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Abstract— Human Swarm Interaction (HSI) is a new field
which relates to the effective control of robotic swarms by
human operators. The iterature has shown that the control
of swarms can become quite complicated. On the other hand,
Brain Machine Interfaces (BMI) can offer intuitive control
in a plethora of applications where other interfaces alone
(e.g. joysticks) are inadequate or impractical, e.g. for people
with motor disabilities. There are multiple types of BMI, but
most of them rely on the analysis of ElectroEncephaloGraphic
(EEG) signals. The authors have previously shown that swarm
behaviors elicit specific brain activity on human subjects that
observe them. Motivated by this result, in this work, we present
preliminary results of a hybrid BMI that combines information
from the brain and an external device. An algorithm for
extracting information from the frequency domain of EEG
signals that allows integration with the manual task of using a
joystick is presented. The hybrid interface shows high accuracy
and robustness when used as a brain-robot interface. Moreover,
it allows for continuous control variables extracted from the
EEG signals. Finally, its efficacy is proven across multiple
subjects, while its performance is also demonstrated in the real-
time control of a swarm of quadrotors.

I. INTRODUCTION

A Human Swarm Interface (HSI) is a system where one
or more human operators interact with a swarm of robots
in order to complete a specific task. Over the years many
approaches have been proposed. Some of them consider the
entire operation cycle of the swarm from programming and
deploying to charging [1]. Others focused on user input and
proposed methods that rely on gestures [2] or EMG devices
[3], while joysticks can also be used [4]. These methods
though may be complicated and not intuitive for the user.

Recently, we showed that swarm collective behaviors elicit
specific brain activity in human subjects that observe them
[5]. Motivated by this result, we decided to use the brain
as an additional input and explore the possibilities of a
hybrid system combining brain signals with input from
external devices. We posit that such a system may inspire a
new kind of interface which could provide intuitive control
strategies for the users by translating their thoughts directly
into computer commands with minimum delay and without
the need of complicated interaction strategies, while also
allowing quantitative feedback for the user’s performance
based on the brain activity. In this work, we focus on the
user input rather than the feedback.

Brain Machine Interfaces (BMI) can offer intuitive control
in a plethora of applications where other interfaces alone
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(e.g. joysticks) are inadequate or impractical, e.g. for people
with motor disabilities. Most of them rely on the analysis of
ElectroEncephaloGraphic (EEG) signals and they have been
applied in many different applications, such as controlling the
position of a cursor on a screen in 2D [6] and 3D space [7]
or driving a mobile robot through a maze-like environment
while avoiding collisions based on on-board sensing [8]. In
these cases, the output is either based on the modulation
of frequency bands that are specifically chosen for each
user [6], [7] or on machine learning techniques [9] that
properly differentiate between different brain states and, thus,
correctly identify the users’ intent. Another flavor of BMI is
hybrid BMI systems [10]. For example in [11], the authors
combine Event Related Desynchronization / Synchronization
(ERD/ERS) based signals [12] with P300 potentials. Alterna-
tively, hybrid BMI may combine EEG signals with different
types of biosignals such as electromyograms (EMG) [13],
electrooculograms (EOG) [14], or with assistive technologies
(AT) [15], such as wheelchairs, mice or keyboards. The goal
of such systems is either to enhance the accuracy of the brain
state classification or provide a type of “brain switch” that
can help users complete more complicated tasks.

In this work, we propose a hybrid BMI system which com-
bines EEG signals and joystick input. The goal is to provide
a platform that will allow efficient control of robotic swarms
while remaining intuitive for the user. As a preliminary step
to this goal, we start by exploiting the ERD/ERS phenomena
that take place during actual or imagined limb movement via
combination of Principal Component Analysis (PCA) with
Hidden Markov Models (HMMs). Detection of ERD/ERS
has been proven to be a robust method for controlling robotic
platforms such as prostheses [16] or quadrotors [17] and to
provide features that are more or less common across various
users. On the other hand, HMMs can deal effectively with
the non-stationarity of brain signals. The resulting system is
easy to use and requires minimum training. Moreover, its
EEG related output is a continuous variable that not only
controls the direction of the associated Degree of Freedom
(DOF) but also its rate of change. We present results that
prove the feasibility of our platform for multiple subjects.
We also apply this methodology on the control of a swarm of
quadrotors showing both the system’s capability for control
of actual robotic platforms and the feasibility of controlling
robotic swarm behaviors using EEG signals. In particular, we
control the swarm density using the brain recordings. To the
authors’ knowledge, this is the first time that such a hybrid
system is proposed and applied to a highly dynamic platform
with success, and we believe that this work will motivate
further research on hybrid BMI, Brain Swarm Interfaces

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 24–28, 2017, Vancouver, BC, Canada

978-1-5386-2682-5/17/$31.00 ©2017 IEEE 5065



Fig. 1: The subject wears an EEG electrode cap and looks
at a monitor which shows the task that must be executed.

