subjects. It must be noted that the PDF p(σR1 ,σR2) was

fitted using a Gaussian Mixture Model (GMM) [41,42], in order
to allow further manipulation, e.g. differentiation.

Potential Fields Through Probability Analysis
Driving a robot arm to configurations that were frequently

observed in the human experiments would mean that we need to
command the robot arm with a set of joint angles that lie on the
region of high-probability of the PDF defined above. In order to
do that, we transformed the probability density function f (σ) to
a potential field U (σ), where:

U (σ) =− f (σ)+ fmax (σ) (3)

where fmax (σ) is the global maximum of the PDF. Potential
fields have been used in robotics for a variety of reasons, es-
pecially in obstacle avoidance cases [43]. Here they are used to
drive the robot configurations to regions that were observed in
the human experiments. The way this is done is explained in the
next sections.

Robot Inverse kinematics
The main goal in controlling the robot to collaborate with

the human is not only to drive the end-effector of the robot to a
specific pose xd, but also impose a configuration qR that will be
anthropomorphic, or in other words, obey the inter- and intra-arm
coordination of the human. For this reason, we choose to make
use of the robot arm redundancy and solve the inverse kinematics
iteratively using the block diagram described in Fig. 5. The robot
arm angular velocity vector is given by

q̇R = J†
AKe+

(
I−J†

AJA

)
q̇a +

(
I−J†

AJA

)
q̇b (4)

where JA is the analytic Jacobian of the robot arm, J†
A its pseu-

doinverse, K is a diagonal 7× 7 gain matrix, e = xd− x is the
pose error between the desired pose xd and the current one x.
The terms q̇a, q̇b will cause internal motion of the robot arm, i.e.
joint motion that would not affect the robot end-effector pose.
This is due to the fact that they are multiplied with

(
I−J†

AJA

)
that will project the motion to the null space of the robot Jaco-
bian [38]. These terms are going to be used for imposing an-
thropomorphic characteristics based on the inter- and intra-arm
coordination modeled using the PDFs defined above. It must be
noted that for simplicity we assume that the robot arm has the
same kinematics with the human arm it is replacing, and that the
robot arm replaces the right human arm and collaborates with the
left human arm.

Both q̇a and q̇b terms are computed using the potential
fields UR (σR) and URL (σRL) where σR = WRqR is the low-
dimensional representation of the human right arm configuration,
and σLR = WLR

[
qR qL

]T is the low-dimensional representa-
tion of the human right and left arm configuration. The potential
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Figure 5. Block diagram for iterative inverse kinematics using the
pseudo-inverse Jacobian method and additional null space terms.

Figure 6. Robot motion in the null space where robot arm is re-
configured to meet anthropomorphic configurations. Representation in
the low-dimensional space, using the potential field. Three cases with
different initial conditions are shown.

fields are computed using eq. (3) for the PDFs describing arm
coordination respectively.

In order to capture the intra-arm (right arm) and inter-arm
(right and left arms) coordination characteristics of the human,
the robot is controlled using (4), where the terms q̇a and q̇b are
given by:

q̇a =−ka∇UR (σR) , q̇b =−kb∇URL (σRL) (5)

where ka, kb are positive gains. Equation (5) makes use of the
robot redundancy in order to drive the robot arm to configuration
that not only resemble the replaced right arm (q̇a term), but also
coordinate with the left human arm for bi-manual tasks (q̇b term).

RESULTS
Initially we tested whether the null space terms and the for-

mulation of the potential fields could drive the robot arm to an-
thropomorphic configurations, that would coincide with local
minima of the potential functions. For this reason, we started
the robot from 3 different configurations, represented them in
the low-dimensional space σR, and observed how the term q̇a re-
sulted to robot motion in the null space. Fig. 6 shows the path of

