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This paper presents a methodology for the control of robots, in position and
force, using electromyographic (EMG) signals recorded from muscles of the
shoulder and elbow. A switching model is used for decoding muscular activity
to both joint angles and force exerted from the human upper limb to the
environment. The proposed method is able to estimate those variables in cases
where no force is exerted to the environment (unconstrained motion), as well
as in cases where motion is accompanied with force exertion (constrained
motion). The switching model is trained to each subject, a procedure that
takes only a few minutes, using a torque-controlled robot arm coupled with
the human arm. After training, the system can decode position and force
using only EMG signals recorded from 7 muscles. The system is tested in
a orthosis-like scenario, in planar movements, through various experiments
covering the cases aforementioned. The experimental results prove the system
efficiency, making the proposed methodology a strong candidate for an EMG-
based controller for robotic exoskeletons.

1 Introduction

Robotic devices coupled with human upper extremities have received increased
attention during the last decade. More specifically, there has been a wide
research on the control of exoskeletons, towards providing both efficiency and
safety. The most challenging issue in the control of exoskeletons is the fact
that they are in physical contact with the human and exchange power and
information signals [1].

Most of the previous developments in the field, use signals coming from
either artificial sensors (e.g. force-torque sensors), or the human limb itself,
as control interface for the exoskeletons. Surface electromyographic (EMG)
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signals are frequently used, since their recording method doesn’t entail any
bulky mechanisms or machinery placed on the user. EMG signals correspond
to muscle activity when the muscle contracts. Since muscle contraction causes
not only motion, but also force exertion to the environment through the actu-
ated limb, EMG signals can be proved very useful in cases where motion and
force estimates are required. This is the case where an exoskeleton is to be
controlled, since human intended motion and force should be estimated and
incorporated in its controller.

A lot of different methodologies have been proposed for the utilization
of EMG signals to control robots coupled with humans. A Hill-based muscle
model was used to estimate human joint torque in driving an exoskeleton in
[2]. For rehabilitation purposes, Krebs et al. [3] developed a training system
for the upper limb movements of stroke patients, which incorporates EMG
signals. In this setup however, only the onset of the patient’s attempt to move
is detected by monitoring EMG signals and not the whole profile of motion
and force exerted. Generally, there is limited literature on combined position
and force estimation using EMG signals, which is undoubtedly a challeng-
ing issue for the control of coupled human-robot systems. The authors in the
past have developed a system for this scope [4]. However, it’s applicability
was restricted only to constrained motion, i.e. force was always present dur-
ing motion. Consequently, the system could not resolve the case where both
constrained and unconstrained motion was performed. Furthermore, motion
was not estimated using the EMG recordings, but using a position tracking
system.

In this paper, a method for estimating a continuous profile of motion and
force exerted by the upper limb, during un-constrained and constrained move-
ments, using EMG signals recorded from 7 muscles, is proposed. The motion
analyzed is restricted to a plane perpendicular to the user’s torso, at the height
of the shoulder. Seven bipolar surface EMG electrodes record the muscular
activity of equal in number muscles acting on the shoulder and the elbow
joints. The system architecture is divided into two phases: the training and
the real-time operation. During the training phase the user is instructed to
move his/her arm randomly on the plane. The user’s wrist is coupled with
the end-effector of a robotic manipulator, which is configured in such way
permitting motion only on the aforementioned plane. The training phase is
divided in two stages; at the first stage, the robot arm is compliant to the
user’s motion, therefore the motion is considered unconstrained. At the sec-
ond stage, the robot arm exerts force at the user’s wrist, therefore the motion
is constrained. This is done through an artificial potential field on the plane of
motion, that attracts the robot end-effector, and consequently the user’s hand,
to the center of the workspace. Using this field, the motion is constrained in
both directions of motion (i.e. towards the user’s body or not), thus both the
flexor and extensor muscles of the analyzed joints are activated. By using the
aforementioned attractive potential field, many situations occurring when a
person interacts with the environment through an exoskeleton, are simulated
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(i.e. pushing, pulling or lifting an object). During both stages, muscular ac-
tivity of the seven muscles, as well as the motion of the arm on the plane,
are recorded. Using these training data, a switching model is trained to map
muscles activation to both motion and exerted force. As soon as the model is
trained, the real-time operation phase commences. During this phase, EMG
recordings are decoded to motion and force in real-time. The motion switches
between constrained and unconstrained without notifying the user, while the
switching is not known a priori to the system. The proposed method is as-
sessed through an orthosis-like experimental setup, where EMG signals are
decoded to both motion and force exerted, in real-time. The experimental re-
sults show that the proposed method could be used for the control of wearable
robotic devices and especially arm exoskeletons.

