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Abstract— A learning scheme based on Random Forests
is used to discriminate the task to be executed using
only myoelectric activity from the upper limb. Three
different task features can be discriminated: subspace
to move towards, object to be grasped and task to be
executed (with the object). The discrimination between
the different reach to grasp movements is accomplished
with a random forests classifier, which is able to perform
efficient features selection, helping us to reduce the num-
ber of EMG channels required for task discrimination.
The proposed scheme can take advantage of both a clas-
sifier and a regressor that cooperate advantageously to
split the task space, providing better estimation accuracy
with task-specific EMG-based motion decoding models,
as reported in [1] and [2]. The whole learning scheme can
be used by a series of EMG-based interfaces, that can
be found in rehabilitation cases and neural prostheses.

Index Terms: ElectroMyoGraphy (EMG), Learning
Scheme, Task Specificity, Random Forests.

I. INTRODUCTION

EMG based interfaces have received increased attention
during the last years due to their numerous applications,
varying from EMG based teleoperation [3], [4] to EMG con-
trolled prostheses [5], and from EMG controlled exoskele-
tons for rehabilitation [6] to muscle computer interfaces for
human computer interaction [7]. Some well known issues
of the EMG based interfaces are the high-dimensionality
and complexity of human musculo-skeletal system, the non-
stationarity of the EMG signals (e.g. fatigue), the noise
caused by the electrode positioning, as well as the non-linear
relationship between the human myoelectric activity and the
human motion.

During the last decades the majority of researchers avoided
to decode a continuous representation of human kinematics
and chose to focus on the discrete control of robotic devices.
Typical examples are the directional control of a robotic wrist
[8] and the control of multifingered robotic hands to a series
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of discrete postures [9], [10] and [11], [12], [13]. Machine
learning techniques and more specifically classification meth-
ods were used in [9] and [10] to discriminate using human
myoelectric activity between independent human hand digit
movements and different hand postures. Forearm surface
EMG was used in [14] for the control of a hand prosthesis,
discriminating three grip types (power grasp, index precision
grip and middle-ring-pinky precision grip) in real-time. In
[15] authors used the captured myoelectric activity from
two adult macaque monkeys, while grasping 12 objects
of different shapes, to distinguish between muscular co-
activation patterns associated with different grasping postures
while in [1] we discriminated using the myoelectric activity
of 16 human arm hand muscles, between reach to grasp
movements towards different positions and different objects
in 3D space. A similar study was recently conducted in [16],
where classification techniques were used to discriminate
between different reach to grasp movements towards objects
with different sizes and weights. It must be noted that in
the last two studies the classification accuracy increases
constantly as the reach to grasp movement evolves, providing
an early decision of the task to be executed.

Regarding the continuous approach, Artemiadis et al. used
a state-space model in [17] for the EMG based decoding of
human arm kinematics, giving emphasis to the non-stationary
characteristics of the EMG signals (i.e. muscle fatigue etc.)
while in [3] a state space model was used to map muscular
activations to human arm motion, using low dimensional
embeddings of the myoelectric activity and the kinematics.
Artificial neural networks (ANN) and sEMG have been used
in [18] to estimate the continuous motion of the fingers, in
[19] to control a one DoF robot arm and in [20] to decode
human arm motion. A recent study, presented an interesting
methodology to decode from sEMG the human arm hand
system kinematics, using support vector machines (SVM)
[4]. The position and orientation of the human wrist and the
human grasp were decoded. Finally in [21] we used random
forest regression to train task-specific models for the EMG-
based estimation of the full human arm hand system motion
(27 DoFs) for reach to grasp movements towards different
positions and different objects.

In this paper we extend the learning scheme that we
proposed in [1] and [21] in order to discriminate also the
“task to be executed” for different reach to grasp movements,
as well as to perform efficient features selection. The final
scheme is able to decompose the task, discriminating three
different task features: position to move towards, object to be
grasped and task to be executed (with the identified object).



