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A Learning Scheme for Reach to Grasp
Movements: On EMG-Based Interfaces Using

Task Specific Motion Decoding Models
Minas V. Liarokapis, Panagiotis K. Artemiadis, Kostas J. Kyriakopoulos and Elias S. Manolakos

Abstract—A learning scheme based on Random Forests is used
to discriminate between different reach to grasp movements in
3D space based on the myoelectric activity of human muscles
of the upper arm and the forearm. Task specificity for motion
decoding is introduced in two different levels: subspace to move
towards and object to be grasped. The discrimination between the
different reach to grasp strategies is accomplished with machine
learning techniques for classification. The classification decision is
then used in order to trigger an EMG-based task-specific motion
decoding model. Task specific models manage to outperform
“general” models providing better estimation accuracy. Thus the
proposed scheme takes advantage of a framework incorporating
both a classifier and a regressor that cooperate advantageously
in order to split the task space. The proposed learning scheme
can be easily used to a series of EMG-based interfaces that must
operate in real time, providing data driven capabilities for multi-
class problems, that occur in everyday life complex environments.

Index Terms—ElectroMyoGraphy (EMG), Learning Scheme,
Task Specificity, Random Forests.

I. INTRODUCTION

OVER the last decades, the cross-disciplinary field of
electromyography (EMG) based interfaces has received

increased attention due to its numerous applications. Some
of them include EMG based teleoperation of robots [1], [2]
in remote or dangerous environments, EMG controlled pros-
thetic limbs for amputees [3], EMG enabled exoskeletons for
rehabilitation [4] and muscle computer interfaces for human
computer interaction [5].

Some early identified difficulties of EMG interfaces were
the high-dimensionality and the complexity of the human
musculo-skeletal system. A couple of years ago, we introduced
muscle and motor synergies in the field of EMG-based inter-
faces for the case of the upper limb [1], however the synergistic
EMG-based control of the hand or the whole arm-hand system
have not yet been addressed.
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Machine learning techniques and more specifically clas-
sification methods were used in [6] and [7] to discrimi-
nate between independent human hand’s digit movements or
different hand postures, based on the myoelectric activity.
Forearm surface EMGs were used in [8] for the feed-forward
control of a hand prosthesis, discriminating grip postures in
real-time. The latter study employs only three different grip
types (power grasp, index precision grip and middle-ring-pinky
precision grip), thus the methodology presented can not be
applied in everyday life scenarios where human fingers may
be employed for various tasks. Finally, authors in [9] used
the captured myoelectric activity from two adult macaque
monkeys, while grasping 12 objects of different shapes, to
distinguish between muscular co-activation patterns associated
with different grasping postures.

The main difficulty that researchers face in EMG based
control of robotic devices, is the highly nonlinear relationship
between the EMG signals and human kinematics, as described
in [10]. Thus the majority of researchers avoid to decode a
continuous representation of human kinematics and choose to
focus on the binary control of robotic devices, such as the
directional control of a robotic wrist [11] and the control of
multifingered robotic hands to a series of discrete postures [6],
and [7, 12, 13]. A major drawback of the discrete EMG based
control approach is the fact that the use of finite postures may
cause problems such as the lack of motion smoothness.

A well known model used to provide continuous EMG
based control of robotic devices and decode human motion
from EMG signals is the Hill-based musculoskeletal model
[14]. The Hill model is one of the most frequently used
methods in the related literature [10] and [15]. However all
these studies focus only on a few degrees of freedom (DoFs)
due to the nonlinearity of the Hill model equations and the
large number of unknown parameters per muscle.