(BSI) and Human Swarm Interfaces (HSI) in general.
The rest of the paper is organized as follows. Section II

presents the methods and algorithms developed in this work.
Section III presents and analyzes the results of the validation
experiments, while Section IV concludes the paper.

II. MATERIALS & METHODS

A. Experimental Procedure

In order to assess the performance of our hybrid BMI and
show its viability for controlling a swarm of quadrotors, we
performed two separate experiments. In the first experiment,
five subjects (S1-5, all right-handed males between the ages
of 22 and 27) were asked to control the position and size
of a two-dimensional object in a virtual environment. The
experimental setup is shown in Fig. 1. The experimen-
tal protocol was approved by the ASU IRB (Protocols:
1309009601, STUDY00001345). The experiment consisted
of three phases, namely a data collection phase, a model
training phase and a control phase. During the data collection
phase, the subjects were instructed to relax their muscles,
stay still and stare at a computer monitor in front of them
which provided instructions. They were also given a game
controller to hold with their right hand. At the beginning
of each trial, instructions were shown on the screen as text.
The text was either “Right Hand”, “Left Hand” or “Rest”. In
the first case, the subjects were asked to randomly move the
right joystick of the controller using their right hand. In the
second case, they had to imagine the kinesthetic sensation of
closing their left hand to a fist, while in the last case, they
were instructed to remain still and focus on their breathing
or their nose (volitional rest [17]). At each trial, the text
appeared at first in red color for 3 seconds to prepare the
subjects for the task, then it became white for 4 seconds
in order to inform them to execute the corresponding action
repeatedly over that period of time and after that there was
a pause of 3 seconds followed by the next trial (Fig. 2). The
subjects were instructed to initiate the corresponding task as
soon the text on the screen changed from red to white. Each
subject completed 20 trials per each task, i.e. 60 trials in
total, randomized between the three different tasks. During
each trial, the subjects were instructed to avoid eye blinks
as much as possible. During the model training phase, the
data recorded during the previous step were passed through
an algorithm to detect the frequencies where the ERD/ERS

Fig. 2: Stages of the data collection phase.

Fig. 3: Stages of the control phase (virtual environment).

phenomena were more distinct. The same data were also used
to train the models that would classify the corresponding
brain states. During the control phase, the subjects were
manipulating the size and position of a circular disk in order
to fit it perfectly into a hollow circle of smaller radius and
different position. Ideally, they would descrease the disk’s
size using a “Left Hand” task, move it into the target circle
using the joystick and increase its size again by performing
a “Rest” task (Fig. 3). Once the disk fit the circle perfectly,
the trial was deemed successful and the next trial began after
a 5-second pause. Each subject completed two sessions of
40 trials each (80 trials in total), with a 10-20 minutes pause
in between. All sessions were performed on a single day and
lasted approximately 30 to 40 minutes each, depending on
completion times. In each trial, the users had to complete the
task in 60 seconds. If they could not, the trial was deemed
unsuccessful and they proceeded to the next one. In a session,
the 40 trials would be randomized with respect to the position
of the circle, its size and the size of the disk. The same
exact sequence of 40 trials was used in both sessions (and
across users) in order to properly compare the performance
of the system across the two sessions and to provide more
training time to the subjects. In the second experiment, a user
was controlling a swarm of quadrotors in a linear formation.
The experiment comprised the same exact three phases as
the first one. During control, the subject had to decrease
the distance between the quadrotors using a “Left Hand”
task, pass them through a rectangular hoop that represented
a narrow passage using the joystick and, after that, change the
quadrotor distance back to its original value by performing
a “Rest” task.

