
  

 

Abstract  The purpose of this work is to optimize the stiffness 

of a novel parallel-actuated robotic exoskeleton designed to 

offer a large workspace. This is done in an effort to help 

provide a solution to the issue wearable parallel actuated robots 

face regarding a tradeoff between stiffness and workspace. 

Presented in the form of a shoulder exoskeleton, the device 

demonstrates a new parallel architecture that can be used for 

wearable hip, ankle and wrist robots as well. The stiffness of 

the architecture is dependent on the placement of its actuated 

substructures. Therefore, it is desirable to place these 

substructures effectively so as to maximize dynamic 

performance for any application. In this work, an analytical 

stiffness model of the device is created and validated 

experimentally. The model is then used, along with a method of 

bounded nonlinear multi-objective optimization to configure 

the parallel actuators so as to maximize stiffness for the entire 

workspace. Furthermore, it is shown how to use the same 

technique to optimize the device for a particular task, such as 

lifting in the sagittal plane. 

 

I. INTRODUCTION 

In the field of exoskeleton robotics, the close-loop 
architecture of parallel manipulation offers many advantages 
over open-loop serial chain manipulation. While the 
comparatively simple kinematics and large workspace of the 
serial manipulator gave rise to its popularity, the parallel 
manipulator offers low end-effector inertia, high acceleration, 
high position accuracy, and the potential for high stiffness [1-
3]. In addition, certain parallel manipulators such as the 3-
SPS (spherical-prismatic-spherical) [4] and 3-RRR (revolute- 
revolute- revolute) [5] designs can operate without occupying 
their center of rotation, which is particularly useful when 
interfacing with biological joints such as the shoulder, hip, 
wrist and ankle with multiple degrees-of-freedom (DoF). 

Parallel manipulators have been used before for several 
different exoskeleton applications. Prior works include 
wearable wrist [6], ankle [7] and shoulder [8] devices. All of 
these demonstrate different types of parallel architecture. The 
RiceWrist [6] uses a 3-RPS (revolute-prismatic-spherical) 
manipulator with an additional serial revolute joint to 
generate 4-DoF. These DoF include the rotation of the 
forearm, wrist height and 2-DoF in rotation of the end-
effector platform. The Anklebot [7] uses a 2-SPS-1S 
(spherical-prismatic-spherical, spherical) manipulator that 
consists of spherical joints and prismatic actuation in 
conjunction with the biological joint to achieve spherical 
motion. The shoulder exoskeleton BONES [8] uses a RRPS 
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(revolute-revolute-prismatic-spherical) manipulator to 
decouple and control three rotational DoF. Because all of 
these architectures, along with the previously mentioned 3-
SPS and 3-RRR, generate spherical motion through parallel 
actuation, they can further be categorized as spherical parallel 
manipulators. 

Spherical parallel manipulators (SPMs) typically offer a 
larger workspace than higher DoF parallel architectures [9, 
10]. This is because they require fewer actuated substructures 
and therefore experience less mechanical interference 
between substructures. However, this also means they have 
fewer active DoF, which normally results in a drop in 
stiffness performance [11-13]. This can be problematic, 
particularly for augmentative exoskeleton systems, which 
must maintain rigidity under heavy loading in order to 
function effectively. 

In an effort to improve the workspace/stiffness tradeoff of 
SPMs, the authors have introduced a new method of parallel 
architecture design in previous work [14]. The presented 
method involves coupling specific motions of each 
independent parallel substructure in order to increase the 
number of active DoF, which works to both constrain the 
kinematics and increase stiffness of the entire structure. This 
method was demonstrated by applying it to the design of a 
novel shoulder exoskeleton. Both the kinematics and 
workspace of the prototype developed were solved and 
experimentally verified in previous work [14]. 

One advantage of the new parallel architecture introduced 
in [14] is the flexibility of actuator placement. The three 
substructures that comprise the device can be placed in any 
position about a center point. Choosing this placement is 
critical, as the stiffness of the device was found to be highly 
dependent on the configuration of these substructures. For 
this reason, it is desirable to place these substructures 
effectively so as to maximize dynamic performance. 
Optimization techniques can be employed to maximize 
stiffness across an entire workspace or even for particular 
task, such as lifting in the sagittal plane.  

