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Abstract— Myoelectric control has seen decades of research
as a potential interface between human and machines. High-
density surface electromyography (HDsEMG) non-invasively
provides a rich set of signals representing underlying muscle
contractions and, at a higher level, human motion intent. Many
pattern recognition techniques have been proposed to predict
motions based on these signals. However, control schemes
incorporating pattern recognition struggle with long-term reli-
ability due to signal stochasticity and transient changes. This
study proposes an alternative approach for HDsEMG-based
interfaces using concepts of motor skill learning and muscle
synergies to address long-term reliability. Muscle synergy-
inspired decomposition reduces HDsEMG into control inputs
robust to small electrode displacements. The novel control
scheme provides simultaneous and proportional control, and is
learned by the subject simply by interacting with the device. In
a multiple-day experiment, subjects learned to control a virtual
7-DoF myoelectric interface, displaying performance learning
curves consistent with motor skill learning. On a separate day,
subjects intuitively transferred this learning to demonstrate
precision tasks with a 7-DoF robot arm, without requiring any
recalibration. These results suggest that the proposed method
may be a practical alternative to pattern recognition-based
control for long-term use of myoelectric interfaces.

I. INTRODUCTION

Myoelectric control, with potential to manipulate multi-
ple degrees-of-freedom (DoFs) simultaneously via muscle
activity [1], offers a convenient interface between humans
and machines, most notably in functional prostheses [2]
and robot teleoperation [3]. HDsEMG records a complete
set of muscle activity without requiring exact placement
over the desired muscles, and has been used in conjunction
with pattern recognition techniques to generate simultaneous
myoelectric control schemes [4]–[6]. However, these specific
control schemes depend on a user’s motion repeatability and
a training set of signals used to generate predicted outputs,
both of which are unreliable due to signal stochasticity and
transient changes over time [1]. Thus, state-of-the-art my-
oelectric control schemes struggle to provide reliable long-
term simultaneous control, which has limited the commercial
success of myoelectric interfaces [7].
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On the other hand, recent works have shown that users
adapt to myoelectric controls, regardless of their relationship
to normal kinematics, to improve control capabilities over
time when given visual feedback [8], [9]. Ison and Artemi-
adis related these adaptations to typical motor skill learn-
ing, resulting in performance retention, generalization, and
transfer for efficient control of myoelectric interfaces [10],
[11]. While these approaches demonstrate robust long-term
control, they rely on targeted muscles to avoid biomechanical
constraints, limiting them to control of a few DoFs [12]–[15].

This paper proposes a novel method for robust long-
term control of myoelectric interfaces using HDsEMG and
a control scheme based on concepts of motor skill learning
and muscle synergies. HDsEMG avoids the need of targeted
electrode placement required in previous motor learning-
based control schemes while maintaining long-term control
characteristics associated with learning new motor skills [15],
[16]. The developed scheme decomposes the incoming sig-
nals into robust muscle synergy-inspired inputs with intention
to control a 7-DoF robotic arm and hand (Cartesian position
and orientation, plus hand grasping). A two-state finite state
machine allows 4-DoFs to be controlled simultaneously, with
a switching method to change the control state between
position and orientation for full articulation of all 7-DoFs.
To the best of the authors’ knowledge, no other work has
demonstrated real-time control of a 7-DoF myoelectric in-
terface offering both session-independence and simultaneous
control from untargeted muscles.

The control scheme is learned by subjects as they interact
with a virtual reality (VR) interface over two days. Through-
out the two sessions, subjects display motor learning trends
consistent with previous works controlling fewer DoFs with
targeted muscles [10], [12], [13]. Between one and eight days
later, subjects test their capability to perform centimeter-
precision tasks with the 7-DoF robot arm and hand using
the same control scheme. Despite noticeable differences in
system dynamics due to physical constraints such as joint
limits and inertia, subjects naturally transferred their learning
to operate the robot with a sense of intuitiveness. This result
supports the proposed method as a viable alternative for
myoelectric interfaces designed for long-term use.

II. METHODS

The three-session experiment was designed to explore and
measure performance of a new control paradigm for a 7-
DoF myoelectric interface. Each subject learned a novel,
customized mapping over two sessions by interacting with
a VR interface. One to eight days later, subjects returned to
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perform a series of precision tasks, using a 7-DoF KUKA
Light Weight Robot 4 (LWR 4) with a Touch Bionics iLIMB
Ultra robotic hand attached.