Our scheme consists once again of a classifier combined
with a regressor. The classifier uses sEMG to discriminate
in the m-dimensional space (where m is the number of
EMG channels) between different reach to grasp tasks. The
regressor is used to train models for all possible tasks
so as for the classification module to be able to trigger
the appropriate task-specific EMG-based motion decoding
model. The regression problem is formulated using the low-
d spaces (extracted using Principal Components Analysis -
PCA) of the human myoelectric activations (input) and the
human motion (output). The proposed scheme is depicted for
the example of EMG-based teleoperation of a robot arm hand
system in Fig. 1, but it can also be used by other EMG based
interfaces, like muscle computer interfaces, EMG controlled
prostheses and rehabilitation devices.

The rest of the paper is organized as follows: Section II an-
alyzes the apparatus and the experiments conducted, Section
III focuses on the different methods used to formulate the
proposed EMG-based learning scheme, results validating the
efficiency of the proposed scheme are presented in Section
IV, while Section V concludes the paper.

Fig. 1. Block diagram of the proposed learning scheme. Two main modules
formulate the learning framework, the classification module and the task
specific model selection module. Classification module provides decision
for subspace to move towards, object to be grasped and task to be executed.
Task specific model selection module examines classification decisions and
triggers, subspace, object and task specific motion decoding models. The
decoding model can efficiently estimate the human arm hand system motion
using the human myoelectric activity. The EMG-based teleoperation of a
robot arm hand system is presented as an EMG-based interface example.

II. APPARATUS AND EXPERIMENTS

A. Experimental Protocol

Experiments were performed with five (4 male, 1 female)
healthy subjects 21, 24, 27, 28 and 40 years old. All subjects
gave informed consent for the experimental procedure and
the experiments were approved by the Institutional Review
Board of the National Technical University of Athens. All
subjects performed the experiments with their dominant hand
(right hand for all subjects involved).

During the experiments each subject was instructed to
perform repeated reach to grasp movements in 3D space,
in order to reach and grasp different objects placed at five
different positions in 3D space, as depicted in Fig. 2. These
experiments were used for the initial formulation of the
learning framework proposed in [1] and are once again used
in this paper to assess also feature variables importance
for different positions and different objects. In order to
discriminate between different tasks executed with the same
object, new experiments were conducted using the same
directions. A mug, a rectangle and a marker were used for
the initial experiments, while a tall glass, a wine glass, a
mug and a mug plate were used for the “task discrimination”
experiments.

Fig. 2. Picture of the bookcase containing three different objects, a marker,
a rectangular-shaped object and a mug, placed in five different positions,
in three different shelves. The distances between the object positions are
provided in terms of a superimposed diagram. The same positions were
used for both types of experiments.

The different tasks that were executed (two tasks per
object) for the second set of objects appear in Fig. 3. Ade-
quate resting time (one min) was used between consecutive
trials. Each subject conducted several trials, for each position,
object and task combination.

Fig. 3. Tasks that were executed for the second set of experiments. The tall
glass tasks were: task 1, side grasp (to drink from it) and task 2, front grasp
(to transpose it). The wine glass tasks were: task 1, side grasp (to drink
from it) and task 2, stem grasp (to drink from it). The mug tasks were: task
1, handle grasp (to drink from it) and task 2, top grasp (to transpose it).
Finally the mug plate tasks were: task 1, side grasp (to lift and hold it) and
task 2, top grasp (to transpose it).



B. Electrode Positioning, Data Acquisition and Processing
For the first set of objects we recorded the myoelectric

activity of sixteen muscles, of the upper arm (eight muscles)
and the forearm (eight flexor and extensor muscles). More
specifically the selected muscles appear in this paper in the
following order: deltoid anterior, deltoid middle, deltoid pos-
terior, teres major, trapezius, biceps brachi, brachioradialis,
triceps brachii, flexor pollicis longus, flexor digitorum su-
perficialis, flexor carpi ulnaris, flexor carpi radialis, extensor
pollicis longus, extensor indicis, extensor carpi ulnaris and
extensor carpi radialis. The selection of the muscles, as well
as the placement of the electrodes, was based on the related
literature [9], [22]. For the second set of objects we had
available only fifteen EMG channels so the same set of
muscles was used and the order remained the same with
the exception of triceps brachii (was the less significant,
according to our previous studies).