The rest of the paper is organized as follows: the proposed system archi-
tecture is analyzed in Section 2, the experiments are reported in Section 3,
while Section 4 concludes the paper.

2 Materials and methods

The set-up used for the present study is shown in Fig. 1. User’s motion is
restricted to the plane, thus only shoulder transverse adduction-abduction
and elbow flexion-extension are analyzed. The main responsible muscles for
the analyzed shoulder motion (i.e. deltoid (anterior), deltoid (posterior), del-
toid (middle), pectoralis major) and for the elbow motion (i.e. biceps brachii,
brachioradialis, triceps brachii) are recorded using surface EMG electrodes.
A signal pre-processing algorithm is applied to EMG signals to remove noise.
Measurement of joint angles is accomplished by using a position tracking sys-
tem (Isotrak II, Polhemus Inc.). The tracker sensors are placed on the elbow
and the wrist of the user, while their reference system is placed on the shoul-
der of the user as shown in Fig. 1. The user’s wrist joint is immobilized at zero
position by means of straps on a support base equipped with a handle for the
user’s hand. The support base is mounted on the end-effector of a 7 degrees
of freedom (DoFs) robotic manipulator (PA-10, Mitsubishi Heavy Industries),
which is properly configured to support the user’s hand against gravity. Two
robotic joints are free to move, while the others are fixed through electrome-
chanical brakes, in such configuration allowing the robotic arm to move on
the same plane that the user’s arm moves. The robot arm was controlled in
such a way simulating a two-dimensional spring with variable stiffness. Thus,
when the user moves his/her arm on the plane as shown in Fig. 1, he/she
has to exert force to the environment (robot arm) in order to deform the vir-
tual two-dimensional spring. A variable stiffness is used in order to achieve
larger heterogeneity in exerted force profiles. For details on the generation of
the 2-dimensional force field as well as the realization of this, through the
appropriate torque control at the robot joints, the reader should refer to [4].
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Fig. 1. Orthosis-like experimental setup.

Therefore, using the above setup, a constrained (or unconstrained for zero
force field) motion of the upper limb can be simulated. The question to be
answered here is how using EMG recordings and training data (of both posi-
tion and force measured), one could train a decoding method for estimating
both motion (shoulder and elbow motion) and force applied (along the two
X , Y axes of the plane) using only EMG signals in real-time. Furthermore,
this method should be robust enough to provide precise estimates, in both
cases, i.e. constrained and unconstrained motion.

Since the number of muscles recorded is quite large (i.e. 7), a low-
dimensional (low-D) representation of muscle activations will be used instead
of individual activations. This is based on the muscle synergies during mo-
tion of the arm, that has been discussed in the biomechanics literature [5].
Indeed, after the application of the dimensionality reduction method on the
data recorded, it was found that a 2-dimensional (2D) space could describe
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most of the original 7D data variability. Details on dimensionality reduction
on muscle activations can be found in [6].

Having enough training data, one can build a model that will use EMG
signals to estimate motion and force exerted. In order to describe motion, the
angular velocity of each joint is selected1. Let Ut ∈ R

2 be a vector describing
the 2D representation of muscles activation at time t = kT , where T the sam-

pling period (1 msec in our case), and k = 0, 1, .... Let yt =
[

q̇1t
q̇2t

Fxt
Fyt

]T

be the desired output of the model, where q̇1t
, q̇2t

the shoulder and elbow an-
gular velocity respectively2, and Fxt

, Fyt
the components of exerted force

along the X , Y axes respectively, at time t. The model selected is defined as

xt+1 = Axt + BUt + vt

yt = Cxt + υt
(1)

where xt ∈ R
d a hidden state vector, d the dimension of this vector and vt, υt

zero-mean Gaussian noise in process and observation equations respectively,
i.e vt ∼ N (0,W), υt ∼ N (0,Q), where W ∈ R

d, Q ∈ R
4 are the covariance

matrices of vt, υt respectively. Matrices Ad×d, Bd×2 and C4×2 represent the
dynamics of the hidden states, the relation between the low-D embeddings of
muscles activation and the hidden states dynamics, and the relation of the
hidden states to the output variables of the model respectively. Details on the
model structure can be found in [6].

The authors have used the model (1) to decode muscular activity to planar
motion of the upper limb in the past [6]. Moreover, a model of similar structure
was proved successful in decoding EMG signals to force exerted, but only when
the force was always present [4]. In this paper, whether the force is present or
not (i.e. the motion is constrained or not) is not known a priori. Therefore,
the main objective is to combine two different models of the same form as in
(1), and to effectively switch between them in real time, in order to decode
EMG activity to both motion and exerted force, whether or no the motion is
constrained. This is achieved through training of the two models at the two
corresponding cases (constrained and unconstrained motion), and building a
probabilistic framework that will decide the proper model to use at each time
instance. The architecture proposed is depicted in Fig. 2.

