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Abstract— Despite holding promise for advances in prosthe-
ses and robot teleoperation, myoelectric controlled interfaces
have had limited impact in commercial applications. Simul-
taneous multifunctional controls are desired, but often lead
to frustration by users who cannot easily control the devices
using state-of-the-art control schemes. This paper proposes and
validates the use of implicit motor control training systems (IM-
CTS) to achieve practical implementations of multifunctional
myoelectric applications. Subjects implicitly develop muscle
synergies needed to control a robotic application through an
analogous visual interface without the associated physical con-
straints which may hinder learning. The learning then naturally
transfers to perceived intuitive and robust control of the robotic
device. The efficacy of the method is tested by comparing
performance between two groups learning controls implicitly
via the visual interface and explicitly via the robotic interface,
respectively. The groups achieved comparable performance
when performing tasks with the robotic device a week later.
Moreover, the initial performance of the experimental group
was significantly better than the control group achieved after
up to 75 minutes of training. These findings support the use
of IMCTS to achieve practical multifunctional control of a
wide range of myoelectric applications without limiting them
to intuitive mappings nor anthropomorphic devices.

I. INTRODUCTION

Surface electromyography (EMG) has been investigated
as a potential input to robotic controls for over half a
century. Myoelectric interfaces utilize EMG for real-time,
non-invasive access to muscle activity, which is ideal for
enhancing many applications in human-machine interaction
such as prostheses and robot teleoperation. However, the
desire for user-friendly myoelectric applications controlling
simultaneous multifunctional robotic devices has yet to be
achieved in commercial applications [1], [2].

Simultaneous multifunctional control has often been pro-
posed using pattern recognition techniques, such as artificial
neural networks [3] and support vector machines [4], to relate
EMG inputs with desired outputs and ultimately predict a
user’s intent. This approach is limited by the functionality
provided in the training set, and restricted by threats of
performance degradation during actual use due to transient
changes in EMG. Thus, real-time performance requires users
to adjust to unpredictable responses for complex motions [5]
or restrict controls to those accurately predicted [6].

Other approaches propose fixed mappings with propor-
tional controls, where humans learn to control the application
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by identifying the relationship between EMG inputs and
control outputs. These studies often use EMG signals to
control a cursor on a monitor [7]. While interacting with
the interface, healthy subjects consistently learn the mapping
between input and output, and develop new synergies as they
modify muscle activity to correspond with higher-level intent
[8]. Learning has been verified in both intuitive (e.g. outputs
related to limb motions) and non-intuitive (e.g. random)
mapping functions [9]. Pistohl et. al [10] identify similar
learning patterns using abstract mappings similar to cursor
control to operate a prosthetic hand, and suggest that robotic
control can be studied using cursor control paradigms.

This study proposes using visual interfaces beyond study-
ing robotic control, but as implicit motor control training
systems (IMCTS) to provide robust and intuitive control of
robotic devices. Recent findings by Ison et. al [11] indicate
that myoelectric controls learned using a mapping function in
one interface transfer to more efficient initial control of other
myoelectric interfaces utilizing the same mapping function.
This implies that the specific set of muscle synergies devel-
oped while interacting with a mapping function are interface
independent and can be utilized for efficient control of any
robotic device implementing the same mapping function.

IMCTS is validated through a 3 degree of freedom (DOF)
robotic arm-hand application with non-intuitive proportional
controls. The hand can move along a 2D plane to reach out
and grasp objects, with a fixed hand orientation requiring
indirect paths to reach an object. An analogous scenario is
simulated in a visual interface with 3D pursuit-like tasks,
where subjects are instructed to control a helicopter in 3D
along specific paths before landing on a target helipad.
Subjects learn a common non-intuitive mapping function
while interacting with the interface, and increase their control
precision by planning movements along the specified paths
within time limits. Despite a week between sessions, sub-
jects retain efficiency and then transfer control to intuitive
operation of the physical robotic device with performance
similar to a control group which only trained with the robot.
The implications of this study are vast, as it suggests that
IMCTS can be used to train users to operate myoelectric
controlled applications without requiring intuitive controls
or anthropormorphic devices.

II. METHODOLOGY

The experiment is designed to evaluate IMCTS for robust
and intuitive control of robotic devices. Six healthy subjects
(2 male, 4 female, aged 19-28) are evenly split into two
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Fig. 1. Experimental setup including the Delsys EMG system and either the
robotic or visual interface. The LWR 4 fixes hand orientation and restricts
motion to a 2D plane. The subject must control a path around the object
before grasping it. Similarly, the visual interface indicates a trajectory for
the helicopter before landing on the helipad. The top of the screen indicates
an efficiency score based on the percentage of particles collected.

groups, control and experimental, while learning a non-
intuitive control scheme. The control group interacts directly
with a 3DOF robotic application using a KUKA Light
Weight Robot 4 (LWR 4) and an attached Touch Bionics
iLIMB Ultra bionic hand to grasp objects. The experimental
group interacts with an analogous 3DOF visual interface to
implicitly learn the robot controls. Moving the robot arm
in 2D is visually represented as moving a helicopter on the
2D screen, and grasping an object is visually represented as
landing the helicopter onto a helipad. Both groups interact
with their respective interface over two 50-minute sessions.
A testing phase evaluates performance of both groups as they
perform a set of tasks with the robotic device. All subjects
gave informed consent of the procedures approved by the
ASU IRB (Protocol: #1201007252).