EMG signals were recorded using single differential sur-
face EMG electrodes and were acquired and conditioned
using an EMG system (Bagnoli-16, Delsys Inc.). The digi-
tization and acquisition was done using a signal acquisition
board (NI-DAQ 6036E, National Instruments). EMG signals
were band-pass filtered (20-450 Hz), sampled at 1 kHz,
full-wave rectified and low-pass filtered (Butterworth, fourth
order, 8 Hz).

III. METHODS

A. Using a Random Forest Classifier to Discriminate the
Task to be Executed

Random forests classifier is an ensemble classifier that
consists of many decision trees and outputs the class that
is the mode of the class’s output by the individual trees
[23], [24]. More specifically, a random forest is a classi-
fier consisting of a collection of tree structured classifiers
{h(x,ΘN),N = 1, ...} where {ΘN} are independent identi-
cally distributed random vectors and each tree casts a vote
for the most popular class at input x. The classification
procedure for a Random Forests classifier with N trees
grown is presented in Fig. 4. In this paper we used a
Random Forests classifier to discriminate between different
reach to grasp movements towards a specific position and
object combination but to execute two different tasks with
the same object. The discrimination must be done in the
m-dimensional space where m = 15 is the number of the
EMG channels containing the myoelectric activations of the
selected aforementioned muscles. More details regarding the
Random Forests advantages can be found in [2].

In Fig. 5 we present a typical classification problem
of discriminating two different tasks. In the top plot we
can see how the distance between the two classes in the
15-dimensional space is evolved as well as the reaching,
grasping and return phases. The distance between the two
classes give us a measure of their separability (i.e. how easily
the classes can be discriminated). In the bottom plot, we
can notice an accumulation of misclassified samples for the
time periods that the distance between the two tasks is not
significant (i.e. begin and end of the experiment).

Fig. 4. Random Forests based classification procedure for N trees grown.
OOB stands for out-of-bag samples.

Fig. 5. Comparison of two reach to grasp movements towards Position I
to grasp a Tall Glass with two different tasks (side grasp and front grasp).
First subplot presents the distance of the two tasks in the m-dimensional
space where m = 15 the number of the EMG channels. The second subplot
focuses on the evolution of classification decision per sample over time.

B. Features Selection with Random Forests

In order to perform efficient features selection with Ran-
dom Forests, we can use their ability to compute the im-
portance score of each feature variable and consequently
assess the relative importance for all variables. Random
forests use for the construction of each tree, a different
bootstrap sample set from the original data. One-third of
the samples are left out of the bootstrap sample set and are
not used in the construction of the Nth tree. These samples
are called out-of-bag samples. In order to compute features
importance, the random forests can be used as follows; in
every grown tree in the forest, we put down the out-of-
bag samples and count the number of votes cast for the
correct class. Then the values of a variable m are randomly
permuted in the out-of-bag samples and these samples are
put down the tree. Subtracting the number of votes casted
for the correct class in the m-variable permuted out-of-bag



data from the previously computed number of votes for the
correct class in the untouched out-of-bag data, we get the
importance score of each tree. The average importance score
for all trees in the forest is the raw importance score for
the variable m. Thus, the importance for feature variable m
can be computed subtracting the error rate for the original
data from the error rate when the variable m is permuted.
The random forests feature variable importance calculation
procedure, is presented in terms of a diagram in Fig. 6.

Fig. 6. Diagram of the Random Forests feature variable importance
calculation procedure. OOB stands for out-of-bag samples.

