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Abstract— This paper proposes a method to construct Nav-
igation Functions (NF) from experimental trajectories in an
unknown environment. We want to approximate an unknown
obstacle function and then use it within an NF. When nav-
igating the same destinations with the experiments, this NF
should produce the same trajectories as the experiments. This
requirement is equivalent to a partial differential equation
(PDE). Solving the PDE yields the unknown obstacle function,
expressed with spline basis functions. We apply this new method
to anthropomorphic grasping, producing automatic trajectories
similar to the observed ones. The grasping experiments were
performed for a set of different objects, Principal Component
Analysis (PCA) allows reduction of the configuration space
dimension, where the learning NF method is then applied.

I. INTRODUCTION

There has been a sustained and increasing interest in
creating autonomous robotic hands similar to the human
hand, driven by manifold motivation. Contrary to indus-
trial settings, in everyday human environments the majority
of tasks involves objects adapted to human manipulation
capabilities. Therefore an anthropomorphic robotic hand is
uniquely suited to handling them. Applications include pros-
thetics [1], rehabilitation and teleoperation and dangerous
tasks in hazardous or uninhabitable environments [2]. There
are two main challenges in order to achieve this.

On the one hand, the required hardware needs to be
developed. Several efforts witnessed in the past fifteen years
started with four fingers, e.g. the Utah/MIT [3], DLR I [4]
robotic hands and continued with five fingers, e.g. Anthrobot
[5], Gifu II [6] and DLR/HIT II [7] hands. Some of the
most difficult issues have been the reduction in size, increase
of impact strength and elasticity [8]. For a comparative
overview see [9], [10].

On the other hand, operation of these hands requires
appropriate controllers. This is a motion planning problem
in a configuration space (C-space) of high dimension. In
addition, anthropomorphic movement may also be desirable
in many cases. There have been several attempts to construct
anthropomorphic controllers for robotic hands. The authors
in [11], [12] treated a similar problem of anthropomorphic
robot arm control by identifying joint dependencies using
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Dynamic Bayesian Networks (BN). In [13] BNs were ap-
plied to robot grasping learning. Identifying hand synergies
through Principal Component Analysis (PCA) for grasping
has been firstly proposed in [14] and eigengrasps are defined
in [15].

Controlling a robotic hand in principal subspace has
also been considered in [16], where eigengrasps are called
Principal Motion Directions. The approach there is different
from the one presented here, because free motion of the
human hand instead of grasping is recorded, which does not
provide information about everyday eigengrasps. Moreover,
half of the measured configuration dimensions are not used,
because PCA is performed after mapping human degrees of
freedom (DOF) to robot hand DOF. Here PCA is applied to
the full 22 DOF, independently of the robot hand.

Sampling-Based Roadmaps have been used in [16], which
provide probabilistic completeness and are computation-
ally intensive. The NF method is safe by construction,
achieves provably correct convergence and offers a closed-
loop continuous controller, integrating planning and trajec-
tory tracking. Moreover, an NF captures anthropomorphism
also within the principal subspace.

The contribution of the present work is in providing a new
method for solving the inverse problem of motion planning,
using Navigation Functions (NF). We assume that feasible
trajectories are available after experimental measurements.
We utilize these feasible trajectories to construct an obstacle
function for the NF, through the solution of a PDE. This
obstacle can then be used within the NF to navigate to
destinations different than those of the experiments. The PDE
requires that for the destinations of the experiments, the NF
using this obstacle yields the same trajectories.

We then apply this new method to robot hand grasping,
using 24 grasping experiments with various tasks for 13
different objects have been performed. PCA in the C-space
leads to considerable reduction of the dimension in which
planning takes place. It also encodes anthropomorphism, as
proved by the simulations. Then the Learning NF method
developed is applied to the principal subspace.

The rest of this paper is organized as following: prelimi-
naries about NFs are covered in § II, the problem is defined
in § III and its inverse formulation using NFs provided in
§ IV, which is solved in § V. The method is applied to
anthropomorphic grasping in § VI, where comparison with
experiments supports its efficacy. Concluding remarks are
summarized in § VII where future research is considered.