The development of a stiffness optimization model would 

not only allow the stiffness of the shoulder exoskeleton to be 

maximized for a desired task or workspace, but it would also 

allow the architecture to be optimized for other joints as 

well. For example, this could include stair climbing for a hip 

device or running for an ankle device. Because of the 

significance that such a tool would have on the potential 

application of the novel parallel architecture described, this 

optimization problem is the focus of this work. 
The rest of this paper presents the steps taken to optimize 

the stiffness of the exoskeleton shoulder for a desired task or 
workspace. The sections are organized as follows: Section II 
provides (1) a brief overview of the shoulder exoskeleton 
design, (2) the model used to characterize stiffness, (3) the 
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experimental setup to validate the stiffness model and (4) the 
optimization techniques used to maximize stiffness. Section 
III details (1) the results of the stiffness model validation 
experiment and (2) the optimal actuator placement to 
maximize stiffness in the sagittal plane and for an entire 
workspace. Finally, Section IV concludes the paper with a 
discussion and summary of the contribution. 

II. METHODS 

A. Design Overview 

The developed shoulder exoskeleton is presented in Fig. 
1. A simulation created to illustrate its design and operation 
can be found at https://youtu.be/vm9iL-SyoS8. The mobile 
shoulder piece depicted has three decoupled rotational DoF 
centered about the convergence point C. This point is 

well. However, due to possible translational motion of the 
may be an error between C and 

mechanical interference generated by the position error 

cuff of the device. The cuff, which acts as an interface 
between user and device, is positioned approximately 

concentric open cylinders. The inner cylinder is padded with 

cylinder is connected to mobile shoulder piece by aluminum 
tubing. When joint misalignment between the user and device 
occurs, the inner cylinder will translate within the outer 
cylinder.  

The spherical motion of the shoulder piece is 
accomplished by using three linear actuator substructures. 
Each substructure  has three DoF: pitch , roll  and 
linear stroke . The pitch and linear stroke of each 
substructure are mechanically coupled in order to achieve an 
arc motion of the substructure end effector. The method of 
coupling is a mechanical slider geared to the linear stroke and 

connected to an armature which adjusts the pitch of the 
actuator to a corresponding stroke length. This mechanism is 
detailed in Fig 2. By adjusting key variables of the motion 
coupling mechanism, such as slider speed and/or armature 
length, it is possible to adjust the radius and curvature of the 
substructure end effector motion. This may be necessary to 
avoid mechanical interference between the device and large 
or small users.   In the current configuration, the arc is set to a 
constant radius of 9.5 cm. This radius was determined 
through measurement of the outer surface of the lateral and 
posterior deltoids to the approximate center of shoulder 
rotation of three adult male subjects. The roll of each 
substructure is not directly constrained, but rather set by the 
synergistic motion of all three substructures. Each actuated 
substructure is connected to the mobile shoulder piece using 
a 3-DoF tie rod joint. 

Each actuator substructure was built using a linear 
actuator (FA-PO-35, Firgelli, WA). The top two actuators 
have a stroke length of 15.2 cm and the bottom actuator has 
a stroke of 10.2 cm. Each actuator was stripped of its stock 
motor and gearbox and modified to include a drill motor 
(393111-01, DeWalt, WI), custom gearbox, motion coupling 
mechanism, and feedback sensors. The coupled pitch angle 
and linear stroke length of each actuator are measured using 
an encoder (E6C2, Karlsson Robotics, FL) with a resolution 
of 1024 pulses/rotation. The roll is measured using a 10K 
ohm potentiometer (3590S, Bourns, CA). For testing 
purposes, each actuator substructure is mounted to a 
stationary frame. For the configuration and global frame 
orientation shown in Fig. 1, the Cartesian location of the top, 
middle and bottom mounting point with respect to C is [-33, -
10, 19]

T
 cm, [-28, -17, -20]

T
 cm and [-10, -12, -24]

T
 cm,  

respectively.  
To operate the exoskeleton, a keyboard control scheme 

running on an off-board PC was used. A Matlab (Mathworks, 
MA) script was developed to map arrow keys to the elevation 
and azimuth of the shoulder piece. The program receives 
feedback from the onboard sensors via serial communication 