If the number of variables is very large (in this paper
we have a problem formulated in 15th dimensional space),
Random Forests can be initially run with all the variables
and then run once again using the most important variables
selected from the first run. For example in our case we can
run the random forests classifier with all 15 EMG channels,
compute the feature variables importance, assess the relative
importance of all variables and then re-run the random
forests classifier using the most “important” EMG channels.
Before doing so, we proceed with the computation of feature
variables importance for different subspaces, different objects
and different tasks, as follows.

In Fig. 7 the importance plots of different feature variables
(EMG channels) are presented, for two different cases,
subspace discrimination and object discrimination. For the
case of subspace discrimination the feature variables cor-
responding to upper-arm muscles (first 8 EMG channels)
accumulate most of the importance, while for the case of
object discrimination the feature variables corresponding to
the forearm muscles (last 8 EMG channels) appear to have
increased importance. The latter evidence is also verified by
the fact that for reach to grasp movements towards different
subspaces, the muscular co-activation patterns of the upper-
arm muscles accumulate most of the differentiation, while
for the case of reach to grasp movements towards different
objects the muscular co-activation patterns of the forearm
muscles (which are responsible for grasping), accumulate
most of the differentiation [1].

Fig. 7. Importance plots for feature variables (EMG Channels) importance
- expressed as mean decrease in accuracy - for Subject I, for the cases
of subspace discrimination and object discrimination subsequently. For the
case of subspace discrimination data involving all objects are used, while for
object discrimination, feature importance is examined for a specific position.
Objects 1, 2 and 3 correspond to mug, marker and rectangle respectively.
EMG channels follow the muscles order described in Section II - B.

Mug Plate Mug 

Wine Glass Tall Glass 

Fig. 8. Importance plots of feature variables for task discrimination. Reach
to grasp movements towards all objects placed in Position I and two different
tasks, were executed per object. The tasks executed are those appeared in
Fig. 3. EMG channels follow the muscles order described in Section II - B.

In Fig. 8 the importance plots of different feature variables
(EMG channels) are presented, for the case of task dis-
crimination. Four different barplots are depicted, containing
the importance scores per variable for all objects placed
in position I. For task discrimination the feature variables
corresponding to the forearm muscles (last 8 EMG channels)
appear to have once again increased importance (as in the
case of object discrimination), evidence that seems to be
quite reasonable as the forearm muscles are responsible to
preshape the hand in order to grasp and manipulate objects.



IV. RESULTS

A. Classification Results

In order to assess the accuracy of the proposed methods,
we define the classification success rate as the percentage of
EMG data points classified to the correct task. It must be
noted that classification is done for each EMG data point,
allowing our system to be able to decide in real-time the
task to be executed or even switch between different tasks
online. The classification results presented in the following
tables are the average values over the five rounds of the cross-
validation method applied. According to [1], the Random
Forests classifier outperformed other well-known classifiers
(e.g. kNN, ANN, SVM etc.), so we chose to use it in this
paper without further comparisons. First, we present the
classification results achieved, using all 15 EMG channels
to discriminate between reach to grasp movements towards
specific position and object combinations (for all objects and
positions), to execute two different tasks per object (two
classes). Results are reported in Table I.

TABLE I
CLASSIFICATION ACCURACY ACROSS DIFFERENT REACH TO GRASP

MOVEMENTS TOWARDS DIFFERENT POSITIONS AND OBJECTS TO

EXECUTE TWO DIFFERENT TASKS (TWO CLASSES). RANDOM FORESTS

CLASSIFIER WAS USED FOR ALL 15 EMG CHANNELS, OF SUBJECT 1.