RMSE 1 (rad): 0.014 
RMSE 2 (rad): 0.026 RMSE 1 (rad): 0.033 

RMSE 2 (rad): 0.049

RMSE 1 (rad): 0.046 
RMSE 2 (rad): 0.074

RMSE 1 (rad): 0.00037 
RMSE 2 (rad): 0.00038 RMSE 1 (rad): 0.065 

RMSE 2 (rad): 0.075
RMSE 1 (rad): 0.008 
RMSE 2 (rad): 0.001

RMSE 1 (rad): 0.021 
RMSE 2 (rad): 0.040

Human Joint Motion
Bio-inspired controller (1)
Simple inv. kinematics (2)

Figure 7. Robot motion using the proposed method (bio-inspired con-
troller) and the traditional pseudo-inverse Jacobian method for solving the
inverse kinematics [38], compared to real motion of the replaced human
arm. Root-mean-squared error (RMSE) values are reported. Task: jar lid
removal.

the robot in those 3 cases, where it is shown that the robot was
successfully to regions of low potential, therefore high probabil-
ity based on the human experiments.

The method was tested using a simulated scenario where the
robot arm was controlled to collaborate with the left arm of the
human subject in a jar lid removal scenario. We compared the re-
sulting robot motion with the motion of the right human arm, in
the case the subject was using both his natural arms. Moreover,
we compared the results with a traditional pseudo-inverse Jaco-
bian method for solving the robot inverse kinematics [38]. The
results are shown in Fig. 7. The proposed method outperformed
the traditional inverse kinematics, as it is seen through the mean
squared error of all joints angles, computed with respect to the
ones of the human subject.

However, it must be noted that the goal of the proposed
method is not to always drive the robot arm to specific config-
urations that were observed during the human motion data col-
lection. In fact, our main goal is to create a method that would
guarantee anthropomorphism in the robot arm motion, and would
be able to generalize to motion not seen during the training phase
with the human subject. Using the proposed potential field for-
mulation, we drive the robot arm to anthropomorphic configura-
tions, as these are characterized by the fitted PDFs. Where this
method demonstrates its effectiveness is when the initial config-
uration of the robotic manipulator is far removed from the de-
sired position and orientation. The traditional inverse kinematics
drives each joint without consideration of any human-like behav-
ior: joint limits, manipulability, or even anthropomorphic intent.
The controller based on the proposed method would encompass
all those constraints without explicit acknowledgement. This fact
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Figure 8. Human collaborating with a robot arm for removing the bottle
cap. Proposed (top) and traditional inverse kinematics (bottom) methods
are compared.

can be made evident from Fig. 8 showing how, given the right
arm configuration, both controllers converge on a perfect solu-
tion in end-effector pose. However, the traditional controller has
solved it in a way as can be deemed not-anthropomorphic. In
fact, the elbow joint of the robot arm used (LWR4+, KUKA) in
the traditional inverse kinematics case is bent inward, which is
not compatible with the human arm structure and joint limits.
However, the proposed method results to a robot configuration
that is human-like, which finally promotes more efficient inter-
action and collaboration between the robot and the human arm.

CONCLUSIONS
As robots are increasingly used in human-cluttered environ-

ments, the requirement of human-likeness in their movements
becomes essential. In this paper we introduced a bio-inspired
controller for a robot arm that would drive the arm to anthropo-
morphic configurations in bi-manual human-robot collaboration
tasks. The controller not only mimics the behavior of one human
arm (intra-arm coordination), but also mimics the inter-arm coor-
dination of two collaborating human arms. The proposed method
is capable of generalizing to unseen bi-manual tasks, and result
to robot motion that will improve the efficiency of the interac-
tion and collaboration between robots and humans. The method
was tested using a simulated robot arm that is identical in struc-
ture to the human arm. A preliminary evaluation of the approach
was also carried out using an anthropomorphic robot arm in bi-

manual manipulation task with a human subject.
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2011. “Robotic Roommates Making Pancakes”. In 11th
IEEE-RAS International Conference on Humanoid Robots.

[9] Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X.,
Qi, P., Dimarogonas, D. V., and Kragic, D., 2012. “Dual
arm manipulation—A survey”. Robotics and Autonomous
Systems, 60, pp. 1340–1353.