 
Fig. 1: Implementation of the parallel actuated wearable robotic joint in a shoulder exoskeleton application. Shown on left is the interface of the actual 

prototype with a user. Shown on right ) joints illustrated. The convergence point C represents 
tion and translation, respectively. The 

variables ,  and  represent the pitch, roll, and linear stroke of each actuator substructure , respectively. 
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with a microcontroller (Mega 2560, Arduino, Italy) along 
with user input and uses it to solve the forward and inverse 
kinematics. Given an elevation and azimuth, the program 
determines the optimal roll angle of the shoulder piece about 
the user arm axis in order to keep it within the stroke length 
of all three actuators. Since the user does not have control 
over the roll angle of the shoulder, the passive cuff rotational 
DoF has been incorporated into the design in order to 
prev
arm. For a given desired shoulder orientation, actuator 
position and velocity commands are sent from the off-board 
PC through the Arduino microcontroller to a set of three PID 
motion controllers (0-KANGAROO2, Dimension 
Engineering, OH). Each PID controller is connected in loop 
with a 10 A motor driver (0-SYREN10, Dimension 
Engineering, OH). 

Additional details regarding the design are provided in the 
prior work [14]. This reference also provides an analysis of 
the kinematics and workspace, which have been excluded 
here for brevity. 

 

B. Stiffness Model 

In order to rapidly characterize the stiffness of the 
shoulder exoskeleton for different mounting point 
configurations and end effector orientations, an analytical 
model was created to calculate stiffness at the center of the 
shoulder piece. The model was developed using a matrix 
structural analysis method and closely follows the work of 
[15]. For brevity, the reader will be referred back to this prior 
work for some of the more derivative or expansive steps 
required in the development of this model. With the model, it 
is possible to generate the theoretical translational and 
rotational stiffness ellipsoids for different configurations and 
orientations in order to establish a basis for comparison.  

To begin, each actuated substructure   is 
deconstructed into nodes that correspond to characteristic 
points. Shown in Fig. 2 are the node locations for each 
actuator. The nodes are linked by either a flexible beam or 
passive revolute joint. It should be noted that beams must be 
modelled as flexible, since even minor beam deflections can 
have an impact on end effector stiffness.  Each beam  is 
fixed at its ends by one or two nodes, depending on its 

location in the substructure. Each beam is therefore 
represented by either a 6x6 or the 12x12 beam stiffness 
matrix  as defined in Euler Bernoulli beam theory. 

Before these beam stiffness matrices  can be assembled 

into one stiffness matrix , each must be multiplied by a 

matrix   comprised of rotation sub matrices , which 

describe  with respect to the global frame. The rotation 

of  by   is given by 

 

                                (1) 

 

where  

 
The dimension of   is determined by the dimension of 

. The rotated stiffness matrices  can then be used to 

construct  in accordance with the stiffness matrix 

assembly technique described in [15-16]. 

The matrix   describes the stiffness of the substructure 

before the inclusion of the passive joints.  Each passive joint 

is defined by a matrix   that describes the kinematic 

relation between adjacent nodes  To define this relation, let 

 be the unit vector which describes the 

revolute axis of a passive joint composed of two adjacent 

nodes. The coordinate frame of each node can be 

constructed using  and the axially vector  of the 

adjacent beam. The third coordinate frame vector,  can 

be determined by . These coordinate 

frames of the two adjacent nodes can be related by a rotation 

about . The vectors of this rotation can be defined as:   

 

       (2) 

The complete kinematic relation between the two nodes 
that describes the passive revolute joint is derived in [10] and 
given as: 

        (3) 

 

 
Fig. 2: Shown on left is one of the three actuated substructures with its active (green) and passive (red) DoF depicted. Key components are as follows: A) motor, 
B) pitch and stroke feedback encoder, C) roll feedback potentiometer, D) motion coupling mechanism with actuated slider and pitch control arm, E) 3-Dof 

platform mounting joint. Shown on right is the actuated substructure equivalent nodal diagram. 
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Fig. 3: Shown on left is the shoulder piece. Shown on right is the shoulder 
piece equivalent nodal diagram with node 7 acting as the end effector 
position. 