II. NAVIGATION FUNCTIONS

A. Background

Artificial Potential Fields were introduced by Khatib [17]
and provide a closed-loop feedback controller for motion
planning to avoid obstacles and safely reach the desired des-
tination. This is achieved by following the negated gradient
of an appropriately constructed scalar field. Obstacles are
maxima and the destination the global minimum. Unfortu-
nately, the appearance of local minima can trap the agent
before reaching its destination.

Navigation Functions (NF) have been proposed by Ri-
mon and Koditschek [18], [19] and overcome the local
minima problem. Their initial formulation is for a priori
known sphere worlds and application to geometrically more
complicated worlds is achieved using diffeomorphisms [20].
These map the actual C-space obstacles to spheres. We
have recently extended NFs to more general geometries in
[21], without the need for diffeomorphisms. This enables
the use of more complicated obstacles, like tori, ellipsoids
and partially non-convex surfaces, as long as a curvature
condition is satisfied. Utilizing this possibility, we explore
the inverse problem of estimating unknown obstacles from
knowledge of feasible trajectories.

B. Definition

Let β ∈ C2 (En,R) be a function over Euclidean space
defining the union of obstacles O , {q ∈ En|β(q) < 0},
such that the free space F , En\O be a compact connected
analytic manifold with boundary. An NF is defined on F

A NF is defined on F ⊂ En as a map φ : F → [0, 1]
which is at least C2, admissible (uniformly maximal on the
boundary), Morse (non-degenerate critical points) and Polar
(unique global minimum at qd). Such a function has been
proved to exist for every F [18]. For a single integrator
system, the control law

dx

dt
(t) = −∇qφ (x(t)) (1)

solves the motion planning problem on F for almost all
initial conditions on F , apart from a Lebesgue measure zero
set. But constructing one can prove demanding.

The following is one type of candidate NF proposed by
Koditschek and Rimon [18], [19], hereafter called KRNF

φ , γd(
γk
d + β

) 1
k

(2)

where q ∈ F the configuration, γd(q) , ∥q − qd∥2 the
paraboloid attractive effect and k ∈ N \ {0, 1} a tuning
parameter, e.g. Fig. 1.

When F is an everywhere partially sufficiently curved
world, as defined in [21], then there exists a kmin > 0, such
that ϕ in Eq.(2) is a NF for all k > kmin [21]. Sphere worlds
are a special sub-category.

Here we construct an obstacle β which is appropriate
to make the NF reproduce the experiments. Therefore, we
formulate the inverse problem, whose solution is enforced
to reproduce the measured speeds over the same paths.
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Fig. 1. Sample Navigation Function for k = 2.

Hence, if the experimental speeds do not become zero, this
is mathematically guaranteed to yield a NF for the configura-
tion space subset experimentally explored. The extension in
[21] justifies the application of KRNFs to more complicated
environments.

III. PROBLEM DEFINITION

A. Definitions

Let N∗ , N \ {0}, Ie , N∗
≤Ne

, Ii , N∗
≤Ni

, Ne, Ni ∈ N∗.
Assume that Ne trajectories are available, each with Ni

configurations xi(tj) ∈ Rn and velocities ui(tj) , dx
dt (tj)

measured in subsequent time instants tj indexed in increasing
order, where i ∈ Ie, j ∈ Ii. Also, assume that the desired
destinations qdi ∈ Rn are provided. Note that if qdi, ui are
not provided, then we can always set qdi = xi(tNi) and
numerically differentiate ui(tj) , xi(tj+1)−xi(tj)

tj+1−tj
, discarding

the last configuration, because it lacks a corresponding ui.
Let Xi , {xi(tj)}j∈Ii

, Ui , {ui(tj)}j∈Ii
denote each

configuration and velocity sample.

B. Problem Statement

The problem can then be stated as follows, Fig. 2. Using
the above experimental data E , {Xi, Ui, qdi}Ie find a
function β ∈ C2 (En,R) to satisfy equation

u(q)|q=xi(tj)
= − ∇φ(q)|q=xi(tj)

, ∀j ∈ Ii, ∀i ∈ Ie (3)

subject to the positivity constraints on the sampled points

β(q)|q=xi(tj) > 0, ∀j ∈ Ii, ∀i ∈ Ie (4)

and the workspace boundary ∂W closure requirement

β(q)|∂W ≤ 0 (5)

The positivity constraints (4) follow from the obstacle func-
tion definition β(q) > 0, ∀q ∈ F \ ∂F in the free space
interior. The closure at the workspace boundary (5) ensures
that the trajectories produced by the resulting controller will
always remain within W ⊂ En, the domain of our problem.