[10] Zacharias, F., Leidner, D., Schmidt, F., Borst, C., and
Hirzinger, G., 2010. “Exploiting structure in two-armed
manipulation tasks for humanoid robots”. Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pp. 5446–5452.

[11] Steffen, J., Elbrechter, C., Haschke, R., and Ritter, H.,
2010. “Bio-inspired motion strategies for a bimanual ma-
nipulation task”. Humanoid Robots (Humanoids), 2010
10th IEEE-RAS International Conference on, pp. 625–630.

[12] Mohan, V., Morasso, P., Metta, G., and Sandini, G., 2009.
“A biomimetic, force-field based computational model for
motion planning and bimanual coordination in humanoid
robots”. Autonomous Robots, 27(3), pp. 291–307.

[13] Gharbi, M., Cortes, J., and Simeon, T., 2008. “A sampling-
based path planner for dual-arm manipulation”. Advanced

6 Copyright © 2013 by ASME



Intelligent Mechatronics, 2008. AIM 2008. IEEE/ASME In-
ternational Conference on, pp. 383–388.

[14] Hwang, M. J., Lee, D. Y., and Chung, S. Y., 2007. “Motion
Planning of bimanual robot for assembly”. Systems, Man
and Cybernetics, 2007. ISIC. IEEE International Confer-
ence on, pp. 240–245.

[15] Zollner, R., Asfour, T., and Dillmann, R., 2004. “Program-
ming by demonstration: Dual-arm manipulation tasks for
humanoid robots”. Intelligent Robots and Systems, 2004
IEEE/RSJ International Conference on, 1, pp. 479–484.

[16] Schaal, S., Kotosaka, S., and Sternad, D., 2000. “Nonlinear
dynamical systems as movement primitives”. IEEE Inter-
national Conference on Humanoid Robotics, pp. 1–11.

[17] Potkonjak, V., Popovic, M., Lazarevic, M., and Sinanovic,
J., 1998. “Redundancy problem in writing: From human
to anthropomorphic robot arm”. IEEE Transaction on Sys-
tems, Man and Cybernetics, part B, 28, pp. 790–805.

[18] Caggiano, V., Santis, A. D., Siciliano, B., and Chianese,
A., 2006. “A biomimetic approach to mobility distribution
for a human-like redundant arm”. Proc. of the IEEE/RAS-
EMBS International Conference on Biomedical Robotics
and Biomechatronics, pp. 393–398.

[19] Kim, C., Kim, D., and Oh, Y., 2005. “Solving an inverse
kinematics problem for a humanoid robots imitation of hu-
man motions using optimization”. Proc. of Int. Conf. on
Informatics in Control, Automation and Robotics, pp. 85–
92.

[20] Pollard, N. S., Hodgins, J. K., Riley, M. J., and Atkeson,
C. G., 2002. “Adapting human motion for the control of a
humanoid robot”. Proc. of IEEE Int. Conf. on Robotics and
Automation, 2, pp. 1390–1397.

[21] Cruse, H., Wischmeyer, E., Bruser, M., Brockfeld, P., and
Dress, A., 1990. “On the cost functions for the control of
the human arm movement”. Biological Cybernetics, 62(6),
pp. 519–528.

[22] Flash, T., and Hogan, N., 1985. “The coordination of
arm movements: an experimentally confirmed mathemat-
ical model”. In J. Neurosci., Vol. 5, pp. 1688–1703.

[23] Uno, Y., Kawato, M., and Suzuki, R., 1989. “Formation
and control of optimal trajectory in human multijoint arm
movement”. Biological Cybernetics, 61, pp. 89–101.

[24] Billard, A., 2001. “Learning human arm movements by
imitation: Evaluation of a biologically inspired connection-
ist architecture”. Robotics and Autonomous Systems, 941,
pp. 1–16.

[25] T.Inamura, Toshima, I., Tanie, H., and Nakamura, Y., 2004.
“Embodied symbol emergence based on mimesis theory”.
The International Journal of Robotics Research, 23:3-5,
pp. 363–377.