 

The  matrices are assembled into a single kinematic 

relation matrix  in a similar manner to . The total 

substructure stiffness matrix, which includes the effects of 

both the flexible beams and revolute joint, is derived using 

the minimum total potential energy principle and given as:  

            (4) 

 
It is possible to calculate the displacement at the last node of 
each substructure  by permuting   in order to partition 

the endpoint substructure stiffness matrix , which 

describes the last node. To define the stiffness of the entire 
structure,  must be assembled to the end effector. 

The nodal diagram of the end effector is shown in Fig. 3. 
Since the shoulder piece interconnects all three substructure 
endpoint nodes and the end effector node, it can no longer be 
accurately described by Euler Bernoulli beam theory. 
Instead, it will be modeled as set of rigid beams with infinite 
stiffness, which will require the introduction of a new 

kinematic relation. To start, let define the 

vector between two nodes linked by the rigid beam. The 
corresponding skew-symmetric matrix of this vector is: 
 

       (5) 

 
The complete kinematic relation between the two nodes 

that describes the rigid beam is derived in [10] and given as: 

        (6) 

With the rigid beam defined, the kinematic relation matrix 
 of the shoulder piece is constructed. The assembly 

procedure for  is the same as it was for  , but with the 

inclusion of . Along with , the substructure stiffness 
matrices is assembled into a single matrix . The 

assembly technique used to construct  is the same used for 

. The stiffness of the entire shoulder exoskeleton is 

derived by using minimum total potential energy given as: 
 

 

Fig. 4: Experimental setup for testing stiffness: (A) KUKA robotic arm, (B) 
ATI force sensor, (C) Exoskeleton shoulder. 

 

 

             (7) 

 

As with , it is possible to calculate the displacement 

at the end effector by permuting  in order to partition 

the equivalent 6x6 end effector stiffness matrix ,  which 

describes the stiffness at node 7 in Fig. 3. 

The matrix  can be visualized by its translational and 

rotational stiffness ellipsoids. As defined in the work of [17], 

these ellipsoids are created by first separating  into a 

symmetric component  and an antisymmetric component 

. Assume: 
 

        (8) 

 
Then  and  can be written as: 
 

      (9) 

 

        (10) 

 

where . The eigenvalues and eigenvectors of 

the symmetric component  can now be used to represent 

the direction and magnitude of the translational and rotational 

stiffness matrices. The first three eigenvalues and three 

eigenvectors pairs correspond to the axes of the translational 

stiffness ellipsoid, while the last three correspond to the axes 

of the rotational stiffness ellipsoid.  

 

C. Stiffness Model Testing 

To check the results of the stiffness model, an experiment 

was performed to compare theoretical stiffness to that of the 

prototype. A 6-axis force/torque sensor (Delta IP65, ATI, 

NC) was coupled to the exoskeleton shoulder oriented at 90° 

flexion in order to measure forces and torques corresponding 

to displacement. To provide accurate displacement, a 7-DoF 

A

B
C
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robotic arm (LBR iiwa R820, KUKA, Germany) connected 

to the sensor was used. The shoulder piece used for the 

model and experiment has a 90° angle between tie-rod 

mounts, instead of the 45° angle shown in Fig. 2 and Fig. 3. 

This was done because early testing of the stiffness model 

suggested that it would produce more homogeneous stiffness 

ellipsoids. The experimental setup is shown in Fig. 4. 

 Translational displacements of 3 mm were commanded 

along +X, +Y and +Z. Rotational displacements of 1.5° 

where commanded about +X, +Y and +Z. Forces and 

torques corresponding to displacement were recorded at 1 

kHz. The mean force measured over 5 s was used to 

calculate stiffness. These six measurements about the six 

DoF were chosen as they can be related by a transformation 

to each column of the theoretical stiffness matrix. As 

previously mentioned, this stiffness matrix is a function of 

the kinematic relation matrix . The matrix  is very 

sensitive to change, so if it were not correct, then it would be 

expected that most, if not all six measurements to be 

significantly different from the theoretical model.  

  For the simulation, the flexible beams 3-4 and 6-9 shown 

in Fig. 2 were modeled as 1045 carbon steel and 2024 

aluminum, respectively. The flexible beam 5-7 shown in Fig. 

2 and the rigid links 4-7, 5-7 and 6-7 shown in Fig. 3 were 

modeled as ABS plastic. All critical dimensions used in the 

simulation match those of the prototype.  