Artificial neural networks (ANN) have been used in [16]
to estimate the continuous motion of the fingers, using the
myoelectric activity from muscles of the forearm (only one
degree of freedom (DoF) per finger was decoded) and in [17]
to decode from EMGs the arm motion, restricting the analyzed
movements to single-joints isometric motions. A state-space
model was used by Artemiadis et al. in [18] to estimate human
arm kinematics from the myoelectric activity produced from
certain muscle groups of the upper-arm and the forearm. In
this latter study, emphasis was given to the non-stationary
characteristics of the EMG signals and the evolution of signal
quality over time (i.e. due to muscle fatigue etc.). Authors in
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[1] proposed a metholodology for mapping muscles activations
to human arm motion using low dimensional embeddings of
myoelectric activity and kinematics and a state space model
for decoding. A recent study, presents a methodology for
decoding the human arm hand system motion from EMG
signals, using support vector machines (SVM) [2] (the position
and orientation of the human wrist as well as the human grasp
(1 DoF) are decoded). This latter study focused on the EMG
based teleoperation of a robot arm hand system and requires
smooth and slow movements from the user.

In this paper we propose a novel learning scheme for reach
to grasp movements based on random forests. The scheme
consists of a classifier combined with a regressor. EMG signals
are used in order to discriminate different reach to grasp
strategies executed to perform different tasks in 3D space. We
introduce task specificity in two different levels, suggesting
that the myoelectric activity differentiates for reach to grasp
movements towards different subspaces and different objects.
The classifier is able to discriminate between those different
reach to grasp strategies, from myoelectric activity. The re-
gressor is used to train task-specific models for all possible
strategies (i.e. different tasks). The classification decision is
taken at a frequency of 1kHz therefore our scheme is able to
identify the task in real time. Classification decision in finally
used to trigger a task-specific EMG-based motion decoding
model. The proposed scheme provides continuous estimates of
the full human arm hand system motion (27 DoFs modelled).

The rest of the paper is organized as follows: Section II an-
alyzes the apparatus and the experimental procedure, Section
III focuses on the methods used to formulate the proposed
EMG-based learning scheme, results for classification and
task specific EMG based motion estimation are presented in
Section IV, while Section V concludes the paper.

II. APPARATUS AND EXPERIMENTS

A. Experimental Protocol
Experiments were performed by five (4 male, 1 female)

healthy subjects 21, 24, 27, 28 and 40 years old. All subjects
gave informed consent. The Institutional Review Board of the
National Technical University of Athens approved the hereby
presented procedures. Subjects performed the experiments
with their dominant arm (right arm for all subjects involved).
During the experiments each subject was instructed to perform
repeated reach to grasp movements in 3D space, in order to
reach and grasp three different objects: a rectangular-shaped
object, a marker and a mug. The three objects were placed at
five different positions in 3D space. A picture of the bookcase
and the object positions is shown in Fig. 2. Adequate resting
time (one min) was used between concecutive trials. Each
subject conducted several trials, for each object and object
position combination.

B. Data Acquisition and Processing
In order to describe the motion of the human upper limb

in 3-D space we used three rotational DoFs to model the
shoulder joint, one rotational DoF for the elbow joint, one
rotational DoF for pronation-supination, two rotational DoFs

Fig. 1. Block diagram of the proposed learning scheme. Two main modules
formulate the learning scheme, the classification module and the task specific
model selection module. Classification module provides decision for subspace
to move towards and object to be grasped. Task specific model selection
module examines classication decisions and triggers a subspace and object
specific motion decoding model. The decoding model estimates the human
arm hand system motion (27 joint values) based on the human myoelectric
activity. Finally an EMG-based interface can take advantage of the proposed
scheme and the estimated human motion. For example a human to robot
motion mapping procedure [19], may take as input the estimated human arm
hand system motion to generate equivalent robot motion, for EMG-based
teleoperation of a robot arm hand system. EMG-based teleoperation of a robot
arm hand system is presented as a possible application of the scheme.