Tall Glass
Tasks Side Grasp Front Grasp
Pos I 76.31% (±7.41%) 78.87% (±4.72%)
Pos II 89.77% (±5.43%) 87.88% (±9.42%)
Pos III 84.86% (±8.27%) 85.75% (±2.38%)
Pos IV 89.69% (±5.61%) 86.82% (±8.06%)
Pos V 87.56% (±8.20%) 90.36% (±4.77%)

Wine Glass
Tasks Side Grasp Stem Grasp
Pos I 84.14% (±4.15%) 85.20% (±4.59%)
Pos II 71.23% (±5.19%) 79.72% (±9.31%)
Pos III 66.64% (±8.15%) 77.71% (±11.47%)
Pos IV 87.98% (±5.21%) 89.02% (±5.81%)
Pos V 66.44% (±8.66%) 64.28% (±7.62%)

Mug
Tasks Handle Grasp Top Grasp
Pos I 89.33% (±6.66%) 90.74% (±6.78%)
Pos II 79.77% (±6.74%) 82.31% (±7.02%)
Pos III 75.98% (±9.63%) 83.52% (±7.03%)
Pos IV 84.91% (±3.83%) 86.99% (±5.20%)
Pos V 77.83% (±5.79%) 77.36% (±3.95%)

Mug Plate
Tasks Side-Pinch Grasp Top Grasp
Pos I 84.98% (±2.52%) 81.76% (±4.99%)
Pos II 89.58% (±6.11%) 92.76% (±4.27%)
Pos III 86.73% (±7.57%) 95.58% (±1.92%)
Pos IV 87.16% (±6.59%) 85.64% (±9.86%)
Pos V 91.62% (±3.08%) 90.78% (±2.98%)

Classification accuracy is consistently high across different
positions, different objects and different tasks, proving the
efficiency of the proposed methods. It is also evident in the
results, that classification accuracy and the overall ability of
our scheme to discriminate different tasks (executed with
the same object), depends on the distance (configuration
space) between the final postures of the full human arm hand
system, as well as on the position of the object to be grasped.

The two tasks of the tall glass, mug and mug plate result
to completely different human wrist angles (the motion of
which affects most of the forearm muscles). Thus those tasks
can be more easily discriminated and better classification re-
sults can be achieved, in contrast to the wine glass tasks that
involve mainly finger motions and variations of the aperture.
Different positions result to different classification accuracies
for the same object and tasks. For example positions I,IV give
better results for wine glass and mug while positions II, V
give better results for tall glass and mug plate.

Despite the fact that we achieve high classification accu-
racy, we use a lot of EMG channels which are typically
not available, due to hardware or cost limitations. More-
over, a large number of EMG channels, requires careful
electrode positioning, is time consuming and may increase
user’s discomfort. Thus in this paper we use the Random
Forests to first compute the feature variables importance for
each position and object combination and we then resolve
the classification problems using the six most important
EMG channels acquired from the feature selection procedure.
Results are reported in Table II and we can notice that for
the reduced number of electrodes, classification accuracy
remains high and the results appear to be almost equal or
even better, comparing them with the initial results (of the
15 EMG channels case).

TABLE II
CLASSIFICATION ACCURACY ACROSS DIFFERENT REACH TO GRASP

MOVEMENTS TOWARDS DIFFERENT POSITIONS AND OBJECTS TO

EXECUTE TWO DIFFERENT TASKS (TWO CLASSES). RANDOM FORESTS

WERE USED FOR ONLY 6 EMG CHANNELS SELECTED USING THE

FEATURES SELECTION METHOD PRESENTED, OF SUBJECT 1 DATA.

Tall Glass
Tasks Side Grasp Front Grasp
Pos I 81.43% (±2.64%) 79.91% (±7.69%)
Pos II 89.79% (±7.35%) 90.79% (±7.97%)
Pos III 82.84% (±9.12%) 88.76% (±3.34%)
Pos IV 89.82% (±5.89%) 87.71% (±7.97%)
Pos V 84.66% (±9.98%) 92.85% (±4.14%)

Wine Glass
Tasks Side Grasp Stem Grasp
Pos I 86.77% (±3.72%) 84.30% (±3.77%)
Pos II 74.50% (±9.81%) 81.20% (±9.64%)
Pos III 72.62% (±8.66%) 79.39% (±13.56%)
Pos IV 86.90% (±8.40%) 87.61% (±5.95%)
Pos V 63.41% (±6.88%) 64.24% (±9.72%)