B. Data Acquisition and Signal Conditioning

The EEG signals were recorded at 500 Hz using the
BrainProducts ActiCHamp amplifier system with 64 elec-
trodes placed according to the 10/20 International system
[18]. A 5th order Butterworth bandpass filter between 1 and
40 Hz was applied to the data in order to remove low-
frequency trends and line noise. In order to accommodate for
the volume conduction effects that are typical in scalp EEG
measurements [19], a large Laplacian filter was applied to
each of the channels of interest. The filter was applied based
on its difference approximation, where for each channel we
subtracted the mean of its 4 next-nearest neighbors from the
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Fig. 4: Frequency band detection for Subject S4 and channel
C3. The red lines denote the frequency band of interest.

original signal.
In this work, the analysis was focused on channels C3,

Cz, C4, FC3, CP3, C1, FCz, CPz, C2, FC4, and CP4
(sensorimotor cortex). The same preprocessing procedure
was followed both during the off-line analysis in the training
phase and during the on-line processing for the control phase.
The only difference was that in the latter an electrooculogram
(EOG) artifact removal algorithm [20] was also applied
before the large Laplacian referencing in order to eliminate
any artifacts from eye blinks and eye movements.

C. Feature Extraction

After preprocessing, a Fast Fourier Transform (FFT) was
applied to the data in order to extract the spectral features
of the signals. The FFT was applied to a window of 256
datapoints sliding every 25 datapoints (or 50 ms) after a
Hanning window of the same length was applied to the data.

For each channel, a dedicated algorithm selected automat-
ically the frequency band where the ERD/ERS phenomena
due to limb movement imagination (“Left Hand” task) or
actual limb movement (“Right Hand” task/joystick) were
more distinct. Specifically, it was searching for a reduction
of the FFT spectrum with respect to the “Rest” task in the
alpha (α) band (7-15Hz) and/or an increase of the spectrum
in the beta (β) band (15-30Hz). To this end, the algorithm
computed separately for each task the average of each FFT
coefficient across time for each trial corresponding to the
task and, then, the grand mean across all trials of the same
task. Next, the “Right Hand” and “Left Hand” tasks were
each compared to the “Rest” task in order to identify the
frequencies at each channel in which the highest deviation
from the “Rest” task occurred. The frequency coefficients of
interest included the coefficient with the highest deviation
and the coefficients before and after that as shown in Fig. 4.

In order to further guarantee good differentiation among
the tasks, a Principal Component Analysis (PCA) [21] was
also applied to the selected FFT features. In detail, the FFT
features for all three tasks (“Right Hand”, “Left Hand”,
“Rest”) were used as input to the PCA and only those
Principal Components (PCs) that would describe 90% or
above of the data variance were selected. This resulted in
4 to 5 components for each subject. Finally, these PCs were
applied to the data to extract the final features. These were
then collected in data sequences which were used for the
training of the machine learning models.

D. Hidden Markov Models (HMM) methodology

The features extracted previously were classified into the
3 available tasks using Hidden Markov Models (HMM) [22].
Any HMM can be defined by its state transition matrix A,
its observations probability model B and the initial state
probability π [22]. In this work, the probability distribution
of the observations B, related to the previously extracted
features, was modeled as multiple Gaussian mixtures [23].
For each of the three tasks a separate HMM was trained.
They all had the same number of members in the Gaussian
mixtures and the same number of hidden states.

Each HMM was trained based on feature vector sequences
corresponding to one task. The signals of the data collection
phase were used to extract feature vectors. The resulting
feature set was divided into a training and a validation set.
The HMM sequences were extracted from the training set by
sliding a 20-point window (corresponding to data of 1s) on
the set point-by-point. The parameters of the models were
estimated iteratively by using the Baum-Welch algorithm
[22]. The number of members in the Gaussian mixtures as
well as the number of hidden states for the HMM were
different for each subject. Their choice was made by training
separate models for different pairs of these variables and
checking their classification accuracy on the validation set.

During the control phase, a sequence of feature vectors
was fed into each of the models, a log-likelihood value was
computed for each of them using the Forward algorithm [22]
and the data were classified according to the maximum of
these likelihood values.