Fig. 2. Picture of the bookcase containing three different objects, a marker,
a rectangular-shaped object and a mug, placed in five different positions, in
three different shelves. The distances between the object positions are also
provided in terms of a superimposed diagram.

for the wrist and twenty rotational DoFs for the fingers.
Regarding the fingers we used for each of the four kinemat-
ically identical fingers (index, middle, ring and pinky) three
rotational DoFs for flexion-extension and one rotational DoF
for abduction-adduction, while for the thumb we used two
rotational DoFs for flexion-extension, one rotational DoF for
abduction-adduction and one rotational DoF to model the palm
mobility that allows thumb to oppose to other fingers.

In order to record the motion of the human arm hand system
and to extract the corresponding joint angles (27 modeled
DoFs), we used a magnetic position tracking system and
a dataglove. The magnetic position tracking system Isotrak
II R⃝ (Polhemus Inc.) was equipped with two position tracking
sensors and a reference system. Two sensors were placed on
the elbow and wrist respectively, while the reference system
was placed on the shoulder. In order to measure the rest 22
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DoFs of the wrist (flexion-extension and abduction-adduction)
and the human hand (joints of the fingers) the Cyberglove II R⃝

(Cyberglove Systems) was used.
Regarding EMG signals, we recorded the myoelectric activ-

ity of sixteen muscles, of the upper arm (eight muscles) and
the forearm (eight flexor and extensor muscles) as depicted in
Fig. 3. The selection of the muscles, as well as the placement
of the electrodes, was based on the related literature [6, 20].
EMG signals were acquired using single differential surface
EMG electrodes (DE-2.1 R⃝, Delsys Inc.) and conditioned using
an EMG system (Bagnoli-16 R⃝, Delsys Inc.).

EMG signals were band-pass filtered (20-450 Hz), sampled
at 1 kHz, full-wave rectified and low-pass filtered (Butter-
worth, fourth order, 8 Hz). The position measurements were
provided by the position tracking system at the frequency of
30 Hz. An antialiasing finite-impulse-response filter (low pass,
order: 24, cutoff frequency: 100 Hz), was used to resample
the measurements at a frequency of 1 kHz, in order to be
consistent with the sampling frequency of the EMG signals.

C. Muscular Co-Activation Patterns Visualization
In order to visualize muscular co-activation patterns we

used a novel statistical representation technique that we call
“Boxplot Zones” [21]. The statistical significance of muscular
co-activation patterns differentiation for different subjects and
for different reach to grasp movements towards different
positions or different objects placed in the same position,
was assessed using the Kruskal-Wallis and the Wilcoxon
rank sum statistical tests. Those tests proved that muscular
co-activations vary significantly not only between different
subjects but also between different reach to grasp strategies,
and therefore should be considered and analyzed as subject-
specific and task-specific characteristics. More information can
also be found in [21]. Fig. 3 shows boxplot zones visualization
of muscular co-activation patterns across sixteen muscles of
the upper arm and the forearm, for one subject (Subject 1)
performing reach to grasp movements towards five different
positions, in order to grasp three different objects, a marker,
a rectangle and a mug. In Fig. 3, its also evident that the co-
activation patterns of the human arm and hand muscles differ
significantly for reach to grasp movements towards different
subspaces or different objects, although the same fingers and
upper-arm joints are involved. More precisely, if we examine
the muscular co-activation patterns across different subspaces,
we notice that the activity of the muscles of the upper-arm
(EMG channels 1-8) reflects most of the differentiation, while
across different objects, placed in the same subspace (specific
position), the activity of the forearm muscles (EMG channels
9-16) reflects most of the differentiation.

III. METHODS

A. Multiclass Classification of Reach to Grasp Movements
Synergistic profiles depicted in the form of “boxplot zones”

in Fig. 3 denote that there exists a significant differentiation
of muscular co-activation patterns between the different reach
to grasp movements. In order to be able to take advantage
of this differentiation, we choose to discriminate the different

Fig. 3. Boxplot Zones visualization of different muscular co-activation
patterns across sixteen muscles of the upper arm and the forearm for one
subject (Subject 1) performing reach to grasp movements towards five different
positions PI, PII, PIII, PIV and PV, to grasp three different objects, a marker,
a rectangle and a mug. The 16 muscles appear in this paper in the following
order (1 to 16): deltoid anterior, deltoid middle, deltoid posterior, teres
major, trapezius, biceps brachi, brachioradialis, triceps brachii, flexor pollicis
longus, flexor digitorum superficialis, flexor carpi ulnaris, flexor carpi radialis,
extensor pollicis longus, extensor indicis, extensor carpi ulnaris and extensor
carpi radialis.