Mug
Tasks Handle Grasp Top Grasp
Pos I 87.17% (±4.67%) 87.85% (±4.59%)
Pos II 80.10% (±7.36%) 83.72% (±5.87%)
Pos III 77.90% (±5.40%) 81.43% (±6.98%)
Pos IV 85.35% (±4.14%) 84.98% (±6.07%)
Pos V 81.06% (±8.29%) 78.95% (±9.57%)

Mug Plate
Tasks Side-Pinch Grasp Top Grasp
Pos I 84.34% (±5.57%) 83.60% (±3.44%)
Pos II 90.74% (±4.59%) 94.01% (±3.49%)
Pos III 85.55% (±12.07%) 95.61% (±2.89%)
Pos IV 86.74% (±10.18%) 83.79% (±7.27%)
Pos V 91.00% (±2.23%) 92.28% (±3.03%)



We have already noted that typically the classification
decision is taken at a frequency of 1 kHz. However, in order
to further improve the classification results we can also use
a sliding window of width N, so as for all N samples to be
used for the classification decision. The use of majority vote
criterion (MVC), can classify all the samples, of a set of
N samples, in the class that was the most common between
them (i.e. that gathers the most votes). More details regarding
the sliding window and the MVC can be found in [1].

V. CONCLUSIONS AND DISCUSSION

In this paper we extended the learning scheme presented
in [1] in order to be able to discriminate also the task
to be executed (with the object) for different reach to
grasp movements. Classification results are once more highly
accurate proving the efficiency of the proposed methods.
Moreover we presented a features selection method based on
Random Forests that help us reduce the number of electrodes
required by our scheme, selecting the most “important”
muscles. The hereby presented learning scheme can be used
at a variety of EMG-based interfaces, from rehabilitation
devices, to human computer interaction applications and
EMG controlled prosthetic hands.

REFERENCES

[1] M. V. Liarokapis, P. K. Artemiadis, P. T. Katsiaris, K. J. Kyriakopou-
los, and E. S. Manolakos, “Learning human reach-to-grasp strategies:
Towards EMG-based control of robotic arm-hand systems,” in IEEE
International Conference on Robotics and Automation (ICRA), May
2012, pp. 2287–2292.

[2] M. V. Liarokapis, P. K. Artemiadis, K. J. Kyriakopoulos, and E. S.
Manolakos, “A learning scheme for reach to grasp movements: On
EMG-based interfaces using task specific motion decoding models,”
IEEE Journal of Biomedical and Health Informatics (J-BHI), 2013.

[3] P. K. Artemiadis and K. J. Kyriakopoulos, “EMG-based control of
a robot arm using low-dimensional embeddings,” IEEE Trans. Rob.,
vol. 26, no. 2, pp. 393–398, Apr. 2010.

[4] J. Vogel, C. Castellini, and P. P. van der Smagt, “EMG-based tele-
operation and manipulation with the DLR LWR-III.” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2011, pp. 672–678.

[5] C. Cipriani, F. Zaccone, S. Micera, and M. C. Carrozza, “On the
shared control of an EMG-controlled prosthetic hand: Analysis of user
prosthesis interaction,” IEEE Trans. Rob., vol. 24, no. 1, pp. 170–184,
Feb. 2008.

[6] L. Lucas, M. DiCicco, and Y. Matsuoka, “An EMG-controlled hand
exoskeleton for natural pinching,” Journal of Robotics and Mechatron-
ics, vol. 16, no. 5, pp. 482 – 488, 2004.

[7] T. S. Saponas, D. S. Tan, D. Morris, and R. Balakrishnan, “Demon-
strating the feasibility of using forearm electromyography for muscle-
computer interfaces,” in Proceedings of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems, ser. CHI
’08. New York, NY, USA: ACM, 2008, pp. 515–524.