E. System output generation
The system combined the power of the EEG signals, the

classification decision on the brain state and the joystick
input into a command vector; each of its elements regulated a
specific DOF of the robotic platform. Concretely, at iteration
k, the activation parameter vk was calculated as follows:

vk = (F̄CP3,Re − FCP3,k) + (F̄CP4,Re − FCP4,k) (1)

where FCP3,k, FCP4,k represent the spectral power of the
frequency band of interest (see also Section II) at channels
CP3 and CP4, and F̄CP3,Re, F̄CP4,Re represent the mean of
the spectral power at the same channels during the “Rest”
task as recorded during the data collection phase. The value
vk was then passed through an exponential filter:

ṽk = (1− α)vk + αṽk−1 (2)

where α is a smoothing constant. Finally, a thresholding
procedure was applied to ṽk in order to ensure that any
misclassification would not have any adverse effect during
the control phase. There were two thresholds, a high tH and
a low tL. They were computed separately for each subject:

tH = p · [F̄CP3,Re+ F̄CP4,Re−min(FCP3,LH)−min(FCP4,LH)]
(3)

tL =
√

Var(FCP3,Re) + Var(FCP4,Re) (4)

where p is a weighting factor and F̄CP3,Re, F̄CP4,Re are the
mean of the spectral power at CP3, CP4 during the “Rest”
task as in (1). The statistics Var() and min() were applied
to the activations of the data collection phase and denote the
variance and the minimum values of the data, respectively.
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Fig. 5: System output computation during control phase. sk
is the raw EEG signal, s̃k is the preprocessed signal, Fk are
the FFT coefficients, while fk refers to the spectral features
extracted from Fk. Pk refers to the PCA features and Hseq,k

is the HMM sequence. Finally, ṽk is the activation parameter,
Dk is the classification decision, ∆qk refers to the EEG
command, ∆xk, ∆yk refer to the joystick input.

The subscripts LH and Re refer to the “Left Hand” and
“Rest” tasks, respectively.

A value ∆qk was then computed at each iteration k based
on the relation of ṽk to tL and tH and the classification
decision Dk. The decision Dk could take three values,
namely Dk = 0 (“Right Hand” task), Dk = 1 (“Left Hand”
task) and Dk = 2 (“Rest” task). Based on that:

∆qk =


0 if tL < ṽk < tH ∨Dk = 0

−(ṽk − tH) if ṽk > tH ∧Dk = 1

−(ṽk − tL) if ṽk < tL ∧Dk = 2

(5)

The final command vector uk = [∆qk,∆xk,∆yk]
T con-

sisted of the EEG command ∆qk and the joystick input
ck = [∆xk,∆yk], which were continuous functions of time.
In the first experiment, ∆qk controlled the size of the solid
disk, while ∆xk and ∆yk controlled its position on the
screen. In the second experiment, ∆qk controlled the agent
distance and ∆xk and ∆yk controlled the swarm position
along an axis normal to the line formation and along its
height, respectively. During the “Right Hand” task (Dk = 0),
the size of the disk or the agent distance would not change
(∆qk = 0). A diagram of the procedure is shown in Fig.
5. In all experiments and subjects, the smoothing constant
α = 0.9418 and the weighting factor p = 0.85 were used.
Their values were chosen during preliminary tests based on
reports from the subjects on the performance of the system.

F. EEG output to Quadrotor Control

In the second experiment, the user was controlling a
swarm of quadrotors, initially alined at a certain distance.
A dedicated planning algorithm, whose details are out of the
scope of this paper, took into account the position of the
agents and the desired change in their distance ∆qk together
with the joystick input ∆xk, ∆yk and provided the new
reference positions for the quadrotors. A 4-camera optical
motion capture system (Bonita, Vicon Inc) was used for the
tracking of the vehicles. Subsequently, a high-level controller
[24] used these desired positions in order to calculate the

desired roll, pitch and yaw angles and the appropriate thrust
input which would move the vehicles to their destination.
They were sent via Bluetooth to the quadrotors where an on-
board controller on each of them translated these values into
motor commands. More details about the control strategy can
be found in [25].