 

D. Stiffness Optimization 

In order to maximize stiffness over a predetermined 

workspace, the placement of each actuator needs to be 

determined through optimization. Given that this is a 

bounded nonlinear multi-objective (rotation and translation) 

optimization problem, a genetic algorithm was implemented 

to determine the best actuator placement for a specified 

orientation. 

this. The genetic algorithm function (ga) was given the 

stiffness ellipsoid volumes as negative values to minimize, 

thus maximizing the positive volumes. Maximizing the 

ellipsoid volumes will also promote homogenous ellipsoid 

solutions, since more spherical ellipsoids will contain greater 

volume. Possible solutions were restricted to the region 

( , ,

m corresponding to the reference frame shown in Fig. 

1 with origin . This region was chosen so that the actuators 

would be positioned behind the user at a comfortable 

distance. 

The workspace of the shoulder piece and cuff were 

bounded by the octant (+X, +Y, -Z) shown in Fig.1 with 

origin , which can also be defined by the three arm 

orientations: 90° flexion, 90° abduction, and at rest. 

Incremental 10° changes in inclination and azimuth of the 

shoulder piece across the entire workspace produces a point 

cloud of best solutions for each actuator base mount. The 

virtual center of each point cloud is taken as the generalized 

optimal solution for the corresponding workspace.  

In addition to optimizing stiffness for the entire 

workspace, it is possible to optimize stiffness for a particular  

 
Fig. 5: Projections of the theoretical stiffness ellipsoid (black), measured axis 

stiffness (red) and actuator orientations for 90° flexion (dotted black). 

 

 

task, such as lifting in the sagittal plane. To do this, the 

shoulder piece was incremented in 5° intervals between the 

arm at rest and 90° flexion. Similar to optimizing for the 

entire workspace, the point cloud of best solutions generated 

for each actuator are used to find the corresponding virtual 

centers for each actuator and thus the generalized best 

solution. 

III. RESULTS 

A. Stiffness Model Testing 

A comparison of the theoretical and measured stiffness is 

shown in Fig. 5. For translational stiffness, the mean error 

along the +X, +Y, and +Z axes is 6.24% with a standard 

deviation of 3.79. For rotational stiffness, the mean error 

about +X, +Y, and +Z axes is 12.33%, with a standard 

deviation of 6.55. While some error does exist, it should be 

noted that the size and shape of the theoretical model 

suggests that it provides a reasonable approximation of 

stiffness. 

The exact source of this error is unknown, however it is 

speculated that there are two major contributing factors, both 

related to the stiffness assemble matrix . The first is that 

the model treats all components to have homogeneous 

elasticity and shear properties. This may not be accurate for 

the printed plastics used, due to the layered and 

honeycombed architecture inherent to 3D printing.  

Second, any misalignment between the roll axis of each 

actuator and the center of rotation C shown in Fig. 1 will 

produce increased resistance to applied torque. These roll 

axes were positioned by hand using tooling with a tolerance 

of 0.5°, which may in part explain the differences seen 

between theoretical and experimental rotation stiffness. 

 

B. Stiffness Optimization  

For the workspace described by the octant (+X,+Y,-Z) 

shown in Fig.1, the actuator mounting point configuration to 

optimize  overall  stiffness  is  shown  in  Fig. 6A  as  a point  
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Fig. 6: (A) Point clouds representing the actuator mounting point positions 
corresponding to optimized stiffness for the entire workspace. Solutions are 

found at 10° intervals between arm at rest, 90° flexion and 90° abduction. 

The virtual center of each cloud is marked by a black dot. (B) Depiction of 
where the optimal mounting point configuration is with respect to the user. 

(C) Shows the generalized translational and rotational stiffness ellipsoid 

(black) along with the standard deviation (dotted red) for the configuration 
shown in Fig. 6B for movement through the entire workspace. 

 

 

cloud of best solutions. These solutions were found in 10° 

intervals between arm at rest, 90° flexion and 90° abduction 

for the entire workspace. The virtual center of each point 

cloud for the top, middle and bottom actuator, respectively, 

are  [-0.5277,-0.3020, 0.1502]
T
 m, [-0.3961, -

0.3018,-0.0554]
T
 m and [-0.3139, -0.5389, -0.4793]

T
 

m.  To help visualize this result, Fig. 6B shows where the 

optimal mounting point configuration is with respect to the 

user. Finally, in order to give a sense of the stiffness 

expected for the optimal mounting point configuration, Fig. 