IV. INVERSE METHOD FORMULATION

In this section Eq.(3) is manipulated to derive an equiv-
alent Partial Differential Equation (PDE) for the unknown
obstacle function β, to be solved in § V.

In the problem formulation we have implicitly made the
working hypothesis that a function of the form of Eq.(2) can
adequately represent a controller producing the experimental
measurements recorded (or, equivalently, that a controller
of this form exists, which can produce such trajectories).
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This is expressed by equating the measured velocity u to the
gradient −∇qφ of the candidate Navigation Function φ at
the corresponding measured configurations in Eq.(3), i.e.,

∂φ

∂q
(q, qd) =

∂φ

∂γd
(γd, β)

∂γd
∂q

(q, qd) +
∂φ

∂β
(γd, β)

∂β

∂q
(q)

∇qβ(q) =
∇qφ(q, qd)− ∂φ

∂γd
(γd, β)∇qγd(q, qd)

∂φ
∂β (γd, β)

(6)
This is a PDE in the configuration q for the unknown obstacle
function β. Substituting the experimental results (3) in (6)

∇qβ(q)|q=xi(tj)
=

−

(
ui(q) +

∂φ
∂γd

(γd, β)∇qγd(q, qdi)
∂φ
∂β (γd, β)

)∣∣∣∣∣
q=xi(tj)

,

∀j ∈ Ii, ∀i ∈ Ie

(7)

were ui(tj) = ui(q)|q=xi(tj)
. In this equation ui(q)

is known from experimental measurements, ∂φ
∂γd

, ∂φ
∂β

are also known functions of γd(qd, q) and β(q), after
we have selected a φ, and γd,∇qγd are also known
functions of the experimental trajectory q = xi(tj) and
the known destinations qdi. As a result, we can substitute
ui(xi(tj)),

∂φ
∂γd

(γd(xi(tj)), β) ,
∂φ
∂β (γd(xi(tj)), β) , γd(xi(tj), qdi),∇γd(xi(tj), qdi)

to obtain a PDE which contains as unknowns only ∇β and
β. This then constitutes a PDE to solve in the unknown
obstacle function β : Rn → R under the constraints (4) and
(5). When a paraboloid attractive function γd is used, then
∇γd(q) = 2(q − qd). We still need to select a NF form.

By selecting a NF formula φ we can substitute the partial
derivatives ∂φ

∂γd
, ∂φ
∂β in (7). For the φ of (2) we obtain

∂φ

∂γd
= β

(
γk
d + β

)− 1
k−1

,
∂φ

∂β
= −1

k
γd
(
γk
d + β

)− 1
k−1

so substitution in (7) yields

∇β =

(
k
ui

γd

)(
γk
d + β

) 1
k+1

+

(
k
∇γd
γd

)
β (8)

which holds on the trajectory points xi(tj). This is a system
of first order semi-linear variable-coefficient partial differen-
tial equations. Its solution is described in § V.

V. SOLUTION

A. Setup

1) Splines: Basis splines (B-Splines) [22] were selected
as the solution basis. Therefore, the solution is searched in
the finite-dimensional space of B-spline coefficients, where

β(q) =

m1∑
i1=1

m2∑
i2=1

· · ·
mn∑
in=1

(
ci1i2...in

n∏
r=1

B (qr|tr)

)
(9)

with β ∈ C2 ([D,R]) is the interpolated obstacle function
over the domain D ⊂ Rn, q ∈ Rn is the system’s
configuration, qr ∈ R denotes the rth component of q,

C , {ci1i2...in}ij∈{1,2,...,mj},j∈{1,2,...,n} ∈ ×j∈{1,2,...,n}Rmj

is the coefficient tensor,

t = [trir , tr(ir+1), . . . , tr(ir+hr)]

tij ∈ R, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,mi + hi}

are the knot sequences of each dimension and hi ∈ R, i ∈
{1, 2, . . . , n} are the orders of the splines of each dimension
and B(qr|tr) are the basis functions. Let us also stack the
coefficient tensor in a vector of design variables for the
minimization problem

c , [c11···1, c21···1, . . . , cm11...1,

c12...1, c22...1, . . . , cm12...1, . . . , cm1m2...mn ]
T ∈ R

∑n
i=1 mi

The spline B-form is used instead of the piecewise poly-
nomial representation because it implicitly incorporates
smoothness constraints.