Fig. 4. Comparison of two reach to grasp strategies. First subplot presents
the distance of the two strategies in the m-dimensional space where m=16 the
number of the EMG channels. The second subplot focuses on the evolution
of classification decision per sample over time. The two different strategies
are: reach to grasp movements towards a marker in position I (Strategy I) and
reach to grasp movements towards a marker in position II (Strategy II).

reach to grasp strategies in the 16-dimensional space of the
myoelectric activations, concluding from EMG to the task to
be performed. In Fig. 4 we present a typical classification
problem of discriminating (from the myoelectric activity of
16 muscles) two different strategies for reaching a specific
object placed in two different positions. Reaching, grasping
and return phases are shown. More specifically in the top plot
we can see how the distance between the two classes in the 16-
dimensional space is evolved. Distance between two classes
give us a measure of classes separability, i.e. how easily the
classes can be discriminated. In the bottom plot, we see that
the accumulation of misclassified samples is reasonable for the
time periods that the distance between the two strategies is not
significant (i.e. beginning and end of the experiment, when the
human arm hand system is close to starting position).
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1) Random Forests Classifier: Random forests classifier is
an ensemble classifier that consists of many decision trees and
outputs the class that is the mode of the class’s output by the
individual trees [22, 23]. More specifically, a random forest is a
classifier consisting of a collection of tree structured classifiers
{h(x,ΘN),N = 1, ...} where {ΘN} are independent identically
distributed random vectors and each tree casts a vote for the
most popular class at input x.

Fig. 5. Random Forests based classification procedure for N trees grown.
OOB stands for out-of-bag samples.

The classification procedure for N trees grown is presented
in Fig. 5. Some advantages of the random forests technique
is the fact that runs efficiently and fast on large databases,
provides high accuracy, does not overfit, provides consistent
interpretability, provides variable importance, and is able to
handle thousands of input variables without variable deletion.

2) Features Selection with Random Forests: In random
forests, each tree is constructed using a different bootstrap
sample set from the original data. About one-third of the
samples are left out of the bootstrap sample set and are
not used in the construction of the Nth tree. These samples
are called out-of-bag samples. In order to compute features
importance, the random forests can be used as follows; in
every grown tree in the forest, we put down the out-of-bag
samples and count the number of votes cast for the correct
class. Then the values of a variable m are randomly permuted
in the out-of-bag samples and these samples are put down the
tree. Subtracting the number of votes casted for the correct
class in the m-variable permuted out-of-bag data from the
previously computed number of votes for the correct class in
the untouched out-of-bag data, we get the importance score
of each tree. The average importance score for all trees in the
forest is the raw importance score for the variable m. Thus, the
importance for feature variable m can be computed subtracting
the error rate for the original data from the error rate when
the variable m is permuted. A diagram presenting the random
forests feature variable importance calculation procedure, is
presented in Fig. 6.

In cases where the number of variables is very large,
Random Forests can be initially run with all the variables
and then run again using only the most important variables
selected from the first run. In Fig. 7 the importance plots
for different feature variables (EMG channels) are presented,
for two different cases, subspace discrimination and object

Fig. 6. Diagram of the Random Forests feature variable importance
calculation procedure. OOB stands for out-of-bag samples.

discrimination. For the case of subspace discrimination the
feature variables corresponding to upper-arm muscles (first 8
EMG channels) accumulate most of the importance, while
for the case of object discrimination the feature variables
corresponding to the forearm muscles (last 8 EMG channels)
appear to have increased importance. This latter evidence
can also be verified by the fact that for different reach to
grasp movements towards different subspaces the muscular
co-activation patterns of the upper-arm muscles appear to
be significantly different in Fig. 3, while for the case of
reach to grasp movements towards different objects, there is
still some significant differentiation in upper-arm muscles but
the muscular co-activation patterns of the forearm muscles
(responsible for grasping), reflect most of the differentiation.
More derails for features selection can be found in [24].