The switching between the two models is based on the probability that ex-
erted force is present, given the low-D embeddings of muscles activations and

the joint angular velocities q̇ =
[

q̇1 q̇2

]T
. Let Ω = {ω1, ω2} be the set of the

two possible classes, where ω1 corresponds to exertion of force and ω2 corre-
sponds to free motion. Moreover, since the observed muscular activity is also
affected by the performed motion (i.e. different angular velocity is caused by
different muscle activity), the joint velocity q̇ should also be considered in the

1 Joint angular velocity distribution can be modeled through a Gaussian distribu-
tion, a fact that alleviates the following analysis.

2 With q1 corresponding to the shoulder adduction-abduction and q2 the elbow
flexion-extension angle.
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Fig. 2. Block diagram of the proposed method. The ω1 case is depicted.

proposed framework. Therefore, given a feature vector S =
[

uL1
uL2

q̇1 q̇2

]T
,

where uL1
, uL2

the 2D embeddings of the 7 muscles activation, a classifier is
built to decide whether the exerted force is zero or not, i.e. the class is ω2 or
ω1 respectively, at each time step. This is done by Bayes theorem [7], that in
our case is defined as

P (ωj |S) =
p (S|ωj)P (ωj)

p (S)
, j = 1, 2 (2)

where P (ωj|S) the posterior probability, i.e. the probability of the class being
ωj given the feature vector S, p (S|ωj) the class-conditional PDF, P (ωj) the

prior probability of the class being ωj and p (S) =
2
∑

j=1

p (S|ωj)P (ωj) the evi-

dence factor that can be viewed as a scale factor that guarantees the posterior
probabilities sum to one. The two classes ω1, ω2 are considered equally likely
to happen, thus P (ω1) = P (ω2) = 0.5. The class-conditional PDF p (S|ωj)
represents the likelihood of ωj with respect to the feature vector S, i.e. the
muscles activation and the performed motion. This density function is built
during the training procedure, where EMG signals, force, and position data
are collected. Knowing when force is exerted (i.e. given the class ωj), the PDF
is fitted to a mixture of Gaussians distributions. A mixture of multivariate
Gaussians is selected since it can model quite accurately the distribution of
the data collected, and moreover, the fitting procedure3 is simple and compu-
tationally fast. Thus the class-conditional PDF is defined as

p (S|ωj) =

gj
∑

i=1

π
(j)
i f

(j)
i

(

S, µ
(j)
i , Σ

(j)
i

)

, j = 1, 2 (3)

where f
(j)
i

(

S, µ
(j)
i , Σ

(j)
i

)

represents a multivariate Gaussian density func-

tion with µ
(j)
i the mean vector, and Σ

(j)
i the respective covariance matrix,

π(j) =
[

π
(j)
1 . . . π

(j)
gj

]T

the vector of mixing proportions4 of the mixture,

3 Expectation Minimization algorithm (EM) [8]

4 Mixing proportions sum to one, i.e.
gj
P

i=1

π
(j)
i = 1
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while the exponent (j) at each variable in (3) denotes the class-specific vari-
able. Using training data, the two Gaussian mixture models (GMMs) defined
in (3) are fitted. Then, using (2), a decision about the class can be made at
each time step, according to the simple Bayes decision rule, i.e. decide ω1 if
P (ω1|S) > P (ω2|S); otherwise decide ω2. This decision controls the switching
between the two models of form (1), which is done at each time step, where a
new feature vector S is available. Then, using recorded muscle activation, the
selected model provides the desired estimates for motion and force exerted.
Therefore, a switching system that can predict motion and force exerted in
real time, using only muscle recordings and prior knowledge gained through
the training data, has been realized.

3 Results

3.1 Experiment Design

The proposed architecture is assessed through experiments on an orthosis-like
setup as depicted in Fig. 1. The robot arm used is a 7 DoF anthropomorphic
manipulator (PA-10, Mitsubishi Heavy Industries).