III. RESULTS
A. Virtual Environment Experiment

For the assessment of our algorithm we used three differ-
ent metrics, namely completion rate, completion time and ac-
curacy. Completion rate refers to the amount of trials that the
subject was able to complete successfully, and it is presented
as a percentage of completed trials across every 10 trials of
the experiment. In Fig. 6a, we show that the completion rates
increase, reaching 100% as the subjects become accustomed
to the system. We also show improvement for corresponding
trials between the two sessions (green asterisks) based on
a left-tailed paired t-test. Fig. 6b shows completion times,
which represent the time it took the users to complete the
task in seconds. Only trials which the subjects were able
to complete successfully are taken into account. Based on
a right-tailed paired t-test, we show a statistically signifi-
cant decrease across the experiment when compared to its
beginning (black asterisks). We show similar results when
comparing trials 1-10 with 41-50 and 21-30 with 61-70
(green asterisks) using the same test. The metric of accuracy
in this work is defined as the ratio of correct state transitions
of the solid circle (i.e. size increase, size decrease, cursor
movement) over all state transitions. Regarding the size of the
disk, the transition was correct if the users were decreasing
its size when it was outside the target and were increasing
it when it was inside. Regarding the position, the transition
was correct if the size did not change. We chose to study
the accuracy rate of our system and not the misclassification
rate because the subjects were free to complete the task in
a self-paced way and, thus, the desired brain states were
not known a priori. The overall accuracy rates are presented
in Fig. 6c, while the corresponding accuracy rates for each
brain state separately are shown in Fig. 6d - 6f. The overall
accuracy over all trials is above 60% on average. At the
same time, there is an increase in the accuracy rates as the
subjects interact more with the system (Fig. 6c), as shown
by a left-tailed paired t-test. Finally, examining the accuracy
rates of the individual brain states leads to the following
remarks. First, there is no statistical difference across the
trials that correspond to the “Right Hand” task (Fig. 6d).
This is expected since moving the joystick does not require
any thought process from the users and they do not have
to modulate explicitly any type of brain signals to perform
that task. Thus, no training is involved and the activations
should not change. On the other hand, there are statistically
significant differences for both the “Left Hand” (Fig. 6e) and
the “Rest” task (Fig. 6f) as indicated by left-tailed paired t-
tests. Based on the previous results, we can safely postulate
that the system can be used successfully by multiple users
while achieving high performance and accuracy rates with
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(a) Completion rates. (b) Completion times. (c) Overall accuracy rates.

(d) “Right Hand” task accuracy. (e) “Left Hand” task accuracy. (f) “Rest” task accuracy.

Fig. 6: Completion rates, completion times and accuracy rates across all subjects. The × represents the mean value of the
shown metric. *’s mark a box as statistically different from the first box at the 5% significance level. A * marks boxes as
statistically different at the same significance level when comparing a group of trials (box) of session 1 with the same group
of session 2 (Section II), e.g. when comparing trials 1-10 to trials 41-50, trials 11-20 to trials 51-60 and so on.

minimum training (the entire control phase lasted on average
less than an hour). It is important to note that the accuracy
rates for most users at the first 10 trials are still high enough
to permit the completion of the task several times.

B. Control of a Swarm of Quadrotors

In the second experiment, a subject was controlling a team
of 3 quadrotors using the proposed hybrid BMI system. In
Fig. 7, we show snapshots of the experiment, where the user
changes the formation of the quadrotors, passes them through
the hoop and then returns them in their original formation.
A video of the experiment is included in [26]. In Fig. 8, we
show how the elements ∆q and ∆y of the command vector u
affect the position of the quadrotors in the line formation and
their height, respectively, in a cumulative way. The position
and height of the quadrotors are expressed in meters with
respect to the global frame provided by the Vicon system. In
this figure, we also show the phases of the experiment. The
subject was able to change the control input seamlessly from
joystick to EEG signals and back with minimum error and
without the vehicles changing their relative distance while
passing through the hoop. This was a real-time demonstration
of controlling a swarm of quadrotors using our proposed
hybrid BMI using both EEG activations and joystick inputs.

IV. CONCLUSIONS

In this work, we proposed a hybrid BMI approach that
combined the brain signals produced by the ERD/ERS
phenomena during imagined or actual limb movement with

Fig. 8: Position of the 3 quadrotors and EEG and joystick
input during the second experiment against time.

input from a joystick controller. The resulting system was
simple to use and we provided experimental data that showed
the efficiency of our algorithm and the fact that the users
needed very little training before they could use the system
with high accuracy. In addition, we applied this method-
ology successfully on the real-time control of a swarm of
quadrotors. More specifically, the user was able to control
a parameter related to the overall behavior of the swarm,
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Fig. 7: Snapshots of the quadrotors passing through the rectangular hoop during the second experiment. The top row shows
a side view of the motion of the swarm, while the bottom row shows the top view of the quadrotors. A: Initial formation,
B: Change of formation, C: Passing the quadrotors through the hoop, D: Returning to initial formation. Video at [26].

namely its density, by using brain signals, while at the same
time the user was controlling its position using the joystick.
In all experimental paradigms, the control of the system was
self-paced, seamless and the user was able to perform the
corresponding task without any reported difficulty.

In the future, we will investigate different types of mental
imagery for the control of swarm behaviors such as visual
and speech imagery. In addition, we will implement a train-
ing protocol which will be adaptive to the user in order to
make the training process easier for the subjects.
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