Fig. 7. Importance plots for feature variables (EMG Channels) importance
- expressed as mean decrease in accuracy - for Subject I, for the cases of
subspace discrimination and object discrimination subsequently. For the case
of subspace discrimination data involving all objects are used, while for object
discrimination, feature importance is examined for a specific position (PI) and
different objects. Positions 1 to 5 correspond to positions PI to PV, while
objects 1, 2 and 3 correspond to mug, marker and rectangle respectively.
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B. Task Specific Motion Decoding Models
1) Dimensionality Reduction: In order to represent our

signals in a low-dimensional space, the Principal Components
Analysis (PCA) method was used. For the EMG signals
recorded, a 4-D space could represent most of the original
high-dimensional data variance (more than 92%). Regarding
the human arm hand system kinematics, the 27-DoF motion
could also be described adequately by a 4-D space that
represents most (94%) of the original data variance. We used
the PCA as a dimensionality reduction technique in order
to take advantage of the underlying covariance of our data
representing the same variability in a lower dimensional space
without losing any dimension of the original data. More
information regarding PCA can be found in [1].

2) Task Specific EMG Based Motion Decoding Models
based on Random Forests Regression: Random Forests can
also be used for regression, growing trees depending on a
random vector Θ such that the tree predictor h(x,Θ) takes
on numerical values as opposed to class labels (used for
classification). The random forest predictor, is formed sim-
ilarly to the classification case, as appeared in Fig. 5, by
taking the average over the N trees of the forest {h(x,ΘN)},
instead of the most popular class. Random Forests are easily
implemented and trained, are very fast in terms of time spent
for training and prediction, can be parallelized, can handle
thousands of input variables (as in the case of classification),
are resistant to outliers, run efficiently on large databases, have
very good generalization properties and at last can output more
information than just class labels (e.g. sample proximities,
visualization of output decision trees etc.).

IV. RESULTS

A. Classification Results
In order to select the most appropriate method we have

applied a wide variety of classification techniques in our
dataset, comparing them in terms of classification accuracy
and time required for training for a specific dataset (that
serves as benchmark). We performed support vector machines
(SVM) based classification with a radial basis function (RBF)
kernel and we constructed a single hidden layer Neural Net-
work (NN) with ten hidden units. We trained NNs with the
Levenberg-Marquardt backpropagation algorithm for neural
network-based classification. k nearest neighbors (kNN) clas-
sifier was compared for the simplest case where k = 3 and
Random Forests were grown with ten trees for speed. Random
Forests outperformed the classification performance of other
classifiers. For more information regarding the comparison of
classification results the reader should refer to [21].

In order to assess the classification methods accuracy, we
define the success rate as the percentage of EMG data points
classified to the correct reach to grasp task. The classification
is done for every acquired EMG data point, allowing the
system to be able to decide in real-time the reach to grasp
strategy that is being used (for a specific task), and even switch
between different tasks online. Finally, we must note that
classification results presented below are the average values
over the five rounds of cross-validation method applied.

First, we present the classification results across different
reach to grasp strategies for a specific position and different
objects (three classes corresponding to the three objects) for
all subjects in Table I. In Table II we use Random Forests in
order to compare the classification accuracy across different
reach to grasp strategies for a specific object and varying object
position (five classes corresponding to the five positions) for
all subjects. Finally in Table III we present Random Forests
accuracy across reach to grasp movements towards different
positions (five classes corresponding to the five positions), for
all objects and subjects.