2) Domain of definition: The domain of definition D
is selected based on the variable limits of the problem
under consideration. Selection of an appropriate domain is
important because if its boundary ∂D is more than a knot
away from the closest trajectory point, then the boundary
closure (5) is implicitly satisfied during solution, provided
the initial iteration has β(∂D) = 0. This follows because per-
turbations of B-spline coefficients corresponding to boundary
knots do not affect the collocation error on the experimental
trajectories.

3) Knot allocation over dimensions: For each dimension
the recorded trajectories exhibit different variance. The num-
ber of B-spline knots allocated to each dimension is chosen
proportionally to the associated experimental variance. This
efficiently allocates more knots to dimensions where more
variability needs to be represented.

B. Iterative semi-linear PDE system solution

To solve the semi-linear PDE (8) under the positivity
constraints (4) an iterative gradient descent algorithm [23]
cN+1 = cN −λJ∇cJ has been applied, minimizing an error
functional J described in § V-B.2. The positivity constraints
are also incorporated in this functional, while the boundary
closure constraints (5) are implicitly satisfied, as already
described.
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Fig. 3. Obstacle function β from PDE solution using ne = 24 experiments.

1) Initial point: A flat obstacle β ≡ 0 is used as the initial
solution. Therefore, during the initial iteration, the main
effect originates in the terms Jsp, Jdp of the cost functional,
which are defined in the next subsection.

2) Optimization Cost Functional: The appropriate choice
of functional J : C2 (D,R) × De → [0,+∞) is crucial
for the successful solution for β. The cost functional used
here in the case of discrete samples (i.e., always for digital
computers)

J , 1∑
i∈Ie

Ni
(w1JPDE + w2Jsp + w3Jdp + w4Jbn)

JPDE ,
∑

i∈Ie,j∈Ii

∆Eij , Jsp ,
∑

i∈Ie,j∈Ii

s (β (xi(tj))− β0)

Jdp ,
∑

qdi,i∈Ie

s (β(qdi)− β0) , Jbn ,
∑

qn∈∂W

s (β(qn))

where wi ∈ (0,+∞), i ∈ {1, 2, 3, 4} are weighting factors,
offsets β0 serve numerical robustness (practical sign definite-
ness) by introducing a finite margin, function s : R → R is a

C2-smooth switch s(x) ,
{
x3, x ≤ 0

0, 0 < x
and the component

functionals are described hereafter. The satisfaction error of
PDE system (8) is accounted for in JPDE as

∆Ei ,
1

γk
d

∥∥∥∥∇β −
(
k
ui

γd

)(
γk
d + β

) 1
k+1 −

(
k
∇γd
γd

)
β

∥∥∥∥2
2

where term γk
d ensures a fair weighting along the trajectory.

Functional Jsp enforces positivity at the sampled points,
i.e., condition of Eq.(4). Positivity at the destinations is
ensured by Jdp. Domain closure Eq.(5) is imposed by the
boundary non-positivity functional Jbn. Here w4 = 0 for
reasons explained in § V-A.2. The optimization for the case
study in § VI is shown in Fig. 3.

C. Constructed controller

For a selected destination qd ∈ β−1((0,+∞)) the control
law is uc(t) = −∇qφ (x(t)) which yields

uc(t) = −
β (x)∇qγd (x, qd)− γd(x,qd)

k ∇qβ (x)(
γd (x, qd)

k
+ β (x)

) 1
k+1
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where x is the system’s state. The potential field and level
sets of a 2d controller for a selected qd are illustrated in
Fig. 4. The level set of a 3dimensional controller are provided
in Fig. 5.