A. Control Paradigm

The proposed control algorithm was engineered to provide
stable output using the rich set of information obtained from
high density (HD) electrode grids. The large number of
observations are reduced to a small set of robust inputs using
a muscle synergy-inspired dimensionality reduction. Namely,
the underlying model presented by Jiang et. al [17] states that
sEMG recordings, Y(t) can be interpreted as instantaneous
mixtures of muscle activation signals, F(t). Muceli et. al
[18] represent this relationship as:

Y(t) = W · F(t) (1)

with W a matrix of channel weights indicating the con-
tribution of the m activation signals to each of the n
electrodes. Its columns, Wi, i ∈ {1..m}, approximate a
user’s muscle synergies in the form of a high-level input
[1]. W is obtained using the DoF-wise non-negative matrix
factorization (NMF) algorithm as described in [17]. Due to
NMF’s intrinsic properties, k < m robust, quasi-independent
activation signals are extracted by approximating a subset of
k independent columns in W, resulting in an n × k semi-
orthogonal matrix, Ŵ. The algorithm generating Ŵ is as
follows, where G is a 4 × 4 Gaussian kernel, A ∗B is the
2D convolution of A and B, and δ(V) thresholds V to zero
at one standard deviation below the largest element of V:

1) Reshape each Wi according to the 2D configuration
of the HD electrode grid.

2) For each Wi: W′
i = δ(Wi) ∗G

3) Merge W′
a and W′

b, where W′
a and W′

b have the
closest cosine similarity of all W′

i pairs.
4) Repeat step 3 until only k matrices remain in W′.
5) For each remaining W′

i: W′
i = δ(W′

i) ∗G
6) For each W′

i: Ŵi =
W′

i

|W′
i| , reshaped to a row vector

The semi-orthogonality of Ŵ guarantees that the left inverse,
Ŵ−1

left, exists, and is simply the transpose, ŴT. Thus,
(1) can be rearranged to decompose HDsEMG into quasi-
independent control inputs, F̂(t), approximating activation
signals F(t):

F̂(t) = ŴT ·Y(t) (2)

Ŵ is initially calibrated using linear envelopes [19] ex-
tracted from n HDsEMG channels. A randomized linear
mapping is adapted from [10], transforming n linear en-
velopes of sEMG, Y(t), to c control outputs, U(t):

U(t) = gMŴT [(Y(t)− σ) ◦ u(Y(t)− σ)] , (3)

where ◦ is an element-wise matrix multiplication, u(∗) is the
unit step function, σ is the muscle activation threshold, and
g is the output gain. Both σ and g can be tuned for each
subject, and M is a semi-random mixing matrix converting
F̂(t) to the control outputs U(t). U(t) is averaged over the
last five outputs to provide consistent control.

TABLE I
FINITE STATE MACHINE CONTROL AXES

Control Axis Position State Orientation State
1 X Yaw (φ)
2 Y Pitch (θ)
3 Z Roll (ρ)
4 Color (Virtual) or Hand Open/Close (Robot)

Fig. 1. Visualization of mapping M, transforming control inputs F̂(t) to
four output control axes U(t), where each axis is as defined in Table I.

In this experiment, the 7-DoF control scheme is imple-
mented as a two-state finite state machine (FSM), with each
state offering simultaneous control of velocities over 4-DoFs
(see Table I). M is designed to cover the entire output space
(c = 4) using minimal inputs (k = 6) while decoupling
control axes 1-3 from control axis 4 (see Fig. 1):

M =


0.52 −0.94 0.42 0.00 0.00 0.00
0.79 0.06 −0.85 0.00 0.00 0.00
−0.33 −0.34 −0.33 1.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 −1.00


(4)

State switching is done by monitoring the simultaneous
threshold breech between the last two activation inputs, F̂5

and F̂6, contributed by an antagonistic muscle pair.
1) Pre-Processing: The HDsEMG signals are subtracted

from the mean of all channels to dampen the influence
of common noise, and then rectified and low-pass filtered
(fourth-order zero-lag Butterworth, cut-off 3Hz). Finally, the
signals are filtered by a 3x3 median filter to minimize
the effects of electrode lift-off. The sEMG signals of an
additional antagonistic muscle pair are rectified, low-pass
filtered (fourth-order zero-lag Butterworth, cut-off 3Hz), and
normalized with respect to the subject’s maximal voluntary
contraction (MVC) for these two muscles, as found during
the initial calibration. Both series of signals are then sub-
sampled to 200Hz and merged to create Y(t).