6C shows  the corresponding  generalized  translational  and 

 
 

     
 

 
Fig. 7: (A) Point clouds representing the actuator mounting point positions 
corresponding to optimized stiffness for the sagittal plane. Solutions are 

found at 5° intervals between arm at rest and 90° flexion. The virtual center 

of each cloud is marked by a black dot (B) Depiction of where the mounting 
point configuration is with respect to the user. (C) Shows the generalized 

translational and rotational stiffness ellipsoid (black) along with the 

standard deviation (dotted red) for the configuration shown in Fig. 7B for 
movement in the sagittal plane only. 

 

 

rotational stiffness ellipsoids. These ellipsoids represent the 

average stiffness found in 10° intervals between arm at rest, 

90° flexion and 90° abduction for the entire workspace. 

Presented in a similar form to the previous result, the optimal 

solution for the sagittal plane is shown in Fig. 7A as a point 

cloud of best solutions. Solutions were found at 5° intervals 

between arm at rest and 90° flexion for the sagittal plane. 

The virtual center of each point cloud for the top, middle and 

bottom actuator, respectively, are  [-0.5183,-0.1524, 

0.1581]
T
 m,  [-0.2905, -0.3831,-0.211]

T
 m and   

[-0.1262, -0.5369, -0.4711]
T
 m.  As before, Fig. 7B shows 

(A) 

(B) 

(C) 

(A) 

(C) 

(B) 
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where the optimal mounting point configuration is with 

respect to the user and Fig 7C shows the generalized 

stiffness ellipsoids corresponding to the point cloud of best 

solutions. 

It should be noted that, while Fig. 6 and Fig. 7 represent 

the best solutions for the entire workspace and sagittal plane, 

respectively, they do not consider certain real world factors, 

such as mechanical interference. In these cases the results 

were somewhat fortunate, because the virtual center of each 

point cloud is not unreasonably close to the adjacent 

solution(s). Therefore, mechanical interference between the 

actuators will not occur for the workspace defined. 

However, this could change if the desired workspace or task 

were to change.  

 

IV. DISCUSSION 

This work presented here was motivated by the need for 

wearable robotic architectures that are capable of matching 

the workspace of a user while maintaining a high operational 

stiffness. Because of limitations in the stiffness or workspace 

of previous designs, the authors developed a novel parallel 

architecture specifically intended for interface with complex 

biological joints. Demonstrated in the form of a shoulder 

exoskeleton, the authors identify here the techniques needed 

to optimize the stiffness of the device in order to more 

effectively perform a desired task or operate in a given 

workspace. 

The results of this paper detail a theoretical stiffness model 

for the novel parallel actuated shoulder exoskeleton 

presented, along with an experiment to validate the model. 

Errors of 6.24% and 12.33% for translational and rotational 

stiffness, respectively, were reported. Considering possible 

sources of errors in the stiffness model described in the 

Section III. A, the model still proved to be a reliable 

approximation of stiffness.  

Using this model, along with a bounded nonlinear multi-

objective optimization technique, it was shown how to 

configure the actuated substructures of the device so as to 

maximize stiffness in a given workspace. The workspace 

demonstrated here was equal to one octant of a sphere and 

defined by the three arm orientations: 90° flexion, 90° 

abduction, and at rest. In a similar manner, it was also shown 

how to maximize stiffness for certain motions within this 

workspace. This was demonstrated by maximizing stiffness 

in the sagittal plane for a lifting task. Both the results for the 

entire workspace and sagittal plane provided reasonable 

solutions with respect to real word concerns, such as 

mechanical interference. 

The main contribution of this work is in the detailing of 

how the stiffness model of a novel parallel actuated shoulder 

exoskeleton can be used, along with optimization techniques, 

workspace. Additionally, because the architecture of the 

device can be applied to other spherical joints like the hip, 

wrist and ankle, it means the stiffness model can be applied 

to these joints as well. Therefore, future exoskeletons using 

this architecture could have the stiffness of many joints 

optimized for overall performance or for specific tasks, such 

as lifting, stair climbing or running. 
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