During the training, the user is instructed to move his/her arm randomly
on the plane. The user’s wrist is coupled with the end-effector of a robotic
manipulator, which is configured in such way permitting motion only on the
aforementioned plane. Initially, the force field is set to zero, therefore the robot
arm is compliant to the user’s induced motion, and so the motion is considered
free. EMG signals and position data are collected for a period of 1 minute.
Then, the force field is activated, while the user continues to perform random
movements on the plane. Now the motion is constrained and in addition to
the previous recordings, force data are also collected from the robot joint
motor current readings. This stage lasts 1 minute too. The recorded data
from both stages are used in the previously analyzed methods, to conclude
to a switching system that can estimate motion and force exerted using only
EMG recordings.

After the training procedure, the real-time operation commences. The po-
sition trackers are kept into place for offline validation purposes. EMG signals
are only used, and through the switching model architecture, estimates for
both joint angular velocities and force exerted are provided. The estimates
for motion and force, along with the ground truth are shown in Fig. 3. As it
can be seen, the proposed method could track the motion and the force ex-
erted by the user’s arm, with high accuracy, using only EMG recordings, even
if the motion was changing from constrained to unconstrained in real-time.

3.2 Method assessment

Two criteria will be used for assessing the accuracy of the reconstruction
of human motion and force using the proposed methodology. These are the
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Fig. 3. Estimates for angular velocity and force exerted. The motion was changing
from unconstrained to constrained every 5 sec.

root-mean-squared error (RMSE) and the correlation coefficient (CC). The
latter describes essentially the similarity between the reconstructed and the
true motion (or force) profiles and constitutes the most common means of

reconstruction assessment for decoding purposes. Let ŷ =
[

ŷ1 ŷ2 ŷ3 ŷ4

]T
=

[

ˆ̇q1
ˆ̇q2 F̂X F̂Y

]T
the estimated output vector of motion and force and yT =

[

y1T
y2T

y3T
y4T

]T
=

[

ˆ̇q1T

ˆ̇q2T
F̂XT

F̂YT

]T
the corresponding true values of

the variables, measured through the position tracker and the robot motors5.
Then the RMSE and CC criteria are defined by

RMSEi =

√

√

√

√

1

n

n
∑

k=1

(yiTk − ŷik)2, i = 1, 2, 3, 4 (4)

CCi =

n
∑

k=1

(yiTk − ȳiT)
(

ŷik − ¯̂yi

)

√

n
∑

k=1

(yiTk − ȳiT)
2

n
∑

k=1

(

ŷik − ¯̂yi

)2

, i = 1, 2, 3, 4 (5)

where ȳi represents the mean of the ith element of the output vector across
n testing samples. Perfect matching between the estimated and true values
corresponds to CC = 1. Table I and II list the criteria values for a testing
session of 1 minute during the real-time operation phase, including also the
method training computation time, which was less than 30 seconds.

5 Joint angular velocity is computed through time-differentiation of the joint angles,
while exerted force is computed through robot joint torque (i.e. motor current)
readings via the manipulator Jacobian matrix.
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In general the proposed methodology was proved very accurate in decoding
EMG to both motion and force, despite the fact that the motion was varying
from constrained to unconstrained in real time. Moreover, the proposed de-
coding model outperformed the mostly used one (i.e. linear filter), while the
complexity of the method and the time of training was negligible.

Table 1. Assessment of decoding motion and force using correlation coefficient
criterion.

Decoding
model

Training
time (sec)

CC1 CC2 CC3 CC4

State-space 28 0.97 0.96 0.97 0.98

Table 2. Assessment of decoding motion and force using the root-mean-squared
error.

Decoding
model

Training
time (sec)

RMSE1

`

rad

sec

´

RMSE2

`

rad

sec

´

RMSE3 (N) RMSE4 (N)

State-space 28 0.05 0.06 1.59 1.73

4 Conclusions and discussion

In this paper, the authors have proposed a method for decoding EMG activity
from muscles of the upper limb to motion and force exerted. The system
was used for estimating in real-time a continuous profile of motion and force
exerted by the user to the environment, tested through an orthosis-like setup.
The method was proved very accurate in estimating the desired profiles of
motion and force. Moreover, the proposed decoding model outperformed the
mostly used one (i.e. linear filter), while the complexity of the method and
the time of training was negligible.

The main novelty introduced here is that the proposed method is accurate
enough in cases where constrained and unconstrained motion is present. Its
importance becomes obvious if one realizes that this is the case where a person
wears an exoskeleton and interacts with the environment (e.g. reaching targets
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or lifting objects). Moreover, the proposed method can provide a continuous
profile of motion and force, in comparison with most of the previous works in
the field that provide only discrete information about motion (i.e. initiation or
ending of it). Highly efficient exoskeletons that have been built during the last
years should be compliant, assisting and safe for the users, monitoring their
intention of motion and force exerted. For this reason, the proposed method
could be used for the robust control of highly efficient exoskeletons.
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