2) Calibration: Each subject is first guided through the
calibration stage described in [20] to generate a unique
W. A total of 16 wrist and finger motions from the right
arm are investigated - wrist flexion/extension, wrist prona-
tion/supination, ulnar/radial deviation, hand open/close and
flexion/extension of the index, middle, ring, and pinky fin-
gers. 192 HDsEMG signals are collected from the subject’s
forearm using HD electrode grids to form an initial Ŵ0 with
k0 = 4. Two additional columns are added with unit input on
the 193rd and 194th rows, respectively, and zeros elsewhere.
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Fig. 2. VR control setup including the sEMG systems and monitor.

These two columns contain the sEMG from biceps brachii
(BB) and triceps brachii (TB), resulting in a 194× 6 matrix
Ŵ. During this calibration phase, subjects are also asked to
perform their MVC for BB and TB to initially set the state
switching threshold at 50% of it. MVC values are not needed
from the HDsEMG, as explained in [10].

3) Robot Control: There is a slight difference in operation
between VR and robot control induced by joint limits, singu-
larities, and inertia. LWR 4 operates in Cartesian impedance
control using inverse kinematics when the control state
is in position, and joint impedance control using forward
kinematics of the three wrist joints when the control state
is in orientation mode. The switch is enforced to reduce the
risk of joint velocity and position limits being exceeded while
rotating through singularities. Global ρ, φ, and θ are limited
to ±π3 radians to avoid physical limitations while rotating.
The iLIMB operates via Bluetooth with velocity commands
sent to open/close all fingers at 200Hz.

B. Experimental Setup

Two sEMG systems were used for data collection. The first
system included 192 monopolar channels from the subject’s
forearm using three equidistant semi-disposable adhesive
8× 8 grids with 10mm inter-electrode distance. The EMG-
USB2, OT Bioelettronica amplifier was set to gain of 1000
with internal bandpass filter at 3 − 900Hz, broadcasting
samples via TCP at 2048Hz with 12-bit depth for further
processing, as in [18]. The second system included two
bipolar channels placed on the BB and TB muscles. These
wireless sEMG electrodes (Delsys Trigno Wireless) were
acquired with a gain of 500, digitized with 16-bit depth at a
frequency of 1926Hz and broadcast via TCP. Both interfaces
receive commands at 200Hz from a custom program using
C++ and OpenGL API [21]. This program performs real-
time processing and conversion of sEMG inputs into control
variables of linear velocity, angular velocity and color/grasp.
The full setups are shown in Fig. 2 and 3, respectively.

C. Experimental Protocol

Subjects, without prior knowledge on how to control the
interface, attended three sessions across several days. The
first session consisted of the calibration phase described
above, followed by an introductory control phase. The con-
trol phase introduced subjects to the VR helicopter, with 20
minutes of exploration, in which the subject was encouraged

Fig. 3. Robot control setup including the sEMG systems, LWR 4, iLIMB,
and three target objects to grasp and move to the bin.

(a) (b)

(c) (d)
Fig. 4. Subtask sequence in VR. The helicopter starts from the initial
configuration (a), moves using position state control to the center of the
ring (b), switches to orientation state and aligns with the target on the wall
(c), and finally matches the color, representing the grasp control, of the top
panel (d). Note that the color task can be completed simultaneously, but the
position and orientation task must be completed in order.

to explore the space and become familiar with the control
paradigm, followed by 26 tasks to be completed. The tasks
are distributed as to cover the entire volume of the task-space
and require activation of all available DoFs, as explained in
Fig. 4. After completing each full task, the helicopter returns
to the center of the screen with an initial orientation and
color followed by a ten second break. There was no time
limit imposed in order to encourage users to explore and
discover a comfortable control. The random arrangement of
targets was consistent for each subject in the experiment.

The second session occurred at least 24 hours after the
first. Subjects were given one hour to accomplish as many
tasks as possible while using the same control scheme and Ŵ
calculated during the first session. This session provided data
regarding learning retention and continued learning trends.

The final session occurred between one and eight days
after the second. Subjects were introduced to the robot my-
oelectric interface, while using the same control scheme and
Ŵ calculated in session one. Subjects are asked to complete
three precision tasks, with no strict order, by sequentially
grasping a tennis-sized ball and two customized clothespins
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(a) Clothespin 1 grasp (subject perspective) (b) Clothespin 2 grasp (subject perspective) (c) Ball grasp (top view)
Fig. 5. Subtask sequence for the robot interface. The robot hand is controlled to grasp two clothespins and a ball. Each object is arranged such that the
hand must change both position and orientation to grasp the object. The object is then placed into the bin below the table. The order in which these tasks
are completed is determined by each subject. The clothespins must be grasped as shown in the images to successfully complete the task.