A. Experimental Setup

The setup for this experiment is shown in Fig. 1. Four
wireless surface EMG electrodes (Delsys Trigno Wireless,
Delsys Inc.) are placed on a subject’s unconstrained right
arm to record muscle activity from the Biceps Brachii (BB),
Triceps Brachii (TB), Flexor Carpi Ulnaris (FCU), and
Extensor Carpi Ulnaris (ECU). The signals are digitized at
2kHz and sent over TCP/IP as input to a custom program
using C++ and OpenGL API [12] to control either interface.

B. Proportional Control

Both interfaces utilize 3 proportional control outputs cor-
responding to velocities of the 1) 2D planar x-axis, 2)
2D planar y-axis, 3) hand opening/closing and helicopter
rising/landing. Raw EMG signals are rectified, filtered (2nd
order Butterworth, cut-off 8Hz), and normalized according to
each signal’s baseline eb and maximal voluntary contraction
ec, recorded at the start of each experiment: e =

efilt−eb
ec−eb

.
The processed signal provides a stable 4× 1 input vector e
of normalized EMG amplitudes which is mapped linearly to
a 3× 1 vector u of control outputs:

Fig. 2. Mapping of input EMG amplitudes to three output control axes
using the mapping function defined in (1).

u = gW [(e− σ) ◦ u(e− σ)] ,

W =

 −0.9719 0.5775 0.3944 0.000
0.0118 −0.7757 0.7639 0.000
0.2361 0.2544 0.5098 −1.0000

 (1)

where ◦ is an element-wise matrix multiplicaiton, u(x) is
the unit step function, σ = 0.01 is the muscle activation
threshold, and g = 1.2 is the output gain. W is a random
matrix optimized with respect to a cost function maximizing
the angles between row vectors and subject to the following
constraints (see Fig. 2): 1) One column vector is negative
along the third control axis, and zero elsewhere, to disconnect
grasping/landing from 2D motion. 2) All column vectors are
unit length. 3) All row vectors are zero mean to prevent
motion at equal co-contractions.

C. Experimental Procedure

The experiment consists of both a learning and testing
phase over a three-week span. Subjects are initially shown
example tasks with the interface, but not told how EMG
maps to control outputs. The learning phase indicates perfor-
mance trends as each group learns to operate the respective
interface. The testing phase compares performance between
groups as they both perform tasks with the robotic device.

1) Learning Phase: During the learning phase, subjects
interact with either the robot or visual interface for 50 min-
utes over two separate sessions, with each session separated
by one week. Within each session, subjects operate the device
for two sets of 25 minutes. Within each set, subjects attempt
to perform as many tasks as possible while discovering the
control scheme. After each successful task, subjects rest for
7 seconds while the interface resets with a new target. At the
end of the learning phase, a subject has interacted with the
interface for a total of 100 minutes, 50 minutes each week.
Visual Interface: The visual interface presents a helicopter
and a randomly generated path to one of 16 helipads arranged
around the unit circle. The helipads are randomly arranged
within each cycle of 16 tasks. The path is generated using
bezier curves with four control points, with 2000 particles
distributed at random offsets along the curve. After an alotted
time has passed at a given point on the path, particles turn
black and can no longer be collected. A subject’s score is
reflected by how many particles the helicopter collects on
the way to the helipad. A perfect score can be achieved
by traversing the center of the path within eight seconds,
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Fig. 3. Hand configuration in testing phase. Left: normal configuration
from learning phase. Right: rotated configuration.

encouraging constant improvements in both speed and pre-
cision while learning controls. Each task is complete once
the helicopter lands on the helipad.
Robot Interface: The robot interface presents the iLIMB
hand which can move along a 2D plane to grasp a cylindrical
object at one of 8 different locations arranged around a semi-
circle. The locations are randomly arranged to appear twice
within each cycle of 16 tasks, and, due to the fixed hand
orientation, subjects must move the hand along a specific
path in order to approach and grasp the object. If the object
is knocked off its location, the experimenter places it back.
Each task is complete once the hand grasps the object.

2) Testing Phase: The testing phase occurs a week after
completion of the learning phase. Both groups control the
robot interface, performing the same tasks as in the learning
phase for the control group, with an additional objective
of returning the object to the starting position. Moreover,
after 2 cycles, or 32 tasks, the hand is rotated, as shown
in Fig. 3. The changes are made to evaluate performance
over generalized tasks within the same control space. The
experimental group is informed that the controls require
similar commands as learned in the visual interface, but are
not given the exact relationship, and the control group is
assured the controls are the same as the previous two weeks.