Typically the classification decision is taken at a frequency
of 1 kHz. However, we can also use a sliding window of
width N, in order for all the N samples to be used for the
classification decision. The majority vote criterion, classifies
all the samples, of a set of N samples, in the class that
was the most common between them, i.e. the class that
gathers the most votes. The use of the majority vote criterion
(MVC) inside the aforementioned window, can improve the
classification results acquired with the proposed methods.

More details regarding the sliding window and the MVC
can be found in [21]. In Table IV, we present improved
classification results using the majority vote criterion in a
sliding window of N = 50 samples for Subject 1 performing
reach to grasp movements towards a specific object (marker)
and varying object position.

TABLE I
CLASSIFICATION ACCURACY ACROSS DIFFERENT REACH TO GRASP

STRATEGIES TOWARDS A SPECIFIC POSITION AND THREE DIFFERENT
OBJECTS, FOR ALL SUBJECTS (USING RANDOM FORESTS )
Positions Objects (Classes)

Mug Marker Rectangle
Pos I 87.82% (±4.52) 91.15% (±5.31%) 88.82% (±4.63%)
Pos II 84.24% (±5.99%) 90.40% (±4.52%) 91.81% (±5.41%)
Pos III 84.78% (±5.78%) 86.72% (±5.16%) 85.39% (±4.95%)
Pos IV 83.24.% (±6.14%) 84.17% (±6.21%) 86.93% (±4.83%)
Pos V 86.55% (±4.39%) 89.32% (±3.81%) 90.74% (±3.78%)

TABLE II
CLASSIFICATION ACCURACY ACROSS DIFFERENT REACH TO GRASP
STRATEGIES FOR A SPECIFIC OBJECT AND FIVE DIFFERENT OBJECT

POSITIONS FOR ALL SUBJECTS (USING RANDOM FORESTS)
Positions Objects
(Classes) Mug Marker Rectangle

Pos I 86.01% (±4.16%) 89.83% (±4.01%) 87.01% (±6.57%)
Pos II 83.76% (±6.24%) 87.95% (±4.78%) 88.43% (±5.51%)
Pos III 89.74% (±3.41%) 87.23% (±4.92%) 90.30% (±4.01%)
Pos IV 91.23% (±2.39%) 90.05% (±4.86%) 90.51% (±3.92%)
Pos V 91.80% (±3.45%) 92.34% (±2.69%) 90.90% (±3.01%)

TABLE III
CLASSIFICATION ACCURACY ACROSS DIFFERENT REACH TO GRASP

STRATEGIES IN DIFFERENT POSITIONS FOR ALL OBJECTS AND SUBJECTS
(USING RANDOM FORESTS)

Positions
Pos I Pos II Pos III Pos IV Pos V

88.51% 86.29% 87.91% 89.20% 91.02%

TABLE IV
CLASSIFICATION ACCURACY ACROSS DIFFERENT REACH TO GRASP

MOVEMENTS TOWARDS A SPECIFIC OBJECT (MARKER) AND VARYING
OBJECT POSITION FOR SUBJECT 1, USING RANDOM FORESTS AND

RANDOM FORESTS WITH MVC APPLIED INSIDE A SLIDING WINDOW OF
N=50 SAMPLES

Object Subject1
Rectangle Pos I Pos II Pos III Pos IV Pos V

Random Forests 87.03% 91.61% 90.51% 86.25% 92.61%
RF with MVC 100% 100% 100% 100% 100%
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B. Task Specific Motion Decoding Results

In order to evaluate the efficiency of different methods we
examined and compared a series of regression techniques.
More specifically we used the Multiple Linear Regression
(MLR), we created a State-Space model as described in [1],
we performed SVM regression with RBF kernel and we
contructed a single hidden layer Neural Network with ten
(10) hidden units. Finally Random Forests were also used as
a regression technique, growing ten trees for computational
efficiency. Regarding estimation accuracy we compared the
aforementioned methods for estimating reach to grasp move-
ments, towards different positions and different objects placed
at the same position (using a benchmark dataset). Random
forests outperformed the other regression techniques in terms
of estimation accuracy, performing quite well also in terms
of speed of execution. More details regarding the comparison
results for the different regression techniques, can be found in
[25]. Results for subspace specific and object specific models
are presented in Table V and Table VI respectively, where we
can see that the models trained for each position or object
separately, outperformed the “general”1 models built for all
positions (for a marker) and all objects (placed in a specific
position, Pos III).