[26] Kulic, D., Takano, W., and Nakamura, Y., 2007. “Repre-
sentability of human motions by factorial hidden markov
models”. Proc. of IEEE/RSJ Int. Conf. Intelligent Robots
and Systems, pp. 2388–2393.

[27] Lee, J., Sato, M., Wada, Y., and Koike, Y., 2005. “Ex-

traction of motor primitive in consideration of arm pos-
ture, movement direction and velocity using hidden markov
model”. Proc. of the IEEE-EMBS Annual Intern. Conf.
of the Engineering in Medicine and Biology Society,
pp. 4385–4388.

[28] Steffen, J., Pardowitz, M., and Ritter, H., 2009. “Using
structured UKR manifolds for motion classification and
segmentation”. Intelligent Robots and Systems, IEEE/RSJ
International Conference on, pp. 4785–4790.

[29] Gribovskaya, E., and Billard, A., 2008. “Combining
dynamical systems control and programming by demon-
stration for teaching discrete bimanual coordination tasks
to a humanoid robot”. Human-Robot Interaction, 3rd
ACM/IEEE International Conference on, pp. 33–40.

[30] Do, M., Azad, P., Asfour, T., and Dillmann, R., 2008. “Im-
itation of human motion on a humanoid robot using non-
linear optimization”. Humanoid Robots, 8th IEEE-RAS In-
ternational Conference on, pp. 545–552.

[31] Ude, A., Atkeson, C. G., and Riley, M., 2004. “Program-
ming full-body movements for humanoid robots by obser-
vation”. Robotics and Autonomous Systems, 47(2), pp. 93–
108.

[32] Asfour, T., and Dillmann, R., 2003. “Human-like motion of
a humanoid robot arm based on a closed-form solution of
the inverse kinematics problem”. in Proc. of IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2, pp. 1407–1412.

[33] Temprado, J. J., Swinnen, S. P., Carson, R. G., Tourment,
A., and Laurent, M., 2003. “Interaction of directional, neu-
romuscular and egocentric constraints on the stability of
preferred bimanual coordination patterns.”. Human move-
ment science.

[34] Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., and
Swinnen, S. P., 2004. “Cerebellar and premotor function
in bimanual coordination: parametric neural responses to
spatiotemporal complexity and cycling frequency”. Neu-
roimage, 21(4), Apr., pp. 1416–1427.

[35] Zhuang, J., LaConte, S., Peltier, S., Zhang, K., and Hu, X.,
2005. “Connectivity exploration with structural equation
modeling: an fMRI study of bimanual motor coordination”.
Neuroimage, 25(2), pp. 462–470.

[36] Cardoso de Oliveira, S., 2002. “The neuronal basis
of bimanual coordination: recent neurophysiological evi-
dence and functional models”. Acta psychologica, 110(2),
pp. 139–159.

[37] Treffner, P. J., and Turvey, M. T., 1996. “Symmetry, bro-
ken symmetry, and handedness in bimanual coordination
dynamics”. Experimental Brain Research, 107(3), pp. 463–
478.

[38] Sciavicco, L., and Siciliano, B., 1996. Modeling and con-
trol of robot manipulators. McGraw-Hill.

[39] Jackson, J. E., 2003. A user’s guide to principal compo-
nents. Wiley.

[40] Artemiadis, P. K., and Kyriakopoulos, K. J., 2010. “EMG-
based control of a robot arm using low-dimensional embed-

7 Copyright © 2013 by ASME



dings”. IEEE Transactions on Robotics, 26(2), pp. 393–
398.

[41] Shi, J. Q., and Choi, T., 2011. Gaussian Process Regression
Analysis for Functional Data. CRC Press.

[42] McLachlan, G., and Peel, D., 2000. Finite mixture models.

John Wiley & Sons, Inc.
[43] Khatib, O., 1986. “Real-time obstacle avoidance for ma-

nipulators and mobile robots”. The International Journal
of Robotics Research, 5(1), pp. 90–98.

8 Copyright © 2013 by ASME