D. Data Analysis

Performance is measured in the visual interface by com-
pletion time and path efficiency. Completion time is defined
as the time elapsed from the start of the task until the
helicopter lands on the helipad. Path efficiency is represented
by the percentage of total particles collected for each trial
measuring both speed and precision as a robust metric for
overall control efficiency. Performance is measured for the
robotic interface by completion time, defined as the time
elapsed from the start of the task to grasping the object.

III. RESULTS

IMCTS is evaluated with respect to performance trends
from each group in the learning phase and direct performance
comparisons between the groups in the testing phase.

A. Learning Phase

Due to the non-intuitive control scheme, each subject
experiences a large learning curve with variable learning
rates according to how efficiently the subject explores the
control space. Although both interfaces are similar in terms
of required inputs to complete a task, the visual interface is
capable of consistently better completion times due to the
lack of physical constraints such as joint velocity limits with

Fig. 4. Completion time as a function of total training time for all subjects
in the learning phase. The errorbars represent a 95% confidence interval
for aggregated completion times over each half of each set. The consistent
improvement, despite a week between sessions, indicates the subjects are
achieving robust control.

Fig. 5. Control efficiency as a function of total training time for all subjects
in the learning phase experimental group. The errorbars represent a 95%
confidence interval for aggregated task efficiencies over each half of each
set. Asterisks indicate significant improvements between adjacent points
(Welch’s t-test, p < 0.05).

the LWR 4, variable delays in Bluetooth communication with
the iLIMB, and replacing the object if it is knocked off its
location. These physical constraints slow the learning rate of
the control group, as visual feedback sometimes reinforces
incorrect mappings between input and outputs.

Figure 4 displays the learning curves of both groups with
average completion times as a function of total training time.
Each 25 minute set of trials produces two data points, the first
representing completion times over the first 12.5 minutes,
and the second representing aggregated completion times
over the second half of the set. The experimental group
generally improved performance within each set as they
refined controls. In constrast, the control group generally
lowered performance between the two halves of each set.
Qualitative feedback from subjects suggests this results from
tension and fatigue due to inconsistent visual feedback. This
effect is reduced as subjects learn better control over time.

Despite having a week between sessions, both groups
demonstrate performance robust to significant degradation,
with the control group achieving significantly better perfor-
mance between the end of session 1 and the start of session
2 (Welch’s t-test, p < 0.05). The experimental group traded
slower performance in exchange for significantly better effi-
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(a) Beginning of trial. (b) Moving around the object. (c) Grasping the object. (d) Returning object to start point.
Fig. 6. Trial sequence for robot control tasks. With the hand in a fixed orientation, the subject moves around the object before grasping and retrieving it.

Fig. 7. Comparison of completion times between groups relative to the
performance of the control group in the second session of the learning phase.
The errorbars represent a 95% confidence interval for aggregated completion
times over each cycle of 16 tasks. The asterisk above cycle 2 indicates the
only significant performance difference between the two groups (Welch’s
t-test, p < 0.5).

ciency (Welch’s t-test, p < 0.05), as shown in Fig. 5. At the
conclusion of the 100 minute learning phase, subjects had
generally learned the mappings associating muscle activity
with control outputs, but had not yet achieved consistent per-
formance associated with fully developed muscle synergies.

B. Testing Phase

Completion times from the testing phase validate the
use of IMCTS for robust robotic control. An example task
sequence is shown in Fig. 6. Despite a week off and not
knowing how controlling the helicopter relates to controlling
the robotic hand, subjects in the experimental group are able
to transfer their learning to intuitively perform the tasks
comparable to the control group, with initial performance
significantly better than the control group achieved after 75
minutes of total training time (Welch’s t-test, p < 0.05, see
Fig. 7). In addition, both groups adjust to tasks with the
rotated hand without a significant reduction in performance
(Welch’s t-test, Experimental: p = 0.73, Control: p = 0.15),
indicating robust control of the full task space. During
the fourth cycle in the test phase, the experimental group
performed slightly better than the control group (Welch’s t-
test, p = 0.17), and significantly better than the control group
after 100 minutes of trianing (Welch’s t-test, p < 0.05). This,
combined with the consistent learning shown in Figs. 4 and
5, supports IMCTS as a viable tool in robotic control.

IV. CONCLUSION

This paper validates the use of implicit motor control
training systems to achieve intuitive and robust control of
myoelectric applications. Subjects implicitly develop motor

control patterns needed to control a physical robotic ap-
plication through an analogous visual interface without the
associated physical constraints which may hinder learning.
During the learning process, subjects consistently enhance
performance even after time off, corresponding to robust
identification of the non-intuitive mapping function. Despite
having a week off between sessions, subjects intuitively
transferred their learning to efficiently control the robotic
device, with performance similar to the control group which
had learned the controls by explicitly operating the robotic
device for the same amount of time. These findings support
the use of IMCTS to achieve practical multifunctional control
of a wide range of myoelectric applications without limiting
them to intuitive mappings nor anthropomorphic devices.
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