TABLE II
EVALUATION METRICS

Metric Linear Learning Fit
Completion Time (CT ) CT (b) = κct − βctb

Throughput (TP ) TP (b) = κtp + βtpb
Path Efficiency (PE) PE(b) = κpe + βpeb

to place in a bin. The task sequence is timed and shown in
Fig. 5. This session provided evidence of precision control
capabilities and learning transfer despite slightly different
system dynamics of the robot compared to the VR.

D. Data Analysis

During the first two sessions, collected datasets contained
values describing task difficulty, completion times, and path
lengths used to accomplish each task. This data was analyzed
in data blocks containing 25% of each session’s data from
all subjects. The total completion time is recorded for the
third session to indicate precision performance capabilities
and any factors influencing these capabilities.

1) Learning Trends: Metrics used for assessing perfor-
mance in the first two sessions are provided in Table II,
using first degree polynomials to fit the results with respect
to block number. These linear trends are assumed according
to [10], as the initial exponential learning component has
been accounted for in the first 20 minutes of exploration.
CT is the time needed to fulfill the task [22]. TP , ex-

pressed in bits/second according to Fitts’ law [23], measures
both speed and accuracy by considering the difficulty of the
task [9]. PE is the ratio between the shortest path possible
to complete the entire task and the actual path taken to reach
the target [24]. b is the overall block number in session 1
and 2, κ is initial performance, and β shows the learning
rate, such that β > 0 indicates better performance and a
significant learning component, for each metric.

The index of difficulty, ID, of a given task is given by
the Shannon Formulation [23]:

ID = log2(
D

WD
+ 1) (5)

where WD is the combined error tolerance of all targets (held
constant throughout this experiment), and D is the optimal
distance needed to complete the task:

D =
1

g
(0.471γ1 + γ2) (6)

with γ1 as the straight line distance from the starting position
to the center of the ring, and γ2 as the angular distance
between the starting orientation of the helicopter and the
target orientation, with respect to vectors originating at the
center of the ring. γ1 is normalized by the ratio between the
output linear velocity in position state and output angular
velocity in orientation state when given unit input F̂(t). TP
is then calculated as:

TP =
ID

CT
. (7)

2) Robot Control: Subjects qualitatively demonstrate their
control capabilities by completing precision tasks in the
third session. This performance is influenced by a vast
number of immeasurable factors (strategy, understanding of
physical constraints on the joints, etc.). Other factors, such
as performance in the virtual tasks, time between session
two and three, and the choice of Ŵ, are quantified and
ranked based on correlation with the total time needed by
each subject to complete the precision tasks.

To establish a baseline completion time for this set of
tasks, the same subjects returned to perform the same tasks
with more conventional, noiseless keyboard inputs generating
F̂(t). Subjects were given 10 minutes to practice controlling
the robot, learn the physical constraints, and develop a strat-
egy for completing the tasks. The subjects then completed the
same three precision tasks as previously done with sEMG.

III. RESULTS
In total, eight healthy subjects (all male, age 19-40, 1 left

handed, 7 right handed) participated in the experiment upon
signing the informed consent according to the procedures ap-
proved by the ASU IRB (Protocol: #1201007252). Potential
outlier behavior was observed in two subjects. One subject
experienced sudden confusion during the second session
(block 6) which caused a loss of control and led to tension as
he struggled to recover prior performance. On the other hand,
a different participant nearly mastered the controls during
the exploratory 20 minutes, and displayed minimal learning
throughout the rest of the sessions. Both subjects are included
in all presented results, with the influence of the former most
visible at the analysis of block 6.

A. Learning Trends

On average, subjects had 30 hours between session one
and two, and all but one reported control to be easier during
the start of the second session despite having no exploration
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TABLE III
LEARNING TRENDS FITTING PARAMETERS

Metric β β [95% CI] κ R2

CT (b) 17.10 [12.40,21.70] 177.0 0.94
TP (b) 0.023 [0.019, 0.028] 0.06 0.98
PE(b) 0.031 [0.024, 0.038] 0.20 0.10

Fig. 6. VR performance metrics as functions of block numbers across
all subjects. Each metric shows a significant and consistent learning rate re-
gardless of the break between sessions. Error bars represent 95% confidence
intervals within each block.

time and potential electrode shifts between sessions. The
mean values of CT , TP and PE within each block were fit
to Table II, with parameter values presented in Table III.