[8] O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, “A human-assisting
manipulator teleoperated by EMG signals and arm motions,” Robotics
and Automation, IEEE Transactions on, vol. 19, no. 2, pp. 210 – 222,
apr 2003.

[9] S. Maier and P. van der Smagt, “Surface EMG suffices to classify
the motion of each finger independently,” in Proceedings of the
International Conference on Motion and Vibration Control (MOVIC),
2008.

[10] S. Bitzer and P. van der Smagt, “Learning EMG control of a robotic
hand: towards active prostheses,” in Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conference on, may
2006, pp. 2819 – 2823.

[11] J. Zhao, Z. Xie, L. Jiang, H. Cai, H. Liu, and G. Hirzinger, “Levenberg-
marquardt based neural network control for a five-fingered prosthetic
hand,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of
the 2005 IEEE International Conference on, april 2005, pp. 4482 –
4487.

[12] M. Zecca, S. Micera, M. C. Carrozza, and P. Dario, “Control of
multifunctional prosthetic hands by processing the electromyographic
signal,” in Critical Reviews in Biomedical Engineering, 2002, pp. 459–
485.

[13] D. Nishikawa, W. Yu, H. Yokoi, and Y. Kakazu, “EMG prosthetic
hand controller using real-time learning method,” in Systems, Man,
and Cybernetics, 1999. IEEE SMC ’99 Conference Proceedings. 1999
IEEE International Conference on, vol. 1, 1999, pp. 153 –158 vol.1.

[14] C. Castellini, A. E. Fiorilla, and G. Sandini, “Multi-subject/daily-
life activity EMG-based control of mechanical hands,” Journal of
NeuroEngineering and Rehabilitation, vol. 6, pp. 1–11, 2009.

[15] T. Brochier, R. L. Spinks, M. A. Umilta, and R. N. Lemon, “Patterns
of muscle activity underlying object-specific grasp by the macaque
monkey,” Journal of Neurophysiology, vol. 92, no. 1, 2004.

[16] N. Fligge, H. Urbanek, and P. van der Smagt, “Relation between
object properties and emg during reaching to grasp,” Journal of
Electromyography and Kinesiology, 2012.

[17] P. Artemiadis and K. Kyriakopoulos, “A switching regime model
for the EMG-based control of a robot arm,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 41, no. 1,
pp. 53 –63, feb. 2011.

[18] R. J. Smith, F. Tenore, D. Huberdeau, R. Etienne-Cummings, and
N. V. Thakor, “Continuous decoding of finger position from surface
EMG signals for the control of powered prostheses,” in Engineering
in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual
International Conference of the IEEE, aug. 2008, pp. 197 –200.

[19] W. Ryu, B. Han, and J. Kim, “Continuous position control of 1 dof
manipulator using EMG signals,” in Convergence and Hybrid Infor-
mation Technology, 2008. ICCIT ’08. Third International Conference
on, vol. 1, nov. 2008, pp. 870 –874.

[20] Y. Koike and M. Kawato, “Estimation of dynamic joint torques and
trajectory formation from surface electromyography signals using a
neural network model,” Biological Cybernetics, vol. 73, pp. 291–300,
1995.

[21] M. V. Liarokapis, P. K. Artemiadis, P. T. Katsiaris, and K. J.
Kyriakopoulos, “Learning task-specific models for reach to grasp
movements: Towards EMG-based teleoperation of robotic arm-hand
systems,” in 4th IEEE RAS EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob), June 2012, pp.
1287–1292.

[22] J. R. Cram, G. S. Kasman, and J. Holtz, Introduction to Surface
Electromyography, 2nd ed. Jones and Bartlett Publishers, 2010.

[23] T. K. Ho, “Random decision forests,” in Document Analysis and
Recognition, 1995., Proceedings of the Third International Conference
on, vol. 1, aug 1995, pp. 278 –282 vol.1.

[24] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.