TABLE V
ESTIMATION RESULTS FOR THE RANDOM FORESTS BASED MODEL FOR A
SPECIFIC OBJECT (MARKER) ACROSS ALL FIVE OBJECT POSITIONS, FOR

SUBJECT 1.
Position Arm Hand

Similarity (%) Similarity (%)
Pos I 83.78% ±4.01% 83.43% ±13.77%
Pos II 88.80% ±3.98% 86.60% ±15.02%
Pos III 86.93% ±3.95% 90.42% ±10.47%
Pos IV 89.47% ±6.25% 83.73% ±16.12%
Pos V 91.53% ±6.57% 89.04% ±10.09%
ALL 80.19% ±7.32% 81.15% ±16.24%

TABLE VI
ESTIMATION RESULTS FOR THE RANDOM FORESTS BASED MODEL FOR A
SPECIFIC POSITION (POS III) AND ALL THREE DIFFERENT OBJECTS, FOR

SUBJECT 1.
Object Arm Hand

Similarity (%) Similarity (%)
Marker 86.93% ±3.95% 90.42% ±10.47%

Rectangle 87.76% ±4.13% 82.33% ±12.31%
Mug 89.62% ±5.13% 83.52% ±13.57%
ALL 83.26% ±7.2% 80.47% ±11.72%

TABLE VII
ESTIMATION RESULTS FOR THE RANDOM FORESTS BASED MODEL FOR
SPECIFIC POSITION (POS III) AND SPECIFIC OBJECT (RECTANGLE), FOR

ALL SUBJECTS.
Subject Arm Hand

Similarity (%) Similarity (%)
Subject 1 87.76% ±4.13% 82.33% ±10.47%
Subject 2 85.91% ±6.21% 81.59% ±11.78%
Subject 3 89.44% ±4.30% 84.93% ±14.93%
Subject 4 87.32% ±5.34% 85.28% ±10.16%
Subject 5 82.11% ±7.79% 80.54% ±16.32%

We can further notice in Table VII, that the estimation
results were usually better in the case of the human arm
than in the case of the human hand. This is an interesting
finding, which supports the applicability of our method, since

1With the term “general” models we mean the models trained for all
positions in 3D space or all objects placed in a specific position. Thus, the
training of the “general” models requires a training set that contains data for
all the classes of a specific problem (i.e. object or subspace discrimination).

precisely estimating the position of the arm, is much more
important than the placement of the fingers. Similarity between
the estimated and the captured human motion is defined as:

S = 100(1−RMS(qc −qe)/RMS(qc))% (1)

where RMS is:

RMS(qc −qe) =

√
∑n

i=1 (qc−qe)
2

n (2)

where qc are the captured joint values, qe the estimated joint
values and n the number of samples.

V. CONCLUSIONS AND DISCUSSION

In this paper we proposed a complete EMG-based learning
scheme for reach to grasp movements. Principal Component
Analysis (PCA) was applied to represent in lower dimensional
manifolds the EMG activity and the human motion captured.
These low dimensional embeddings were then used to train
different task-specific Random Forest models for different
reach to grasp movements. The scheme was formulated so as
to combine a regressor with a classifier, to discriminate first
the different reach to grasp strategies and trigger then a task-
specific EMG based motion decoding model, that achieves
better estimation results than the “general” models. The esti-
mated output of the trained models was back projected in the
high dimensional space (27 DoFs) to give an accurate estimate
of the full human arm-hand system kinematics. The proposed
methodology can be used to a series of EMG-based interfaces.
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