Table III reveals a significant learning rate for each of CT ,
TP and PE, visualized in Fig. 6. Despite the non-intuitive
control scheme resulting in initial poor performance, subjects
consistently improve their performance metrics, even after
beginning a new session. Both CT and TP have strong linear
fits, while PE has a poorer fit, which is expected due to
the bias toward higher variance as the mean path efficiency
increases [10]. As shown by the differences between blocks 4
and 5 in Fig. 6, all subjects were able to maintain consistent
learning despite the break between sessions. Note that the
inconsistency in block 6 is caused by one subject suddenly
experiencing confusion.

B. Robot Control

Subjects had an average of 97 hours (∼ 4 days) between
session two and three. Again, all but one subject found con-
trols consistent during the start of the third session. However,
all subjects reported occasional delays in the control outputs,
which were actually caused by generating outputs exceeding
physical joint and velocity limits. An example task sequence
is shown in Fig. 7. A supplementary video demonstrating the
various precision tasks is available at:
https://www.youtube.com/watch?v=Qrel34jA4TQ.

The relationship between the robot task completion time
and identified sources of influence are considered by corre-

TABLE IV
INFLUENTIAL FACTORS IN ROBOT COMPLETION TIME

Factor Correlation (R)
Throughput -0.82

Completion Time +0.70
Path Efficiency -0.61

Delay -0.16
Ŵ +0.37

lation coefficients between the metrics for each subject, dis-
played in Table IV. The only significant correlation observed
is with throughput from the end of session two. Completion
time and path efficiency at the end of session two are
moderately correlated, while the weak negative correlation
with delay suggests that performance degradation is not a
significant factor in the robot control.

Ŵ is considered using cosine similarity to the subject
with significantly better control than any other subject (robot
task completion time was only 6 minutes) to determine if
the choice of Ŵ may have influenced the performance.
The weak positive correlation suggests that subjects with
similar signal decompositions complete tasks in more time.
This implies that the exact control input used is not a
significant factor in the performance. As confirmation, the
input similarities are compared with TP , CT and PE values
at the end of session 2, resulting in only weak relationships
R = 0.08, 0.17, and 0.41, respectively.

Mean completion time for all three precision tasks with
sEMG was 30.6 minutes (95% CI [18.0, 43.1]). 7 subjects
returned to establish a baseline performance time with key-
board inputs, which was 13.3 minutes (95% CI [7.2, 19.4]).
While the significant difference (p = 0.01, paired student
t-test) is expected due to the additional preparation time
and familiarity with the tasks during the keyboard control,
the best overall performance (6 minutes) was achieved by a
subject with sEMG inputs. This subject is the only one in the
study with significant video gaming experience. Clingman
et. al [15] found that people with a background playing
video games learn myoelectric control tasks much faster,
perhaps due to enhanced ability to explore the potential input
space. This, and the consistent learning trends shown by the
other subjects, suggests that additional VR sessions may have
allowed most subjects to perform similarly to the baseline
completion time.

IV. CONCLUSION

This work presents a novel motor learning-based control
scheme to control a 7-DoF robotic arm and hand. A muscle
synergy-inspired decomposition transforms HDsEMG into
quasi-independent control inputs robust to slight electrode
displacements and other external influences during long-
term control. This decomposition removes constraints of
targeted electrode placement while maintaining the session-
independent benefits associated with motor learning. The
control scheme produces simultaneous and proportional con-
trol of 4-DoFs in a two-state FSM offering both position and
orientation control.
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(a) (b) (c) (d) (e)

Fig. 7. Example chronological task sequence completed by a subject, with two examples of unsuccessful grasps (a and d) in red, and three successful
grasps (b, c, e) in green, demonstrating the precision required to complete the tasks.

The study evaluates myoelectric motor learning from all
healthy subjects through a practical control scheme designed
for any general myoelectric interface. The performance of
each subject in VR correlates with a sense of intuitive
precision control with the robot. This implies that virtual
interfaces may be used to implicitly train subjects to interact
with a physical device. These findings may be significant
for rehabilitation with amputees, as these motor learning
principles may help them intuitively use functional prosthetic
devices. This will be investigated in future work.

All subjects demonstrate learning trends consistent with
typical motor skill learning, despite not knowing the con-
trol inputs nor non-intuitive mapping. The controls can be
enhanced over time simply by interacting with the inter-
face, similarly to learning a new motor skill. This learning,
combined with the robust decomposition, offers robust long-
term control desired in many myoelectric applications. The
results confirm significant learning trends correlating with
a feeling for more intuitive control, supporting this method
as a potential alternative to pattern recognition for robust
long-term control of myoelectric interfaces with enhanced
functionality.
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