VI. APPLICATION TO ANTHROPOMORPHIC
ROBOTIC HAND CONTROL

A. Experimental procedure

The ne = 24 grasping experiments of Table I have been
conducted with one subject grasping 13 different objects
using its right hand. Multiple tasks have been performed
for 6 of the objects. Snapshots of the experimental setup are
shown in Fig. 8 and a video accompanies this work. The hand
angles have been measured using a CyberGlove data glove
[24], which features electric angle sensors with 1◦ resolution
and records 22 degrees of freedom at a 100Hz sampling rate,
3 flexions/extensions for each finger apart from the thumb,
for which they are 2, 1 ab/adduction, palm arch and 2 wrist
degrees of freedom.

B. Principal Component Analysis

As is customary in the analysis of hand arm systems [14],
[15], [11], Principal Component Analysis [25] is applied. By
projecting the experimental data on the subspace spanned by



TABLE I
GRASPING EXPERIMENTS

No. Object Task

1,2,3,4 Tall glass Grasp: to drink, from side & move
from top & move, from side & rotate

5, 6, 7 Mouse Grasp to: slide, left click, right click
8,9,10,11 Cup same as tasks as 1,2,3,4
12 Hammer Grasp to use
13 Ashtray Grasp from above to move
14 Cube Grasp from above to raise
15, 16 Pen Write, Move
17, 18 Jar Move, Lid unscrewing
19 Screwdriver Grasp to operate
20 Book Grasp from right side to read
21 Mobile phone Pick up to view
22, 23 Scissor Grasp to: Move, Use
24 Stapler Grasp and use
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Fig. 6. Principal component cumulative normalized variances.

the 3 principal components with the greatest variance reduces
the high C-space dimension (22 measured angles), Fig. 7, and
captures 88.5% of the original variability, Fig. 6.

C. PDE Solution

The B-spline obstacle function obtained as the PDE so-
lution is shown in Fig. 3, together with the cost functional
J , design variable gradient norm ∥∇cJ∥, where c are the B-
spline coefficients in which the minimization takes place, and
B-spline variations throughout the optimization procedure.
The cost functional J exhibits a smooth convergence to
its minimum, which indicates robustness of the numerical
problem. We provide more examples in [?].

D. Hand Model definition

The human hand kinematic model described in [26] has
been used, with parametrically defined lengths, as functions
of the human hand length HL and hand breadth HB and pha-
langes modeled as ellipsoids [27]. More details concerning
the kinematic model used can be found in [28].

E. Comparison to experimental trajectories

A sequence of hand postures automatically generated us-
ing the NF on the 3-dimensional Principal Subspace of Fig. 7
is illustrated in Fig. 9. The hand destination configuration
has been selected to grasp a tall glass, similarly to the first
three experiments. The resultant reach-to-grasp trajectory of
the system is smooth and reproduces anthropomorphism in
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Fig. 7. Multiple automatically generated trajectories xi(t) (red dashed)
using a Navigation Function φ with k = 2 and the same obstacle function
β constructed over the 3 primary Principal Components. The obstacle
function is the solution of the PDE using the experimentally measured
trajectories xs(t) (blue continuous), Table I. Initial conditions are qsi(0)
(green squares) and the destinations are qdi (red circles).

Fig. 8. Experimental setup during reach to grasp. Hand angles, wrist and
object position and orientation in space and EMG signals are recorded.

a natural way. As far as arm movement is concerned, it
correlates with hand movement [29] and this allows us to
combine the methodology proposed here with previous work
on anthropomorphic arm control [11], for fully automatic
control of the complete hand-arm system. Alternative ap-
plications include hand prosthesis [15], where the subject
provides wrist movement and the controller can select the
appropriate configuration on the generated NF trajectory,
based on correlations with EMG signals and wrist proximity
to object.
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Fig. 9. Automatically generated grasping movement using Navigation Function in 3-dimensional principal subspace of Fig. 7, compare to Fig. 8.

VII. CONCLUSIONS AND FUTURE WORK

A method has been presented to construct Navigation
Functions from experimental measurements. This is achieved
by approximating an implicit obstacle function. This solution
is obtained in terms of splines after the iterative solution of
a nonlinear system of PDEs. Future work involves optimally
mapping generated movements to robotic hands different
than the human one and extension of the new method to
arm-hand system control.
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